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Abstract

A substantial portion of the world’s population deals with disability. Many disabled

people do not have equal access to healthcare, education, and employment oppor-

tunities, do not receive specific disability-related services, and experience exclusion

from everyday life activities.

One way to face these issues is through the use of healthcare technologies. Un-

fortunately, there is a large amount of diverse and heterogeneous disabilities, which

require ad-hoc and personalized solutions. Moreover, the design and implementation

of effective and efficient technologies is a complex and expensive process involving

challenging issues, including usability and acceptability.

The work presented in this thesis aims to improve the current state of tech-

nologies available to support people with disorders affecting the mind or the motor

system by proposing the use of sensors coupled with signal processing methods and

artificial intelligence algorithms.

The first part of the thesis focused on mental state monitoring. We investigated

the application of a low-cost portable electroencephalography sensor and supervised

learning methods to evaluate a person’s attention. Indeed, the analysis of attention

has several purposes, including the diagnosis and rehabilitation of children with

attention-deficit/hyperactivity disorder. A novel dataset was collected from volun-

teers during an image annotation task, and used for the experimental evaluation

using different machine learning techniques.

Then, in the second part of the thesis, we focused on addressing limitations re-

lated to motor disability. We introduced the use of graph neural networks to process

high-density electromyography data for upper limbs amputees’ movement/grasping

intention recognition for enabling the use of robotic prostheses. High-density elec-

tromyography sensors can simultaneously acquire electromyography signals from

different parts of the muscle, providing a large amount of spatio-temporal infor-



mation that needs to be properly exploited to improve recognition accuracy. The

investigation of the approach was conducted using a recent real-world dataset con-

sisting of electromyography signals collected from 20 volunteers while performing 65

different gestures.

In the final part of the thesis, we developed a prototype of a versatile interactive

system that can be useful to people with different types of disabilities. The system

can maintain a food diary for frail people with nutrition problems, such as people

with neurocognitive diseases or frail elderly people, which may have difficulties due to

forgetfulness or physical issues. The novel architecture automatically recognizes the

preparation of food at home, in a privacy-preserving and unobtrusive way, exploiting

air quality data acquired from a commercial sensor, statistical features extraction,

and a deep neural network. A robotic system prototype is used to simplify the

interaction with the inhabitant. For this work, a large dataset of annotated sensor

data acquired over a period of 8 months from different individuals in different homes

was collected.

Overall, the results achieved in the thesis are promising, and pave the way for

several real-world implementations and future research directions.
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Chapter 1

Introduction

According to the 2004 World Health Survey and Global Burden of Disease (GBD)

estimates, and based on 2010 population estimates, there were around 785 (15.6%)

- 975 (19.4%) million persons 15 years and older living with a moderate or severe

disability. Of these, around 110 (2.2%) - 190 (3.8%) million experienced severe dis-

ability. If we also consider children, it is estimated that more than one billion people

(or about 15% of the world’s population) live with a disability [O+11]. However,

most people, in their lives, will deal with some form of (at least temporary) dis-

ability. Disability is usually associated with a permanent situation, but a person

might also temporarily experience disability, for instance, due to a broken bone.

In addition, more and more non-disabled people are taking on the responsibility of

supporting and caring for a relative or friend with disabilities.

This problem will worsen as the population increases. According to [oESA22], in

1950 the estimated global population was 2.5 billion, in 2022 it reached 8.0 billion,

and in 2059 it is expected to exceed 10 billion. With advances in the medical field,

older people are also increasing along with the rest of the population. In 1980 the

estimated number of people over the age of 65 was 258 million, and in 2022 it reached

771 million. Moreover, the elderly population is expected to reach 994 million in

2030 and 1.6 billion in 2050. Unfortunately, global aging has a strong influence on

disability trends. In GBD 2004 [O+08], we observe that 46.1% of persons 60 years or

older live with a moderate and severe disability, while if we consider people aged 15

or older, the percentage decreases to 19.4%. If we examine only people with severe

disabilities, we observe that the percentages are 10.2% (age 60 or older) and 3.8%

(age 15 or older), respectively.
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The International Classification of Functioning, Disability and Health (ICF), of-

ficially approved by all 191 WHO member states, is the international standard for

describing and measuring health and disability at the individual and population

levels [ICF]. According to ICF, disability arises from the interaction of health con-

ditions, that are diseases, injuries, and disorders, with environmental and personal

factors. Environmental factors include products and technology; the natural and

built environment; support and relationships; attitudes; and services, systems, and

policies. Personal factors include motivation and self-esteem which can influence

how much a person participates in society.

The United Nations Convention on the Rights of Persons with Disabilities

(CRPD) [CRP] also states that “disability is an evolving concept and that disability

results from the interaction between persons with impairments and attitudinal and

environmental barriers that hinder their full and effective participation in society on

an equal basis with others.”

In both definitions, disability is described as a consequence of interaction and

not as an attribute of a person. Consequently, disability today is seen as a matter

of more or less, not yes or no. For example, the lack of a sign language interpreter

creates disabilities by creating barriers to participation and inclusion for deaf people

that would otherwise not exist. The barriers that limit people with disabilities ac-

cess to healthcare, education, and employment opportunities, ultimately leading to

exclusion from activities of daily living, are mainly due to the absence of disability-

specific services. The situation can be mitigated, for example, through legislation,

policy changes or technological developments. Historically, people thought that the

only way to assist a person with a disability was through solutions that segregated

them, such as residential institutions and special schools. Today, however, the solu-

tion is thought to be improving social participation by addressing the barriers that

hinder people with disabilities in their daily lives [O+11]. The process of lowering or

removing barriers is complex, often different, and requires vision, skills, incentives,

resources, and an action plan.

In this thesis, we see how barriers can be addressed and thus inclusiveness can be

improved through the use of health technologies that leverage sensors and artificial

intelligence algorithms. There are several types of disabilities, and each has specific

health, educational, rehabilitation, social, and support needs. In addition, different

responses may be needed because different people with the same disability may have
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very different experiences and needs. For the sake of this thesis, our work focuses

only on cognitive and physical disorders.

The thesis is organized as follows:

• In Chapter 2, we analyze existing solutions regarding: recognition of a per-

son’s mental state while performing an activity with the ultimate goal of diag-

nosing attention-deficit/hyperactivity disorder (ADHD) and helping children

affected by it to improve their concentration; detecting the intention of upper

limb amputees in order to move a prosthetic robotic hand; and maintaining a

food diary, with the aim of providing an alternative solution for frail people

with physical or memory problems who live alone at home. In particular, we

focused on the sensors used in the literature and the problems that can be

encountered with their use, such as high cost, intrusiveness, difficulty of use,

and ineffectiveness in solving the problem being addressed.

• In Chapter 3, we investigate the use of electroencephalography (EEG) data and

machine learning algorithms to monitor performance in attention-demanding

tasks. To this aim, we present a system created to evaluate the performance

of an image annotator by analyzing EEG signals acquired through a low-

cost sensor. We explain the data collection method employed to acquire the

new dataset created to experimentally evaluate the system. In particular, it

is shown how the acquired EEG signal was divided into sliding windows of

variable length, how features were extracted from each of them through the

use of zero padding and discrete Fourier transform (DFT), and how feature

vectors were later used to train and test the support vector machine (SVM)

and random forest (RF) classifiers.

• In Chapter 4, we present a system created to assess a person’s attention state

during the execution of different tasks by analyzing EEG signals acquired

through two different sensors. In this work we used two datasets: a public

dataset, and the dataset collected during the work presented in Chapter 3.

Compared to the previous work, we split the acquired brainwave signals using

a different sliding windows approach, and we extracted different features from

each window to train and test the RF classifier.

• In Chapter 5, we present a system created to recognize the movement inten-

tions of people with upper limb amputations based on data collected through
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high-density electromyography (HD-EMG) electrodes. We illustrate the pub-

lic dataset used, the graph neural network (GNN) created to analyze the HD-

EMG data, and finally, we explain how the graphs used to train and test the

GNN are created based on the structure of the electrodes used to acquire the

data.

