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Abstract 

Introduction: Voxel-Based Morphometry (VBM) and Source-Based Morphometry (SBM) are two widely used 

techniques for analyzing structural Magnetic Resonance Imaging (MRI) data of the brain. While VBM is a 

voxel-wise approach that compares differences in gray and white matter volume, density, or concentration 

between groups or conditions, SBM identifies patterns of structural variation across the whole brain using 

independent component analysis (ICA). The purpose of this study is to compare the performance of VBM 

and SBM in detecting differences in brain structure. 

Methods: Source-Based-Morphometry through the Fusion Ica Toolbox, and Voxel-Based-Morphometry, with 

the CAT12 pipeline, were used to test differences and similarities in Parkinson’s patients MRI scans and 

Chronotypes in 33 subjects divided into three groups: a Parkinson’s Group (PG), an Early Chronotype 

Group (EG), and a Late Chronotype Group (LG) (with each group consisting of 11 subjects). Circadian 

preference, daytime sleepiness and sleep quality were tested, while MRI data were acquired with a 3T 

scanner. 

Results: The average age for the EG was 32.1 years old; for the LG it was 30.3 years old; for the PG it was 

38.6 years old. SBM statistics showed several clusters surviving the analysis and the conversion to z-map 

score with a threshold of z > 2. Multiple Regions of Interest (ROI) were identified as different between the 

groups and the components with the lowest p value (< 0.05) were the 1st one for the PG-EG and the 4th 

one for the PG-LG analysis. In the Talairach Coordinates analysis, the Middle Frontal Gyrus and the 

Lentiform Nucleus were identified as denser in GMV or WMV. 

Conclusion: Our study highlights the importance of choosing the appropriate method for analyzing structural 

MRI data. While VBM is a powerful technique for identifying local differences in brain structure, SBM 

provides a more comprehensive view of brain structural variation and can reveal patterns that are not 

detectable by VBM. Future studies should consider using both VBM and SBM to fully characterize brain 

structural differences in various clinical and cognitive populations. 

 



List of Abbreviations: 

MRI: Magnetic Resonance Imaging 

SBM: Source-Based-Morphometry 

jSBM: joint-Source-Based-Morphometry 

VBM: Voxel-Based-Morphometry 

PD: Parkinson’s Disease 

EC: Early Chronotype 

LC: Late Chronotype 

PG: Parkinson’s Disease Group 

EG: Early Chronotype Group 

LG: Late Chronotype Group 

PCA: Principal Component Analysis 

ICA: Independent Component Analysis 

GMV: Grey Matter Volume 

WMV: White Matter Volume 

FWE: Family Wiser Error 

MDL: Minimum Description Length 

CAT12: Computational Anatomy Toolbox 

SPM12: Statistical Parameter Mapping 

FIT: Fusion ICA Toolbox 

jICA: joint Independent Component Analysis 



HC: Healthy Controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Neuroimaging analysis is a critical tool for understanding the structural and functional changes of the brain. 

Structural Magnetic Resonance Imaging (sMRI) data can be analyzed using different techniques, which vary 

in their sensitivity, specificity, and ability to identify patterns of structural variation across the whole brain.  

Two commonly used MRI data analysis methods in detecting structural variations in the brain are the Voxel-

Based-Morphometry (VBM) [1] and the Source-Based-Morphometry (SBM) [2-3]. VBM is an automated 

technique that uses statistics to identify differences in brain anatomy between groups of subjects, which can 

be used to infer the presence of atrophy or tissue expansion in subjects with disease [1, 4-6]. It typically 

uses T1-weighted volumetric Magnetic resonance imaging (MRI) scans and essentially performs statistical 

tests across all voxels in the image to identify volume differences between groups. As such, VBM is a 

powerful tool for assessing structural changes in the brain that can help increase understanding of disease 

processes. 

SBM is a data-driven linear multivariate approach for decomposing structural brain imaging data into 

commonly covarying imaging components and subject-specific loading parameters [2-3]. SBM is an 

extension of VBM and includes independent component analysis (ICA). In contrast to univariate analysis, 

which examines each voxel in isolation, SBM considers the relationships between voxels and identifies 

patterns of covariation across the entire brain: this allows for the identification of complex and weak effects 

from high-dimensional datasets while simultaneously performing data reduction procedures. The imaging 

data can be reduced from 20,000 voxels to a handful of networks or patterns, which can then be examined 

for group differences or other effects. Overall, SBM provides a more comprehensive and nuanced approach 

to analyzing structural brain imaging data compared to traditional univariate methods. [7-11]. More in detail, 

joint-SBM (jSBM), uses joint-ICA (jICA) to break down processed images of brain tissue into shared 

components and statistical analysis by identifying patterns of activity that are common to both types of data, 

finding the significant shared components that differ between groups. These shared components are 

combinations of connected brain regions that vary together among subjects. [3,11].   

Both VBM and SBM have been used to look into a variety of psychiatric diseases and neurological illnesses, 

such as Schizophrenia, Major Depressive Disorder, Multiple Sclerosis and Bipolar Disorder [8-10] but, to our 



knowledge no direct comparison of their efficacy in Parkinson Disease (PD) and Chronotype has been 

explored.  

Circadian rhythms are daily oscillations found in most aspects of human physiology, from early development 

to the latest stages of life [12]. Their role is crucial in regulating all aspects of our existence, and that is why 

they are constantly under the spotlight as a primary or secondary cause of a plethora of diseases [13]. The 

link between different chronotypes, their disruption, and neurodegenerative disorders has been investigated 

in the past years, leading to an increasing amount of evidence pointing to a bidirectional correlation [14, 15, 

12]. Some authors have suggested that varying in the circadian clock, could lead to the prevention and 

improvement of neurodegenerative diseases [14]. Amongst these, one of the most famous for having a 

correlation with sleep disorders, which in turn leads to circadian alteration, is PD [16, 17]. 

Parkinson’s is a neurodegenerative disorder that involves the progressive loss of dopaminergic neurons in 

the substantia nigra and cortical atrophy [18]. One of PD’s prodromal symptoms, which relinquishes even 

after its initial phase, is REM sleep disorder [19], which can be helpful in the diagnosis of PD early on. 

Besides that, excessive daytime sleepiness [16] has been associated with PD, together with other nocturnal 

sleep alterations, such as restless leg syndrome and sleep apnea. All these manifestations are going to 

affect patients’ internal clock and can even contribute to the process of neuronal degeneration, as 

mentioned before [15]. As cited earlier there are also concerns and hypotheses on a correlation on the other 

way around, and that is why there’ve been questions regarding Chronotypes disruption and PD, but with 

conflicting results [20]. 

The purpose of this paper is to compare the outcomes of each method and assess the effectiveness of VBM 

and SBM in detecting structural brain differences in individuals with PD and healthy controls. We will 

investigate whether one technique is better suited than the other to detect anatomical variations and 

determine which method is more efficient in identifying group differences. By comparing VBM and SBM 

results, we hope to contribute to the growing literature on neuroimaging techniques and their application in 

clinical settings. 

 



Methods  

The study population consisted of 33 subjects divided into three groups: a Parkinson’s Group (PG), an Early 

Chronotype Group (EG), and a Late Chronotype Group (LG). Each group consisted of 11 subjects. The PG 

group included patients data and scans downloaded from The Parkinson Progression Marker Initiative 

(PPMI)[21], while the EG and LG data has been acquired 

from [https://openneuro.org/datasets/ds003826/versions/3.0.1 dataset].  Regarding the LG and EG the data 

was obtained as follows [22]: 

Circadian preference and the subjective amplitude of the circadian rhythms for each participant were 

assessed using the Chronotype Questionnaire (ChQ) [23, 24] whereas daytime sleepiness and sleep quality 

was tested with, respectively, Epworth Sleepiness Scale (ESS) [25] and Pittsburgh Sleep Quality Index 

(PSQI) [26]. All the questionnaire measurements were collected before acquiring the brain imaging data. 