• In Chapter 6, we present a system which, through the acquisition of data by

means of an air quality sensor, is able to automatically recognize meals cooking

activities and, with the support of a robotic assistant, helps the inhabitant to

interactively keep a food diary. We acquired a large real-world dataset from

several volunteers to experimentally evaluate the system. In that Chapter, we

illustrate the hardware/software architecture, the designed neural network for

cooking activity recognition, the technique for acquiring and processing the

data, the feature extraction method, and the achieved results.

• We present our conclusions in Chapter 7. We discuss the problems that we

encountered during the course of our works, and the solutions that we envision

for addressing challenging research issues that remain open.

–



Chapter 2

Literature Review

The objective of this Chapter is to highlight the various problems related to the use

of specific sensors in the context of certain challenges, such as monitoring mental

state, the movement of a robotic prosthesis, or the maintenance of a food diary, and

to propose possible solutions.

Table 2.1 summarises the characteristics of all the sensors illustrated in the fol-

lowing Chapter.

In particular, in Section 2.1 we discuss EEG sensors use, in Section 2.2 we discuss

EMG sensors use, and in Section 2.3 we discuss the different sensors currently used

in food journaling systems and the possible use of an air quality sensors as an

alternative acquisition method in these systems.
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2.1 Mental state monitoring

The first part of the thesis focused on attention state monitoring, which has several

applications. Wargnier et al. present a user interface based on embodied conversa-

tional agents (ECA) to assist older adults with cognitive impairment. The system

aims to compensate for attention disorders by prompting the elderly person to re-

gain attention whenever a state of inattention is detected. Attention is monitored by

tracking the user’s posture and facial orientation since typically during an interaction

one stands in front of the interlocutor [WMJ+15]. In [VHS10] through the monitor-

ing of visual attention using an eye tracker and the use of some questionnaires, the

authors manage to verify the factors that seem to influence consumers’ attention

to nutritional information on food products. Similarly, the reasons that influence

a person to read health warnings on cigarette packs can be verified in [MRBL11].

Batista proposed a system to make driving safer by measuring the driver’s atten-

tion levels through camera-acquired data related to principal facial features points,

blinking, and eye rotation and closure [Bat07]. In [LZX+13], a robotic assistant is

presented that adjusts the position of the laparoscope when performing procedures

based on the surgeon’s visual attention, which is monitored by following the sur-

geon’s eye movements via an eye tracker. Canedo et al. propose an autonomous

agent that can monitor a classroom through the analysis of a series of photos in

which the attention state is monitored for each student through facial features and

body pose tracking [CTN18].

In these works, attention status is monitored using cameras, which can often be

perceived by several people as very invasive in terms of privacy. For this reason, in

our works, the data needed to monitor the subject’s attention status are collected

through the use of an EEG sensor, that allows neurophysiological responses to be

recorded [LGSMV14].

The existing works regarding the use of EEG to monitor attention are mainly

related to ADHD [Fur05]. ADHD is one of the most common mental disorders.

Its symptoms are not the same for all children, and they can be: the inability

to concentrate; short attention spans; vulnerability to external interferences; poor

inhibition; difficulty controlling emotions and behaviors; and easy impulsivity. As

a result, children with ADHD face various difficulties. For instance, the inability to

complete homework independently, the inability to focus on listening in class, and
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obstacles in language expression and reading comprehension [O+19].

Monitoring attention while playing serious games for ADHD (SGAD) has been

proposed to solve problems associated with traditional methods of diagnosis and

treatment. Indeed, to detect the presence of ADHD, clinicians usually use question-

naires, statistical manuals, or structured interviews to assess patients’ daily behav-

iors. These methods of diagnosis are often not objective, and they can be influenced

by the evaluator’s opinions and the unnatural behaviors of young people in front of

doctors and boring questionnaires. In addition, ADHD cannot be treated so that

it ceases totally, so once the diagnosis is made, stimulant medications are used to

relieve symptoms. Unfortunately, these medications can have side effects or lead to

addiction [ZLL+21].

A large number of experiments have shown that SGAD can effectively distin-

guish ADHD children from non-ADHD children, as well as reduce ADHD children’s

symptoms and improve executive functions [PCJLGS+20].

In [ASEE18] Alchalabi et al. present an SGAD, called FOCUS, which is played

using EEG signals acquired through the EMOTIV EPOC+ kit shown in Figure 2.1.

FOCUS helps the subjects to train and reinforce attention by challenging them

to move an avatar to collect the largest possible number of cubes in the shortest

possible time while concentrating and using mental commands.

Thanasuan et al. develop an SGAD, called Armis, that provides neurofeedback

for adults’ attention training. The game character, which the player controls via the

keyboard, wakes up on the “bridge of hell” and must survive attacks until the end of

the game level. The attention state is measured through the NeuroSky MindWave

BCI system shown in Figure 2.1 and is displayed on the game user interface. When

the player’s attention level is low, the background of the game slowly darkens, leaving

the field of view only in the center of the screen to help the player focus on a small

area of the game and regain attention. Each level requires more concentration to

pass [OLKT17].

The game character in the SGDA proposed in [AP15] is a superhero academy

student who must improve his superpower, which is attention, to Fight supervillains.

The game includes a 3D school environment, active 3D distractions, and 2D games

performed on the blackboard. The distractions are realistic such as paper planes on

the blackboard, children running in the hallway, and the teacher walking in the class-

room, and their goal is to make the player lose points. The SGDA is controlled by



2.1. MENTAL STATE MONITORING 17

steady-state visual evoked potential (SSVEP) registered through three gold-plated

electrodes placed on the subject’s scalp at the Oz (signal), Fpz (ground) and Fz or

A1 (reference) positions according to the 10-20 electrode placement system.

In [BMLG16] another SGDA was proposed, called Harvest Challenge, which

provides neurofeedback by monitoring attention during the course of the game using

the NeuroSky MindWave BCI system shown in Figure 2.1. The player is asked to

perform three different activities to train different types of attention, such as selective

and sustained attention. The first proposed task, which must be accomplished within

5 minutes, is to collect from a panel presented on the screen the necessary equipment

for a safe ride in the canopy (a helmet, a pair of gloves, a harness, and sports shoes)

using the left and right keys of the keyboard. In the second task, the player is asked

to collect bananas, apples, and pears and to repair the wooden ladder, that is used

to reach the top of the mountain where the canopy rope is located, by increasing

the level of attention. Finally, in the last task, the player is in a field and has to

collect as many carrots as possible within 30 minutes while keeping the attention

level high and constant, in fact, when a low attention level is detected the carrots

hide under the ground and cannot be collected.

Machado et al. propose an SGDA in which the difficulty increases level by level.

The player’s first task is to drive a spaceship and collect the stars it encounters on

the way. In the next level, the player must keep an eye on the level of gasoline in the

tank. When this runs out, the spaceship keeps moving but cannot collect other stars

until the player picks up some fuel. Eventually, a penalty is added for every second

the spaceship tank is out of gasoline (-1 point). For each task, the subject has 5

minutes, and one point is earned for each star collected. Attention is monitored by

EEG headset Quick-20 shown in Figure 2.1, and its level is communicated through

the speed of the spaceship. In fact, the higher the player concentration, the higher

the speed of the spaceship [MCFdR19].

Several issues must be considered when using an EEG system, such as effective-

ness, cost, and fixation system. Usually, in work where EEG signals are used as

input, artificial intelligence algorithms are exploited to identify the subject’s mental

state or intention. For an artificial intelligence model to be effective, it is essential

that it receives as input all the information needed to decode EEG signals correctly.

This is why a large number of electrodes are generally used in systems. The greater

the number of electrodes used, the greater the amount of temporal and spatial in-
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Figure 2.1: From left to right, NeuroSky MindWave BCI system (A), EMOTIV
EPOC+ kit (B), Quick-20 EEG headset manufactured by CGX (C). Below, in red,
for each sensor we show the position of the respective electrodes on the scalp accord-
ing to the 10-20 electrode placement system. A modified version of (B) was used in
the work presented in Chapter 4.

formation available. However, a greater number of electrodes results in higher costs.