MRI data were acquired with a 3T scanner (Magnetom Skyra, Siemens) using a 20-channel or 64-channel 

head/neck coil. The high-resolution structural brain images were collected with a T1 MPRAGE sequence 

(176 sagittal slices; 1 × 1 × 1.1 mm3 voxel size; TR = 2300 ms, TE = 2.98 ms, flip angle = 9, GRAPPA 

acceleration factor 2) 

Meanwhile, the PG MRI data selected was acquired with a 3T scanner (Siemens). The high resolution 

structural brain images were collected with a magnetization-prepared rapid gradient-echo (3D T1 MPRAGE) 

sequence (1 × 1 × 1.1 mm3 voxel size; TR = 2300 ms, TE = 3 ms, flip angle = 9 , GRAPPA acceleration 

factor 1 or 2). 

 

Voxel-Based-Morphometry Steps 

Preprocessing: The MRI scans are preprocessed to correct for image distortions, intensity non-uniformities, 

and spatial normalization to a standard template. The data were analyzed using CAT12 

(http://www.neuro.uni-jena.de/cat/; CAT12, version r1109) implemented in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Data processing for grey matter volume (GMV) and 

white matter volume (WMV) included spatial normalization, segmentation, and smoothing (6 mm full-width 

https://openneuro.org/datasets/ds003826/versions/3.0.1
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12


half-maximum Gaussian kernel) to increase the signal-to-noise ratio and account for individual differences in 

brain anatomy. . The new segmentation algorithm implemented in SPM12 was used to segment the T1-

weighted structural images into gray matter, white matter, and cerebrospinal fluid. 

Statistical analysis: To compare the variations in GMV between the groups, two VBM analyses were carried 

out. In analysis 1, PG and LG were contrasted; in analysis 2, EG and PG were. The entire brain volume (the 

sum of GMV and WMV) of each brain was utilized as a covariant to adjust for any notable disparities 

between the brains. The volume of the brain was calculated using the toolbox tissue volume in SPM12. 

Under the option Masking, which replicates which voxel is included in the analysis, any voxel with a value of 

0 (implicit masking) or a value below 0.01 (threshold masking with an absolute threshold of 0.01) was 

excluded from the study [27]. The other parameters in this phase were implemented as necessary. The 

Estimate option had the traditional technique set, which involves running the analysis multiple times. One t-

contrast was established as -1 1 to display the t-statistics results. Additionally, an FWE (family-wise error 

correction) with a p-value of 0.05 was utilized to limit the likelihood of false positives. 

Source-Based-Morphometry Steps 

Preprocessing of structural MRI data, including skull stripping, spatial normalization, and segmentation into 

gray matter, white matter, and cerebrospinal fluid, as seen earlier. Creation of a group-level covariance 

matrix based on the gray matter images of all subjects in the study. Decomposition of the covariance matrix 

using independent component analysis (ICA) to identify maximally spatially independent sources exhibiting 

covariation among subjects in structural gray matter MRI images. 

Identification of structural magnetic resonance imaging (sMRI) differences between groups by comparing 

the subject-specific loading coefficients for each component between groups. This methodology allows for 

the identification of complex and weak effects from high-dimensional datasets while simultaneously 

performing data reduction procedures. 

Two SBM studies between PG and EG and PG and LG were conducted by using the Fusion ICA Toolbox 

(FIT; version 2.0e; https://trendscenter.org/software/fit/), individual whole-brain maps of GMV and WMV 

were entered into a joint-ICA (jICA) [3, 28]. The minimum description length was used to estimate the 

https://trendscenter.org/software/fit/


number of components for each modality (MDL). For each modality, eight components were discovered. To 

pre-select components of possible relevance, the results of (two-tailed) two-sample t-tests on the loading 

parameters of PG, EG, and LG as implemented in FIT were used. A threshold of p < 0.05 was considered 

statistically significant. 