In addition, electrodes must be placed on the scalp following the international 10-20

system [HHP87]. This task is not easy when electrodes have to be placed one by one,

especially for unskilled people, For this reason, in recent times, dry EEG electrodes

[LGSMV14] attached to headsets and headbands have been proposed to make the

EEG electrodes easier and faster to place on the scalp.

These problems are present in the works listed so far where EEGs are used. In

fact, [ASEE18, MCFdR19] used headsets containing respectively 14 and 20 elec-

trodes. Unfortunately, these headsets can be purchased on the market at a high

price, thus making the use of the presented SGDA not accessible to everyone. In

[OLKT17, BMLG16] is used an headset that contains only one electrode. Compared

to the previous one this is a low-cost sensor, however, the presence of a single elec-

trode makes the acquired data insufficient to optimally identify the attention level.

Finally, the work presented in [AP15] used three electrodes, that need to be placed

on the scalp one at a time in the positions Oz, Fpz, and Fz or A1. Of course, to
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do this one must have a good knowledge of the 10-20 electrode placement system,

which does not make the use of SGDA executable outside a hospital setting.

Therefore in the first part of the thesis, we decided to use in our works the

low-cost portable EEG sensor Muse headband version 2 of InteraXon [mus] shown

in Figure 2.2. This sensor is sold at an affordable price for families, is capable of

simultaneously acquiring EEG signals from 4 electrodes placed in TP9, AF7, AF8,

and TP10 according to the 10-20 electrode placement system, and is easy to apply

due to its headband structure where the electrodes are mounted.

In the work presented in Chapter 4, we compare the use of data collected with

the Muse with the use of data collected with the Epoc sensor (using only 7 of the

14 available electrodes) to assess a person’s attention state. Demonstrating that the

use of a low-cost sensor does not compromise the effectiveness of the final system.

Figure 2.2: On the left, the figure shows the low-cost portable EEG sensor Muse
headband version 2 of InteraXon used in the works presented in Chapter 3 and
Chapter 4. In red, on the right, we show the position of the Muse’s electrodes on
the scalp according to the 10-20 electrode placement system.

The EEG data acquired with the Muse sensor and supervised learning were used

in the work presented in Chapter 3 to automatically evaluate the performance of

humans performing image annotation tasks.

An automatic method for evaluating the labeler performance may be useful to

help children with ADHD to train their concentration state thanks to sound and

visual neurofeedback provided in real-time regarding annotation correctness and
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labeling speed. Figure 2.3 shows a mockup of a possible SGDA in which is used the

automatic method for evaluating the labeler performance presented in this thesis.

Figure 2.3: Mockup of a possible SGDA in which the labeler’s automatic perfor-
mance evaluation method is used to train concentration state. The player wears the
Muse sensor. Familiar and easy to recognize images are presented to the child. For
each image, a time is given to provide the answer and a point is awarded each time
the answer is correct. Visual feedback is provided showing the number of points
earned during the course of the game. In addition, auditory feedback is provided
based on the correctness of the label and the time taken to give it.

It can also be useful for estimating the quality of annotations and detecting

worker stress or fatigue. In fact, because of the increasing use of artificial intelli-

gence methods for solving different tasks, there is an increasing need for large, well-

annotated datasets. This is because many effective artificial intelligence algorithms

require labeled data for model training. This is even more evident when using deep

neural networks, which need very large training datasets to achieve unprecedented

recognition rates in different domains [CL14].

Of course, in order to be effective, artificial intelligence algorithms need accurate

annotations. Since most labels are manually set by domain experts, the current pro-

cess of data annotation is relatively slow and costly, and prone to annotation errors.

At the time of writing, most methods for evaluating the quality of annotations rely

on interannotator agreement [Art17]. With this method, the same object is labeled

by different annotators, and the level of agreement among annotators is considered.
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Obviously, this process introduces redundancy and slows down the production of

annotated datasets. Hence, there is increasing interest in devising advanced AI-

supported tools for expediting the annotation task and for automatically evaluating

the performance of the annotator, discovering possible labeling errors.

The usage of EEG in the data annotation domain is not new. In a previous

work, Healy et al. used EEG data to study the role of attention and perception in

an image annotation task [HGS16]. Parekh et al. proposed an artificial intelligence

method to automatically annotate images based on EEG signals collected from an

observer [PSRJ17]. However, to the best of our knowledge, the work we will present

in more detail in Chapter 3 is the first research effort that applies the EEG data

mining approach to evaluate the annotator performance. Indeed, while a few works

investigated the use of EEG data for assessing the level of human attention [JJ20],

[HZG+09], in our work we focus on the labeling performance instead of computing

a generic attention level.

Usually, the process followed to quantify human cognitive performance according

to EEG signals comprises [IK20]:

• A first data cleaning phase to remove artefacts, which is generally performed

by applying a series of filters;

• A second phase of feature extraction from each signal. The most commonly

used method is the Fast Fourier transform (FFT) which allows us to move from

the time domain to the frequency domain and to obtain information regarding

the different brainwaves.

• A final phase in which AI algorithms are used to classify the EEG signals

features. The support vector machine (SVM) classifier was the most widely

employed.

2.2 Body movement intention recognition

The second part of the thesis focused on using EMG signals acquired with sur-

face electrodes from residual stump muscles to control robotic hand prostheses

[JYBMM20, PSB+19].

Upper limb amputation severely limits daily activities performance such as grasp-

ing and manipulating objects or communicating. The leading cause of this condition
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is trauma (80%), which occurs mainly in people aged 15-45 years. The second most

prevalent are cancer or tumors and vascular complications of diseases. Upper limb

amputation can be more or less severe depending on the level at which it is per-

formed (Figure 2.4). Trans-phalangeal amputations are the most common among

upper limb amputations (78%) [MA19]. It is clear that to restore use through a

robotic prosthesis using EMG signals it is necessary to safeguard the muscles as

much as possible.

Figure 2.4: The different levels at which an amputation affecting an upper limb can
be performed. The greater the portion of the arm that is lost, the more difficult it
will be to restore its use through a robotic prosthesis.

For millennia, humans have worked on designing devices to facilitate the reinte-

gration into society of people with a hand amputation [ZO14, Foo20, Put05].

Two hand prostheses for cosmetic use dating back to 2000 BC [Fri72] and 200
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BC [RSNB94] have been found in Egypt.

In the seventh book of Natural History, published in 77 AD by the Roman

scholar Pliny the Elder, the first prosthetic hand used for war purposes is mentioned.

Especially, Pliny tells the story of the Roman general Marcus Sergius, who lost his

right hand during the Second Punic War (218-201 BC) and later returned to battle

wearing an iron prosthetic hand [Bea05].

Historical, archaeological, or iconographic evidence of prosthetic hands before

the 16th century is rare. The main reasons appear to be the lack of knowledge to

manage the hemorrhages and infections from amputations, which often led to death,

and the fact that only the wealthy could afford such devices.

Among the most famous ancient prostheses is the iron hand created for the

German knight Götz von Berlichingen to return to battle. The prosthesis that was

equipped with five fingers that could be flexed and extended passively and locked

was built after Götz lost his hand during the siege of Landshut (circa 1505) in

Bavaria [Ott21].

The earliest evidence of prosthetic hands for non-war use is dated around 1600

and is attributed to the Italian surgeon Giovanni Tommaso Minadoi, who during a

trip to Asia saw two men with upper limb amputations able to remove their hats,

open a bag and hold a pen thanks to a prosthesis [Put05].

In 1818, the dentist Peter Baliff made the first body-powered upper limb pros-

thesis. It could be moved by intact muscles of the trunk and scapular girdle and

leather straps capable of transmitting tension [Foo20]. The prosthesis was no longer

conceived as a separate, foreign object usable only with the support of the other

hand. Body-powered prostheses have been widely used since their creation, despite

the presence of some problems such as fatigue related to their long-term use, inability

to perform complex motor tasks, and nonhuman appearance.

In 1960, the first clinically significant myoelectric prosthesis was presented by

Russian scientist Alexander Kobrinski [She64], and since then numerous studies on

myoelectric prostheses have been conducted. Nowadays, almost all robotic hand

prostheses use signals acquired by surface EMG electrodes.

EMG signals allow the acquisition of information regarding the electrical activity

of skeletal muscles during the performance of certain tasks [TBC+20].

The use of EMG can be useful for different purposes, such as assessing muscle

fatigue [RVCM20], evaluating abnormal patterns of muscle disorder [GSS+19], stroke
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and nerve injury in the upper limb [SHP+18], sign language recognition [SS16, SS15],

rehabilitation [FHW+20], and device control [AIK+09] like prostheses [SLT+18],

drones [DN21], input devices for a computer [AIK+09, Whe03], etc. In some of

these cases, other types of sensors such as gloves [EJBS17], vision sensors [PS15],

and inertial measurement units (IMUs) [MFE+16] can be used to detect gestures.

However, these sensors have a limitation compared to EMG sensors. In fact, EMG

sensors are one of the few sensors that can be used by amputees because not only

they can collect data on the execution of a hand movement, but they can also

identify the intention of the movement. The only other sensor listed above used in

amputee gesture recognition is the IMU sensor, but only in conjunction with EMG

sensors [JSZ+22].

Another type of body signal used to recognize gestures is the electroneurography

(ENG) signal. These signals alleviate phantom limb symptoms and restore the

sense of touch while recognizing the amputee’s intention [MCR10]. However, the

sensors used to collect this type of signal are less effective and more invasive than

EMG sensors. The main reasons are that the electrode inserted transversely in the

nerve moves and collects signals from different nerve fibers over time and surgery is

required for placement.

As we mentioned at the beginning we concentrated on the use of EMG signals

to control robotic hand prostheses. Most of the work conducted so far in this field

has used a low number of EMG electrodes typically ranging from 2 to 16 [KN21].

However, the performance of machine learning systems is affected by the availability

of spatial and temporal information [KKAJN18].

The spatial information refers to the EMG data collected from multiple muscle

sites on the forearm, i.e. the number of electrode channels used. The temporal

information consists of the length of the analysis window and the degree of window

overlap. Smith et al. [SHLK10] observed that spatial and temporal information

are directly related and when spatial information is increased, temporal information

can be reduced without significantly reducing classification accuracy. Menon et al.

in [MDCL+17] affirm that an increase in channels does not always allow the use

of shorter-length windows. Moreover, they affirm that the benefits of adding more

electrode channels are determined by the type of limb deficit and that increasing the

number of electrodes does not result in uniform improvement in performance. When

choosing the length of the analysis window, it is necessary to find a trade-off between
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the classification error rate and the delay of the classifier [SHLK10]. The greater

the length of the window, the greater the accuracy achieved, but the greater the

length of the window, the greater the delay in the classifier’s decision. Conversely,

the shorter the window length, the shorter the delay in the classifier’s decision,

but the shorter the window length, the lower the accuracy achieved. The degree

of window overlap, as opposed to window length, is not responsible for the change

in the classification error rate [MDCL+17]. However, there are few works available

that deal with temporal information and its interaction with spatial information, and

researchers tend to decide the number of electrodes and the length of the window

empirically.

To increase the possibility of extracting spatial information, HD-EMG electrodes

have been proposed [HZLK08, SNF14]. These employ a large two-dimensional (2D)

array of closely spaced channels to acquire a large number of signals simultaneously

from different parts of the muscle [DSvEZ06]. The total number of channels pro-

posed for HD-EMG ranges from 32, 128, 192, 256 and over 350 electrodes [KN21].

Figure 2.5 shows the HD-EMG electrode employed to collect the data used in the

work presented in Chapter 5.

Furthermore, it has been observed that gestures that include more degrees of

freedom are more easily recognized if the number of channels used is increased

[LSK10]. The use of HD-EMG electrodes, therefore, seems promising for improving

the usability of existing robotic hand prostheses and has been used to control robotic

hands in some previous work including [DAFRLG18, JR19]. For this reason, we

decided to employ data acquired through HD-EMG electrodes in the work shown in

Chapter 5.

Typically, the process followed to recognize the amputee’s intention based on

EMG signals to move a robotic hand prosthesis includes [PSB+19]:

• An initial pre-processing phase used to eliminate signal acquisition noise, elec-

tromagnetic disturbances, signal instability, and motion artifacts due to elec-

trodes and cables.

• A data segmentation phase using sliding windows that can be adjacent or

overlapping.

• A feature extraction phase in the time domain (TD), in the frequency domain

(FD), and/or time-frequency domain (TFD). The best results are obtained
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using TD features, in particular, the most used to date are MAV, WL, ZC, SSC

proposed by [HALI20]. Sometimes this phase is followed by the application of

a dimensionality reduction (DR) technique.

• A classification phase where an AI algorithm is used to recognize the gesture.

The most commonly used classification methods are linear discriminate anal-

ysis (LDA), support vector machine (SVM), multi-layer perceptron (MLP),

and artificial neural network (ANN).

• A final and optional post-processing phase.

To decode the intention of the amputee, we decided to exploit a GNN. GNNs

are helpful in a context where a high number of temporally-correlated spatial infor-

mation is available [WST+22]. This kind of neural network is composed of several

propagation modules, which propagate information between nodes so that the ag-

gregated information can capture both feature-based and topological information

[ZCH+20]. To our knowledge, no previous studies have used a GNN, in conjunction

with HD-EMG signals, to identify the movement/grasping that the amputee intends

to perform.

2.3 Food diary maintenance system

In the last part of the thesis, we present an automated, non-intrusive, privacy-

friendly, and low-cost system that supports frail and disabled people in collecting

data regarding diet. Diet data analysis is extremely important to evaluate the

healthiness of an individual’s nutrition and for setting up interventions when neces-

sary.

The World Health Organization (WHO) maintains that malnutrition, meaning

deficiencies, excesses, or imbalances in energy and/or nutrient in a person’s energy

and nutrient intake, affects every country in the world. Around 1.9 billion adults

worldwide are overweight, while 462 million are underweight. Following an improper

diet can be a health risk because it leads to the occurrence of serious diseases. In

particular, overweight and obesity may cause cardiovascular diseases, diabetes, mus-

culoskeletal disorders, and some cancer, while undernutrition may cause wasting (low

weight-for-height), stunting (low height-for-age), underweight (low weight-for-age),
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Figure 2.5: The HD-sEMG electrode used to collect the data for the work presented
in Chapter 5. The electrode called ELSCH064NM3 and made by the OT Bioelec-
tronics company contains 64 channels arranged in an 8x8 array with intrachannel
spacing of 10mm.

and micronutrient deficiencies (a lack of vitamins and minerals) [WHO]. More-

over, underweight and higher levels of obesity have been associated with increased

mortality compared to the normal-weight category [FGWG05].

Despite all the efforts of health education to improve eating habits, good dietary

practices are often neglected, and there is a growing need for new technologies that

can assist individuals in following good dietary practices [BHK+05].

A powerful tool for monitoring nutrition behavior is a food diary; i.e., a daily list

of food taken by the individual, together with portion information. Accurate food

journaling can support both self-management of nutrition routines [LLZL18], and

assessment by practitioners [DHACN15]. In particular, for diabetes patients, it is

important to analyse the daily food intake and compare it with symptom progression

[MMK06]. A four-center randomized trial about weight loss maintenance shows that

patients compiling a food diary lost twice as much weight than patients that kept

no journaling [HGS+08]. Moreover, in the short term, food journaling may increase

real-time awareness and mindfulness, avoiding the consumption of unhealthy food

[WG07].
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Traditional methods for keeping food diaries are based on interviews and ques-

tionnaires to assess the patients’ eating routines [Mar71]. Manually keeping a con-

stant journal of meals is considered tedious and time-consuming by many indi-

viduals, and food diaries are rarely taken accurately in the long term [CET+15].

However, there are several solutions for keeping independently a food diary that can

reduce the burden of data acquisition [BRJ17]. These generally consist of mobile

apps that frequently use smartphone sensors, such as the camera or the microphone

[CBCF15, ZBW+10, ASLT05, MHH+02], and store locally or on the cloud food

information and calorie counts for long-term monitoring [CBCF15]. But in the lit-

erature, we find solutions that also employ other types of hardware to acquire the

data.