 

Results 

General Results 

Each group consisted of 11 subjects. The average age for the EG was 32.1 years old; for the LG it was 30.3 

years old; for the PG it was 38.6 years old. In the PG 7 males and 4 females were analyzed, while in the EG 

5 males and 6 females, and in the LG 4 males and 7 females. 

Voxel-Based-Morphometry 

By applying a Family Wise Error (FWE) correction for multiple comparisons (p-value < 0.05), no voxels 

survive the difference analysis between PG and EG with tissue map computed with CAT12 and then 

visualized with xjview. When comparing PG to LG, the difference analysis resulted in some surviving voxels 

in the left and right putamen, as seen in figure 1. 

Source-Based-Morphometry 

The results of the SBM statistics obtained through the jointICA with GMV and WMV showed several clusters 

surviving the analysis and the conversion to z-map score with a threshold of z > 2. Multiple Regions of 

Interest (ROI) were identified as different between the groups, as can be seen in figures 1 through 4, both at 

cortical and subcortical level. We then analyzed the mixing matrix using a two‐sample t‐test for patients 

versus controls. The components with the lowest p value (< 0.05) were the 1st one for the PG-EG and the 

4th one for the PG-LG analysis. 

In the Talairach Coordinates analysis, table 1-2, we can see that cortical region like the Middle Frontal 

Gyrus or subcortical like the Lentiform Nucleus, were identified as denser in GMV or WMV, in EG and LG 

compared to PG, but depending on the feature (GMV or WMV) the same areas resulted as with fewer 



voxels (p value of < 0.05). The differences in positive mean that there is a denser cluster, and by looking at 

the volume and the random effects one of the two groups, we can determine if one has more of these 

cluster than the other. In this case, the EG resulted having fewer of these groups of voxels, while the LG 

was more different from the PG. 

 

Discussion  

The purpose of this study was to investigate the effectiveness of two methods, Voxel-Based Morphometry 

and Surface-Based Morphometry in identifying differences in brain MRI scans between individuals with early 

onset Parkinson's disease, early chronotype subjects, and late chronotype subjects. VBM has been widely 

used for decades to analyze MRI scans, while SBM has recently emerged as a more accurate and 

informative alternative. Through this study, we aimed to determine whether SBM would be more effective 

than VBM in identifying differences in brain MRI scans between the three groups.  

The correlation between chronotype and neurodegenerative disorders has been steadily gaining more 

attention; amidst the studies conducted, Culell et al. [29] investigated chronotype, sleep efficiency and 

sleepiness correlations while considering several neurodegenerative disorders, such as PD, Multiple 

Sclerosis and Alzheimer’s disease. Their research made use of a Mendelian Randomization (MR) study with 

two samples, while choosing 12 sleep-related variables based on Genome-Wide Association Study (GWAS) 

data. Through this approach they were able to discover multiple associations, as morning chronotype and 

insomnia were positively correlated with later PD age of onset, pointing out that an evening chronotype 

might lead to an earlier PD age of onset (b = 1.07 (se = 0.37)). On the other hand, Videnovic et al. [17] 

research, where 20 patients with Parkinson's disease getting stable dopaminergic treatment and 15 age-

matched controls participated in a cross-sectional study, did not lead to any correlation between Parkinson 

features and chronotype. In contrast to both studies, Tarianyk et al. [20] after examination of 64 patients with 

various PD motor subtypes, documented a higher percentage of Parkinson’s Disease patients with a 

tendency towards an evening chronotype, established according to the Munich Chronotype Questionnaire. 

On a different note, Marano et al. [30] findings support the inverse: after investigating 50 PD patients with 

the Morningness Eveningness Questionnaire and monitoring them with a motion sensor, they demonstrated 



that axial motor dysfunction, the existence of motor fluctuations, and quality of life were different (p value = 

0.05), with a propensity towards a morning chronotype, especially a late morning one; moreover, a morning, 

or intermediate, chronotype were associated with motor and non-motor signs of a worse disease phenotype 

with visuospatial cognitive dysfunctions [30].  