Casas et al. proposed an elementary text-based conversational agent [CMK18].

Zhu et al. employ computer vision tools and pictures taken before and after food

consumption to accurately recognize the kind of food and estimate the eaten quantity

[ZBW+10]. Sen et al. [SSM+18] created a smartwatch-based system to detect eating

gestures, and recognize food through pictures and computer vision software. Chi et

al. [CCCL08], provide accurate calorie counts using a combination of cameras, con-

nected kitchen scales, and food databases. Yordanova et al. use data acquired from

various sensors in a smart kitchen to identify cooking activities, particularly data

regarding temperature, humidity, light/noise/dust levels, individual movements, use

of certain objects, water, and electricity [YLW+19, YWP+17]. Other solutions rely

on the automatic classification of chewing sounds [ASLT05], recognition of eating

moments through analysis of heart rate and activity patterns [ONSJ18], or scanning

of grocery receipts [MHH+02].

These solutions are not privacy-friendly, are obtrusive, expensive, and require

effort by users in the long term [CET+15], especially if the users are elderly and

suffering from forgetfulness or physical problems. In the work presented in Chap-

ter 6, we address these issues by using a low-cost air quality sensor to automatically

recognize food preparation at home.

Figure 2.6 shows the uHoo air quality sensor [uHo] with which the data are

acquired in our work. It is a commercial sensor that does not require calibration

or manual settings and can monitor several parameters, including temperature, hu-

midity, carbon dioxide, volatile organic compounds, particulate matter, nitrogen

dioxide, carbon monoxide, and ozone.
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Figure 2.6: The Uhoo commercial air quality sensor used in the work presented in
Chapter 6. Compared to other commercial air quality sensors, it can monitor a
wide range of parameters, including temperature, humidity, carbon dioxide, volatile
organic compounds, particulate matter, nitrogen dioxide, carbon monoxide, and
ozone. In addition, it is simple to use because it does not require calibration or
manual settings.

Air quality sensors are widely applied in the healthcare domain. Low-cost ones

[RWJ+21, AK21, AIR+15, AKA20] are particularly popular because, compared to

reference-grade air quality monitors, the purchase and operating costs are lower, the

spatial density is higher, the acquired data can be displayed with different time-

resolutions, and field distribution, data collection, and transmission are easier to

implement [ZS20].

More and more of these low-cost air quality sensors are available in the market.

Their characteristics are not standard and vary from sensor to sensor. These are

commonly reported by the manufacturer in the sensor manual and include the fol-

lowing features: general operation such as charging mode, data storage and retrieval

mode, operating conditions, possible expiration date, calibration mode, performance

(accuracy and bias), maintenance mode, the response time when there is a change in

conditions, pollutants detected, and known interference. Therefore, before buying
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an air quality sensor, we need to ask ourselves several questions, such as: What

do we want to measure? What is the sensor’s ability to be accurate when it is far

from the gas source or when the gas concentration is very low or very high? What

are the accuracy and bias of the measurements? Is calibration necessary, and how

is it done? What is the response time? What is the quality and durability of the

hardware? Is the sensor usable for end users? How much does it cost? [WKS+14].

The sensors produced can monitor one or more air quality parameters, the most

common are: ozone (O3), carbon monoxide (CO), carbon dioxide (CO2), sulfur

dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM), volatile organic

compound (VOC), temperature, and humidity. The possible sources of the men-

tioned gases are varied and often unknown, although we deal with them daily. Some

of these are: electric utilities; gasoline vapors; unventilated fuel and gas-type space

heaters; tobacco smoke; gas-type water heaters; wood stoves and fireplaces; gas-

powered equipment; worn or poorly-adjusted and maintained combustion devices;

people’s breath; burning of fossil fuels by means of transport; cows farming; pro-

duction of rice or other fruit and vegetable cultivation; combustion of coal, oil, and

gas that contains sulfur [ZS20, gre].

When the air quality parameters assume abnormal values, various health disor-

ders can arise such as fatigue; dizziness; nausea; eye, nose, and throat irritation;

headache; flu-like symptoms; airway inflammation; respiratory disease; airway nar-

rowing; chest pain; angina; reduced brain function; impaired vision and coordina-

tion; various degrees of toxic symptoms; lung infections; vascular and endothelial

dysfunction; alterations in heart rate variability; coagulation; liver, kidney, and cen-

tral nervous system damage; cancer; and fetal death [ZS20, WKS+14].

As it can be seen, the effects associated with exposure to polluted air can lead

to consequences that vary in severity and include death [O+16]. Moreover, air

pollutants can impact our lives by damaging vegetation, reducing visibility, and

affecting global climate conditions [WKS+14]. It is, therefore, necessary to monitor

air quality, especially for population groups that are most vulnerable to air pollution

and most prone to develop a disease or an abnormal condition. These groups include:

children aged 13 years or younger, the elderly aged 65 years or older, young people

aged 18 years or younger with asthma, normal adults with asthma, and people with

chronic obstructive pulmonary disease (COPD) [fDCC+94].

The most common purpose for which these sensors are employed is to provide
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information on air healthiness [CYH+18, RTMH18]. However, the data acquired

through these types of sensors can be used for more complex tasks, such as alerting

a person when a specific event occurs and providing detailed information about a

detected problem [JBR+17, SIA+15, PCP+21, IRT20].

In our work, the air quality sensor is used to automatically detect food prepara-

tion activities, with the goal of helping frail people living alone to keep a food diary.

To our knowledge, this is the first time an air quality sensor has been used for this

purpose. Therefore, there is no previous work that can give us information on which

classifier is better to use to solve our problem. In this case, the procedure generally

followed to choose the most suitable classifier consists of running tests with differ-

ent classification algorithms and then comparing the final results obtained. The

most tested classification algorithms in the literature are decision trees, Bayesian

classifiers, SVMs and MLPs [BMJZOV17].
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Chapter 3

EEG-based Performance

Assessment in

Attention-Demanding Tasks

As explained before, the ability of monitoring attention has several applications

in healthcare for supporting frail people. Hence, in the work presented in this

Chapter, we investigated the use of EEG data and machine learning for performance

assessment in attention-demanding tasks.

We have collected a dataset from five volunteers carrying out an image annotation

task. We used a window approach to compute feature vectors from the annotations

and EEG data, and zero padding and discrete Fourier transform (DFT) [Sun23]

to convert the data from the time domain to the frequency domain. Finally, we

classified the windows using a supervised machine learning algorithm.

Section 3.1 describes the dataset that we have acquired. Section 3.2 explains our

methodology. Section 3.3 reports our experimental evaluation.

3.1 Dataset collection

In this work, we collected a new dataset, acquiring EEG signals from people who

were performing an image labeling task.

As mentioned earlier in Section 2.1, for the EEG data collection, we used the

Muse headband version 2 of InteraXon [mus]. Muse consists of 4 electrodes that

can collect information on brain activity with 256Hz sampling frequency in a non-
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invasive way. The Muse electrodes collect signals from channels TP9, AF7, AF8,

TP10, and Fpz, where the latter is only the reference electrode and does not cap-

ture brain signals. These electrodes are named and positioned according to the

International System 10-20 [HHP87].

We used the mobile application Mind Monitor [min] along with the Muse sensor

for receiving the EEG signals. Among the different data it returns, those used in

our experiments are:

• Date and time of the recording.

• Raw brainwaves for each of the four sensors.

• Brainwaves Delta, Theta, Alpha, Beta, Gamma for each sensor.

The Raw EEG values represent the raw data of each sensor in microvolts, whose

range goes from 0 µV to ∼1682 µV. The brainwave values are absolute band powers,

based on the logarithm of the spectral power density (PSD) of the EEG data for each

channel. These values are calculated internally by the Mind Monitor application

with a data rate of 10Hz. The extracted brainwaves and their frequency bands

are Delta 1-4Hz, Theta 4-8Hz, Alpha 7.5-13Hz, Beta 13-30Hz, and Gamma 30-

44Hz [T+02]. Delta waves are related to deep sleep, unconsciousness, anesthesia, and

lack of oxygen; Theta waves activity occurs when a person experiences emotional

pressure, unconsciousness, or deep physical relaxation; Alpha waves are instead

visible when an individual is in a state of consciousness, stillness, or rest, whereas

when one is thinking, blinking or otherwise stimulated, this wave type disappears

(alpha block); Beta waves are evident when a person thinks or receives sensory

stimulation; finally, Gamma waves are related to selective attention, to the cognition,

and perceptual activity [LCC13]. Also, Mind Monitor can recognize jaw clench and

blinks.

Five volunteers (3 women, and 2 men, aged 24 to 42 years) with normal or cor-

rect vision and no known neurological damage participated in the data collection

task. The participant’s task was to label the indoor images that appeared randomly

in a data annotation interface by selecting one of the eight buttons with the cor-

rect label. The labeling application was developed in Python by using the library

Tkinter, and it is shown in Figure 3.2. The 8 labels in the interface are: ‘comput-

erroom’, ‘movietheater’, ‘library’, ‘kitchen’, ‘bowling’, ‘poolinside’, ‘trainstation’,
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‘greenhouse’. The indoor images used are a subset of the dataset created in [QT09]

which contains 15620 images divided into 67 indoor scenes, collected from various

sources including online image search tools (Google and Altavista), online photo-

sharing sites (Flickr), and the LabelMe dataset. At first, the application shows an

image. As soon as the labeler presses a button, the application displays the next

image. If the user does not press any button for 7 seconds, the label ’none’ is asso-

ciated with that image, and the next image is displayed. If the user responds within

7 seconds, the image is associated with the label selected by the user, and the next

image is displayed. The application keeps track of the time taken by the annotator

to choose the label.

In order to familiarize with the interface, each participant used the interface for

10 minutes without data acquisition. Next, he or she performed the actual image

annotation task for about 30 minutes. During each annotation session, each user

labeled approximately 1,000 images. The annotation tasks were all performed at

the end of the day to reproduce a situation of tiredness. Before executing the task,

annotators were told to avoid the displacement of the Muse headband not moving

the head. Figure 3.1 shows a user during the labeling task.

After data collection, the EEG data collected through the Mind Monitor appli-

cation and the data concerning the image labeling were aligned to create a single

dataset. The resulting dataset has the following fields:

• Timestamp.

• Raw brainwaves for each of the four sensors at that timestamp.

• Brainwaves Delta, Theta, Alpha, Beta, Gamma for each of the four sensors.

• Correct image label.

• User assigned image label.

• Time taken by the user to annotate the image. If the time is 7 seconds, it

means that the image was not annotated.

Finally, the class ‘attentive’ or ‘distracted’ has been assigned to the set of samples

of each image. The labeling task is simple; therefore, we assume that most of the

errors and the annotator’s slowness are due only to distraction. Then if the label

given by the annotator was wrong, the class assigned was ‘distracted’. Otherwise,
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Figure 3.1: A user wearing the Muse headband during the labeling task.

if the annotation was correct, we checked the response time. If the response time

exceeded a certain threshold, the assigned class was ‘distracted’; otherwise, it was

‘attentive’. The response time threshold was set as 1.988 seconds, which is the

average response time of all volunteers during the first 5 minutes of the experiment

in which we assume they were concentrated and not tired.

After preprocessing, the final dataset has the following fields:

• Timestamp.

• Raw brainwaves for each of the four sensors.

• Brainwaves Delta, Theta, Alpha, Beta, Gamma for each of the four sensors.

• Time taken by the user to annotate the image.

• Assigned class (‘distracted’ or ‘attentive’).

After the label assignment, 3314 images were labeled as ‘attentive’ and 1280 as

‘distracted’.
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Figure 3.2: The interface used to perform the image labeling task. The randomly
displayed images to be labeled are indoor images, such as computer room, movie
theater, library, kitchen, bowling, pool inside, train station, and greenhouse. The
labeler has 7 seconds to select a label among the 8 available. If a label is selected,
it is associated with the image, and the next image is shown. On the other hand, if
the labeler has not selected a label within 7 seconds, the label “none” is associated
with the image, and the next image is shown.

3.2 Methodology

In this Section, we illustrate the main steps used to classify EEG signals for recogniz-

ing the attention state of the annotator. Figure 3.3 shows a flow chart illustrating

our methodology.

3.2.1 Data cleaning and pre-processing

During data collection, the correct positioning of the Muse headband was verified

through the Mind Monitor graphical user interface shown in Figure 3.4. Every time

the sensor is not receiving a strong enough signal from one or more sensors, the
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Figure 3.3: Flow chart of our methodology.

interface shows a white horseshoe. In fact, inside the horseshoe in Mind Monitor’s

interface, the Muse electrodes are represented by ovals that are solid if the connec-

tion is optimal or empty if the connection is good. Muse is a sensitive device and

requires good skin contact to detect brain signals. The EEG signal may therefore

have incorrectly recorded values or missing values in the recording. The quality

of the recorded data has been improved by (i) removing samples with missing val-

ues concerning one or more channels, and (ii) disregarding those image annotations

having more than 5% missing EEG samples.

The dataset was subsequently divided into windows, in which every window

corresponds to the data samples acquired during the display of a single image. In

order to have fixed-length windows, we set the window size 2048 samples. That value

corresponds to 8 seconds, which is enough to represent all the data of every image

labeling. Moreover, this dimension is powers of two and consequently improves the

computation of the DFT [Sun23].

In order to reach the dimension of 2048, we used the zero padding technique

which is performed by inserting a pad of zeros at the end of the sliding window.
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Figure 3.4: The Mind Monitor graphical interface. It allows the user to keep track of
several aspects during the EEG data acquisition, such as the percentage of battery
left to the Muse sensor and the brainwave values in real time. Another relevant
aspect that can be monitored is the connection status of the Muse sensor electrodes
to the skin. This is shown through the horseshoe, representing the headband, located
in the lower left corner. Solid ovals represent a good connection, outlines represent
a poor connection, and a blank space means no connection.

This technique is appropriate when the signal is limited in time and only interpo-

lates between the frequency bins that would occur when no zero-padding is applied.

However, zero-padding does not increase the frequency resolution of the DFT. Reso-

lution is determined by the number of samples and sampling rate. Figure 3.5, Figure

3.6, and Figure 3.7 taken a sliding window show the raw signal, the signal after FFT

application, and the signal after zero padding and FFT application, respectively.

3.2.2 Feature extraction

The DFT function converts a signal from the time domain into the frequency do-

main representation and has been calculated on each window using the Fast Fourier

Transform (FFT) algorithm [CT65].

The FFT applied to the signal returns a vector of complex numbers of length N,

dependent on the length L of the signal:

• N = L
2

+ 1 if L is even
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Figure 3.5: Plot of the raw signal acquired from the TP9 electrode collected during
the viewing and labeling of an image.

Figure 3.6: Plot of the signal in Figure 3.5 after application of the FFT.

• N = L+1
2

if L is odd

This vector contains the values of frequencies ranging from 0 to fs/2 Hz, where fs

is the sampling frequency. Frequencies are represented with a step equal to N = fs
L

.

Therefore, in our case we have that L = 1025, and the frequencies represented range

from 0 to 128 Hz with a step of 0.125 Hz.

The DFT allows us to inspect the trend of the different brainwaves that are

identified by different frequencies.
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Figure 3.7: Plot of the signal in Figure 3.5 after application of the zero-padding and
the FFT.

After applying the FFT algorithm to the windows, we applied dimensionality

reduction in order to avoid overfitting through feature extraction. The obtained

feature vectors used for classification, are composed of:

• The 10 frequencies with higher amplitude absolute value in the FFT for each

of the four sensors (excluding the 0Hz frequency that is the highest amplitude

in both ‘distracted’ and ‘attentive’ classes).

• The average of the window values for each brainwave for each of the four

sensors.

Therefore, each feature vector consists of 60 features plus the distracted/attentive

class.

3.2.3 Classification

For the classification of the feature vectors, we used different machine learning al-

gorithms.