These findings show how despite numerous efforts and high-quality scientific results, there has not been a 

consensus on the association between PD and a chronotype. Furthermore, all the previous literature did not 

focus on MRI analysis, and the studies focusing on the comparison between SBM and VBM did not take into 

consideration Parkinson Disease and chronotypes. Thus, our research points at adding on both fields, more 

on the superiority of SBM versus VBM, due to the limitations of the data.  

Indeed, our findings suggest that SBM is more effective than VBM in identifying the nuances of the MRI 

scans and providing more detailed insights into the differences between the groups. 

In terms of VBM analysis, no significant differences were found between the PG and EG groups. However, 

when comparing the PG group to the LG group, we found several voxels in the left and right putamen that 

survived the multiple comparison correction. These findings are in accordance with the typical findings in 

MRI’s scans of Parkinson, as in the review by Pagano et al [31], where they have reported the findings of a 

Righini et al. [32] research. Righini et al. documented that putaminal T2 hypointensity was observed in 27 

patients with PD. On the other hand, Ramírez et al. [33] conducted a VBM study by investigating any 

differences in the gray and white matter morphology between 144 de novo PD patients and 66 controls from 

the PPMI database, while comparing two pipelines’ results, such as CAT12 and VolBrain; their results did 

not lead to any statistically significant findings regarding any differences between the PD and healthy 

controls, suggesting that VBM might not be suited for this kind of analysis. 

To the best of our knowledge, no study has previously investigated the differences between healthy controls 

and PD patients by conducting a SBM analysis. Our SBM research revealed several clusters that survived 

the joint independent component analysis with grey matter volume and white matter volume. Multiple 

regions of interest were identified as being statistically different between the groups at both cortical and 

subcortical levels. In particular, the PG-EG comparison showed that the 1st component had the lowest p-

value, while the PG-LG comparison showed that the 4th component had the lowest p-value. These results 

https://www.sciencedirect.com/topics/neuroscience/cognitive-disorders


suggest that different brain regions may be affected in different ways depending on the specific comparison 

being made. 

As cited earlier, usually structural MRI is not regarded as valid method for differentiating between PD and 

HC [34], and the areas that are mostly identified as atrophied in PD are the ones that usually stand out while 

looking at MRIs, like the putamen or the amygdala [34, 35]. In our evaluation, the putamen was among the 

areas that contributed the most in distinguishing between PG and HC, but also cortical areas were among 

the ones most affected by it. This result goes against some of the previous evidence, such as in the study 

by Blair et al. [35], where no neocortical areas were found to be statistically different between PD and HC, 

after a VBM analysis that comprehended 103 HC and 136 PD patients. In the same study, there were some 

subcortical areas found to have a lower GMV, as basal forebrain, amygdala, and entorhinal cortex. In 

contrast, Long et al. [36] in a VBM and resting-state function MRI study, highlighted differences in both 

analysis, while examining 19 early PD patients and 27 HC. In particular, the VBM analysis showed brain 

regions, which has been selected as features more that 23 times, as statistically different between the two 

groups regarding the GM, such as the paracentral lobule, and precentral gyrus; while for WM, the middle 

and frontal gyrus, Rolandic operculum, the olfactory cortex and the precentral gyrus were significantly 

different.  

In our SBM evaluation, the cortical brain regions identified as statistically different, with a higher or lower 

GMV and WMV, were several. Amongst those, we have found the superior frontal gyrus, which is involved 

in self‐awareness and executive functions, or the medial frontal gyrus that is associated with high‐level 

executive functions and decision‐related processes. One of the most relevant regions identified by the SBM 

technique, was a sub-gyral one, composed of the areas 6,7,8,20,31,37,39 and 40, where difference 

between PG and LG was the largest of any other region. Amongst these areas, we find relevant neuronal 

population for movement and its planning, moreover, the fusiform, angular and supramarginal gyri, involved 

in complex function and tasks, as calculus and face recognition. 

These results show how the SBM was able not only to reproduce the VBM ones, such as identifying the 

putamen as a key area for differentiating between PD and HC, but went further into detail, successfully 

pointing out subcortical and cortical areas that might differ between the groups, providing more information 



in respect to the previous literature on VBM as well. Furthermore, it allowed us to differentiate between the 

LC and EC when comparing them to the PG. This is concordant with previous studies conducted, where 

SBM has been compared to VBM for a more specific and detailed characterization of neurodegenerative 

and psychiatric disorders [5,7,2]. In particular, Singh et al. [5], provided an excellent example of SBM’s 

superiority on VBM. By studying 20 children affected by bipolar disorder, they demonstrated how VBM did 

not reveal any increase in GMV and WMV, while SBM was able to demonstrate it in the bilateral angular 

gyrus, bilateral inferior temporal, left supplementary motor area and left middle temporal region. Accordingly, 

Bersgland et al. [7] evaluated 152 patients diagnosed with Multiple Sclerosis at baseline and at a 10-year 

follow-up period, utilizing a longitudinal SBM analysis. Their results, statistically significant as with a p-value 

< 0.05, showed how SBM was optimal in characterizing GM atrophy in areas associated with motor and 

cognitive functioning. Lastly, Xu et al. [37] compared VBM and SBM pipelines on 120 HC and 120 

schizophrenic patients. Their SBM approach showed higher accuracy and details, as it was able to spot GM 

alterations not identified by VBM in the basal ganglia, the parietal, and the occipital lobe. 

It is important to note that the limitations of our study. First, the sample size was relatively small: we tried to 

limit false positives in the VBM analysis, as suggested by Scarpazza et al. [38], while equally distributing the 

subjects, this limitation should be considered when interpreting the results and these results could be 

considered preliminary analysis. The second limitation is the relative unbalance between sexes in the 

groups can be a concern regarding the analysis validity. Third, the retrospective nature of the analysis and 

the difference in age between the groups may have influenced the outcomes of the study. Despite these 

limitations, our preliminary findings suggest that SBM is a more effective method than VBM for identifying 

differences in brain MRI scans, particularly in identifying their nuances and providing more detailed insights 

into the differences between groups. Further studies, with larger sample sizes and more balanced genders, 

are needed to confirm our findings. 

 

Conclusions 

In this study, we compared the accuracy of two neuroimaging techniques, VBM and SBM, to identify 

differences in brain MRI scans between groups of Parkinson's Disease patients, Early Chronotype subjects, 



and Late Chronotype subjects. Our findings suggest that SBM is a more accurate technique for identifying 

these differences and provides more nuanced insights than VBM. Specifically, we found that SBM was able 

to identify more regions of interest and provided greater detail on the differences between the groups. While 

both techniques were consistent with their results, SBM has been proven to be more accurate and provide 

more information than VBM. These findings have implications for future studies investigating the superiority 

of SBM in regard to VBM in analyzing MRI from patients affected by neurodegenerative disorders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES LEGENDS 

Table 1 

Voxels above the threshold of Z > 2 were converted from Montreal Neurological Institute (MNI) coordinates 

to Talairach coordinates and entered a database to provide anatomic and functional labels for the left (L) 

and right (R) hemispheres. The volume of voxels in each area is provided in cubic centimeters (cc). Within 

each area, the maximum Z value and its coordinate are provided. 

 

Table 2  

Voxels above the threshold of Z > 2 were converted from Montreal Neurological Institute (MNI) coordinates 

to Talairach coordinates and entered a database to provide anatomic and functional labels for the left (L) 

and right (R) hemispheres. The volume of voxels in each area is provided in cubic centimeters (cc). Within 

each area, the maximum Z value and its coordinate are provided. 