One of the most used classifiers to date for EEG-based brain-computer interfaces

(BCIs) is the Support Vector Machine (SVM) [CST+00], especially for online and

real-time BCIs [LBC+18]. It is a binary classifier and determines the hyperplane that

provides maximum class separation. The idea of the method is to divide the feature
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space, obtained by mapping incoming data into a higher dimensional space using a

kernel function, into two parts using linear or non-linear decision boundaries. In the

case of multiple classification problems, data is transformed into several problems

with two classes.

Another accurate classifier is the Random Forest (RF) [Bre01]. In various prob-

lems and classification domains, RF algorithms have often been found among the

most accurate classifiers, including problems with small training datasets. RF was

also successfully used online for both event-related potential-based BCI and motor

imagery BCI [LBC+18]. The idea behind this classifier is to randomly select a subset

of the available features and to train a decision tree classifier on it, then repeat the

process with many subsets of random features to generate many decision trees. The

final decision is made by combining the results of all decision trees.

3.3 Experiments

Our technique has been evaluated using two cross-validation approaches. In the

first approach, which we name leave-one-person-out cross-validation, 5 fold cross-

validation was carried out, in which each fold corresponds to the data collected by

a single volunteer. In the second approach, named subject-specific cross-validation,

the data of each volunteer was taken into account separately, performing a sequential

5 fold cross-validation on each volunteer’s dataset.

In order to evaluate the results of the classification, the components of the con-

fusion matrix were first calculated, i.e.:

• True Positive (TP), which identifies the elements classified as belonging to the

class ‘attentive’ and that belong to that class.

• False Positive (FP), which identifies the elements classified as belonging to the

class ’attentive’ and that belong to the class ‘distracted’.

• True Negative (TN), which identifies elements classified as belonging to the

class ‘distracted’ and that belong to that class.

• False Negative (FN), which identifies the elements classified as belonging to

the class ‘distracted’ and that belong to the class ’attentive’.
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The metrics used to evaluate the technique are the standard measures of accu-

racy, precision, recall, and F-score.

• Accuracy, which corresponds to the percentage of correct predictions in the

classification of a test. It is equivalent to the ratio between the number of

correct predictions and the total number of instances of the test set. However,

when the classes are imbalanced, as in our case, this metric is not the most

appropriate. Indeed, depending on the degree of imbalance, the majority class

accuracy value can overcome the accuracy value of the minority class.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

• Precision corresponds to the number of TP divided by the total number of

elements labeled as belonging to the actual class (the sum of TP and FP).

Therefore, it indicates how many elements that are classified as part of the

positive class actually belong to that class.

Precision =
TP

TP + FP
(3.2)

• Recall corresponds to the number of TP divided by the total number of ele-

ments that actually belong to the class (the sum of TP and FN) and indicates

how effective the classifier is in identifying the positive label.

Recall =
TP

TP + FN
(3.3)

• F-score is the harmonic mean of precision and recall. This metric is useful to

find a balance between precision and recall. It assumes optimal values close

to 1.

F -score = 2 · precision · recall
precision + recall

(3.4)

The results obtained by applying the first cross-validation approach of the models

are reported in Table 3.1.

The results obtained by applying the second cross-validation approach are shown

in Table 3.2 for the SVM classifier, and in Table 3.3 for RF classifier.
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Table 3.1: Results of the experiment using leave one person out cross-validation

Accuracy Recall Precision F-score
SVM 0.91 0.99 0.88 0.93
RF 0.95 0.99 0.94 0.96

Table 3.2: Results of the experiment using the SVM classifier and subject-specific
cross-validation.

Accuracy Recall Precision F-score
Dataset

volunteer 1
0.88 0.69 0.98 0.80

Dataset
volunteer 2

0.92 1 0.91 0.95

Dataset
volunteer 3

0.86 1 0.83 0.90

Dataset
volunteer 4

0.92 1 0.91 0.95

Dataset
volunteer 5

0.93 1 0.92 0.95

Average 0.90 0.94 0.91 0.91

Table 3.1 shows that the RF classifier achieves slightly better results than the

SVM in solving the problem we are addressing. Indeed, the accuracy, precision,

and the F-score of the RF (respectively 95%, 94%, and 96%) are larger than those

achieved by SVM. This consideration can also be done by comparing RF and SVM

results obtained using subject-specific cross-validation (Table 3.2 and Table 3.3).

As already mentioned in Section 3.1, there are several ways to assess whether

a person can be considered distracted during the labeling task. The first way is to

check whether the person has entered the wrong label, and we refer to this distraction

as ‘error’. The second way is to determine whether the person has exceeded a certain

time threshold (that, for the sake of this work, we set to 1,988 seconds), and we refer

to this distraction as ‘over time’. Then, we consider three cases. A first case happens

when both kinds of distractions are encountered; i.e., the labeler enters a wrong label

also exceeding the time threshold. We refer to this case as ‘error over time’. We

name ‘error no over time’ the case in which the labeler enters a wrong label without
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Table 3.3: Results of the experiment using the RF classifier and subject-specific
cross-validation.

Accuracy Recall Precision F-score
Dataset

volunteer 1
0.95 0.90 0.97 0.93

Dataset
volunteer 2

0.95 0.98 0.95 0.96

Dataset
volunteer 3

0.89 0.99 0.86 0.92

Dataset
volunteer 4

0.96 0.98 0.96 0.96

Dataset
volunteer 5

0.84 1 0.99 0.99

Average 0.92 0.97 0.95 0.95

exceeding the time threshold. Finally, we name ‘no error over time’ the case in

which the labeler enters the correct label but exceeds the time threshold. After the

division of the distracted class into the three cases, 70 images were labeled as ‘error

over time’, 120 as ‘error not over time’, and 1090 as ‘no error over time’.

Therefore, we decided to analyze our results concerning these distraction cases.

The leave-one-person-out cross-validation approach results are shown in Table 3.4.

The subject-specific cross-validation approach results are shown in Table 3.5 for the

SVM classifier and in Table 3.6 for the RF classifier.

Table 3.4: Achieved recall using leave-one-person-out cross-validation

error
no over time

error
over time

no error
over time

SVM 0.00 0.62 0.75
RF 0.01 0.70 0.96

Comparing the results obtained in the two cross-validation approaches, we can

observe a substantial difference. The cases of distraction are better identified by

subject-specific cross-validation. In particular, in the subject-specific approach, the

‘error no over time’ distraction type obtains a recall of 0.92 using RF , compared to

a recall of 0.01 achieved using leave-one-person-out cross-validation.



46CHAPTER 3. EEG-BASED PERFORMANCE ASSESSMENT IN ATTENTION-DEMANDING TASKS

Table 3.5: Achieved recall using the SVM classifier and subject-specific cross-
validation.

error
no over time

error
over time

no error
over time

Dataset
volunteer 1

0.88 0.87 0.90

Dataset
volunteer 2

0.88 0.84 0.88

Dataset
volunteer 3

0.80 1.00 0.90

Dataset
volunteer 4

0.93 1.00 0.99

Dataset
volunteer 5

0.85 0.89 0.95

Average 0.87 0.92 0.92

Table 3.6: Achieved recall using the RF classifier and subject-specific cross-
validation.

error
no over time

error
over time

no error
over time

Dataset
volunteer 1

0.90 0.94 0.91

Dataset
volunteer 2

0.94 0.67 0.96

Dataset
volunteer 3

0.89 1.00 0.93

Dataset
volunteer 4

0.93 1.00 0.99

Dataset
volunteer 5

0.94 0.89 0.99

Average 0.92 0.90 0.96
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These results indicate that, using a leave-one-person-out cross-validation ap-

proach, our method cannot recognize the ‘error no over time’ distraction type, but

only the other two cases of distraction. We observe that the other two cases of

distraction are straightforward to recognize, by simply considering the time taken

by the labeler to annotate the image. Hence, the recognition of ‘error no over time’

distraction type is the actual objective of our work. The fact that the ‘error no over

time’ distraction type can be recognized with good recall only using the subject-

specific cross-validation approach indicates that our technique must be trained on

the specific labeler. On the contrary, the model trained with other labelers’ data is

not effective for the objective that we are pursuing in this work.
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Chapter 4

Using Portable EEG Sensors to

Evaluate Human Attention

The purpose of the work presented in this Chapter is to assess a person’s attention

state through the analysis of EEG signals. The proposed system can be useful in dif-

ferent areas, such as learning, rehabilitation, and psychology, or even for monitoring

workers who perform activities in which alertness is needed, such as drivers or sur-

geons. Recently, the availability of low-cost EEG sensors, that are more accessible

to the end user, has increased. Therefore, we decided to compare the effectiveness

of a low-cost sensor and a more expensive sensor in assessing a person’s attention.