 

 

 

 

 

 

 

 

 

 

 



TABLES 

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Talairach Table of sMRI Components of Interest 

 

    
Area  Brodmann Area volume (cc) random effects: Max Value (x, y, z) 

    
PG-LG 

   

    
IC4 Positive - Feature 1 

   

    
Middle Frontal Gyrus 6, 8, 9, 10, 11, 46 9.9/9.0 6.5 (-43, 29, 18)/9.4 (34, -2, 46) 

Sub-Gyral * 0.8/1.2 8.7 (-1, -79, -29)/8.1 (3, -79, -29) 

Uvula 6, 30, 40 6.8/3.1 8.7 (-13, -52, 58)/5.7 (50, -19, 20) 

Pyramis * 1.7/1.2 5.9 (-7, -79, -34)/7.4 (6, -79, -31) 

Superior Parietal Lobule * 2.1/1.3 7.1 (-4, -79, -26)/6.4 (6, -76, -29) 

    
IC4 Positive - Feature 2 

   

    
Sub-Gyral 6, 7, 8, 20, 31, 37, 39, 40 55.8/50.5 4.6 (-27, 10, 22)/4.7 (30, -40, 46) 

Middle Occipital Gyrus 19 3.1/2.0 4.6 (-33, -73, 17)/3.6 (33, -74, 13) 

Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 8.1/7.0 4.5 (-27, 42, -5)/4.3 (25, 45, -5) 



Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE LEGENDS 

Talairach Table of sMRI Components of Interest 
  

    
Area  Brodmann Area volume (cc) random effects: Max Value (x, y, z) 

    
PG-EG 

   

    
IC1 Positive - Feature 1 

   

    
Lentiform Nucleus * 6.5/3.7 9.1 (-28, -6, 4)/7.0 (30, -10, 2) 

Extra-Nuclear 13 8.4/4.0 7.6 (-31, -12, -1)/6.3 (33, -10, -1) 

Precuneus 7, 19, 31 4.0/5.1 6.7 (-25, -64, 40)/5.1 (30, -59, 39) 

Sub-Gyral 20 6.1/5.1 6.7 (-18, -68, -10)/4.8 (33, -59, 42) 

Culmen * 5.2/6.8 4.9 (-15, -63, -7)/6.6 (15, -48, -8) 

    
IC1 Positive - Feature 2 

   

    
Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 6.7/5.4 6.7 (-18, -1, 58)/9.7 (33, 25, 40) 

Medial Frontal Gyrus 4, 6, 8, 9, 10, 32 4.0/2.7 8.8 (-10, 0, 58)/6.4 (21, 11, 45) 

Postcentral Gyrus 2, 3, 5, 7, 40, 43 5.4/2.9 5.3 (-55, -22, 33)/8.3 (50, -16, 38) 

Lingual Gyrus 17, 18, 19, 30 2.3/5.6 5.0 (-19, -66, -3)/7.9 (15, -58, 4) 



 

Figure 1: VBM Analysis – Late Chronotype 

Differences in grey matter concentration between Late Chronotype and Parkinson delineated by VBM 

Figure 2: SBM - Early Chronotype Grey Matter 

Differences in grey matter concentration between Early Chronotype and Parkinson delineated by SBM. The 

voxels above the threshold of Z > 2 are shown. 

Figure 3: SBM - Early Chronotype White Matter 

Differences in white matter concentration between Early Chronotype and Parkinson delineated by SBM. The 

voxels above the threshold of Z > 2 are shown  

Figure 4: SBM - Late Chronotype Grey Matter 

Differences in grey matter concentration between Late Chronotype and Parkinson delineated by SBM. The 

voxels above the threshold of Z > 2 are shown. 

Figure 5: SBM - Late Chronotype White Matter 

Differences in white matter concentration between Late Chronotype and Parkinson delineated by SBM. The 

voxels above the threshold of Z > 2 are shown. 
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