In Section 4.1 we illustrate the datasets used and collected with the two sensors,

we explain how features are extracted, and how the classifier is trained and tested.

In Section 4.2 we illustrate our results.

4.1 Material and methods

In our work, we have considered two datasets containing brainwave data on which

we have applied the same feature extraction and classification techniques. The

first dataset, named ‘Image-labeling dataset’, was acquired using an off-the-shelf

portable EEG headset with 4 channels. The second dataset, named ‘Epoc’, was

acquired using a more sophisticated EEG device with data acquired from 7 channels.

We experimented the performance of machine learning algorithms in distinguishing

attentive, distracted, and drowsed states of the individual based on EEG signal

processing. In our experiments, only the preprocessing phase of EEG data diverges.
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Indeed, the data of the Epoc dataset are raw, so it was necessary to employ Fast

Fourier transform algorithms to extract Delta, Theta, Alpha and Beta brainwaves.

4.1.1 Image-labeling dataset

The first dataset was collected during the course of the work presented in Chapter 3

in which the objective was to evaluate, based on the EEG signal, the performance

of annotators in labeling a series of images. A detailed description of the dataset

can be found in Section 3.1.

As previously explained, for the EEG data collection, we used the Muse (Figure

2.2) which is a low-cost sensor consisting of 4 electrodes that can collect information

on brain activity with a 256Hz sampling frequency in a non-invasive way. The Muse

electrodes gather signals from channels TP9, AF7, AF8, and TP10. These electrodes

are named and positioned according to the International System 10-20.

We used the mobile application Mind Monitor (Figure 3.4) along with the Muse

sensor for receiving the EEG signals. Among the different data it returns, those

used in this work are:

• The date and time of the recording.

• Brainwaves Delta, Theta, Alpha, Beta for each sensor.

The brainwave values are absolute band powers, based on the logarithm of the

spectral power density (PSD) of the EEG data for each channel. These values are

calculated internally by the Mind Monitor application with a data rate of 10Hz.

The extracted brainwaves and their frequency bands are Delta 1-4Hz, Theta 4-8Hz,

Alpha 7.5-13Hz, Beta 13-30Hz. Delta waves are related to deep sleep, unconscious-

ness, anesthesia, and lack of oxygen; Theta waves activity occurs when a person

experiences emotional pressure, unconsciousness, or deep physical relaxation; Alpha

waves are instead visible when an individual is in a state of consciousness, stillness,

or rest, whereas when one is thinking, blinking or otherwise stimulated, this wave

type disappears (alpha block); and finally Beta waves are evident when a person

thinks or receives sensory stimulation.

The participant’s task was to label indoor images that appeared randomly in a

data annotation interface by selecting one of the eight buttons with the correct label

(Figure 3.2). The task took 30 minutes to complete. At first, the application shows
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an image. As soon as the labeler presses a button or does not press any button for

7 seconds, the application displays the next image.

The class assignment is different from that made in Chapter 3, in fact, the

“attentive” and “distracted” classes were assigned to the first 10 and last 10 minutes

of the recording, respectively, and thus are not assigned depending on whether the

image label given by the labeller is correct or not, or whether the label is given or

not.

4.1.2 Epoc dataset

The second dataset was taken from the work of [AKM19]. For the EEG data

collection, the authors used the Emotiv Epoc+ kit EEG headset (Figure 2.1), which

is a portable and non-invasive device consisting of 14 electrodes. The data are

collected with a sampling rate of 128 Hz. The device was modified to allow electrode

placement on the frontal and parietal areas of the scalp. Among the available

channels, only O1, O2, P7, P8, AF4, F3, and F7, named and positioned according

to the International System 10-20, were used in the presented work, since the other

ones gave no insightful information for attention monitoring, or were affected by an

excessive level of noise.

Since brainwaves data in the dataset are raw, we preprocessed the data by apply-

ing the fast Fourier transform [Nus81] to obtain Delta (0.5-4 Hz), Theta (4-8 Hz),

Alpha (8-14 Hz), and Beta (14-30 Hz) brainwaves.

Data were collected from 5 volunteers who took part in 7 experiments in different

days. The first 2 experiments were used to give the participant an understanding

of the task, while the last 5 experiments were included in the dataset we used. The

experiments were conducted between 7 p.m. and 9 p.m. to facilitate the third phase

of the experiment involving a state of drowsiness. The participant’s task consisted

of controlling a train using the Microsoft Train simulator program, through simple

keyboard commands, for a minimum duration of 30 minutes.

At the end of the task, the recording is divided into 10-minute fragments. Each

one is related to a particular mental state:

• ‘Attentive’: The subject is focused on controlling the train, even though most

of the task did not involve active intervention in the travel by the participants.

First fragment.
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• ‘Distracted’: The subject does not fall asleep but is distracted, and stops

paying attention to the computer screen. Second fragment.

• ‘Drowsed’: The subject has no control over the train and keeps his eyes closed.

Third fragment.

4.1.3 Feature extraction

The various brainwaves signals were divided into 10-second long non-overlapping

sliding windows. For each window, we calculated the following 7 features:

• mean,

• median,

• variance,

• standard deviation,

• maximum,

• minimum,

• difference between maximum and minimum values.

These features are computed for each value of brainwaves Delta, Theta, Alpha,

Beta, for each channel. Hence, we use 112 features for the Image-labeling dataset (4

channels), and 196 features for the Epoc dataset (7 channels), plus the class label.

4.1.4 Classification of human attention level

Feature vectors are used to train and test a Random Forest (RF) classifier [Bre01].

In various problems and classification domains, including problems with small train-

ing datasets, RF have often been found among the most accurate classifiers. RF

and random trees were also successfully used for run-time brain-computer interface

applications [LBC+18, MM20]. The RF randomly selects a subset of the available

features to train a decision tree classifier on it; then it repeats the process with other

subsets of random features to generate many decision trees. The final decision is

made by combining the results of all decision trees using an ensemble approach.
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4.2 Experimental evaluation

Our technique has been evaluated using two cross-validation approaches. In the

first approach, named subject-specific cross-validation, the data of each volunteer

was taken into account separately, performing a sequential 5 fold cross-validation

on each volunteer’s dataset. In the second approach, which we name leave-one-

person-out cross-validation, k fold cross-validation was carried out, in which each

fold corresponds to the data collected by a single volunteer.

The results obtained by applying the first cross-validation approach to the Image-

labeling dataset are reported in Table 4.1 and the results obtained by applying the

second cross-validation approach to the same dataset are shown in Table 4.2.

Table 4.1 displays very different results among the subjects, ranging from an

Accuracy of 62% to 100%, probably due to the headband that is sensitive to move-

ment and not easy to place in the correct position. The second approach obtained

an average Accuracy of 61% (Table 4.2), probably due to inter-subject variability of

acquired EEG data. Overall, the subject-specific approach achieves better results

(80% average Accuracy) than the leave-one-person-out approach.

Table 4.3 and Table 4.4 report the results of the first approach applied to the

Epoc dataset to solve the attentive/distracted and attentive/drowsed classification

problems, respectively. Finally, Table 4.5 and Table 4.6 show the results obtained

by applying the second approach to the Epoc dataset to solve the same problems.

We can make similar considerations to those made previously comparing the

results of Tables 4.1 and Table 4.2, although in this case, the gap between the results

obtained with the application of the two approaches is less evident. In particular, in

the subject-specific approach, we have an overall Accuracy of 72% (Table 4.3) and

86% (Table 4.4), compared to an accuracy of 68% (Table 4.5) and 80% (Table 4.6)

obtained using leave-one-person-out cross-validation.

Considering the Image-labeling dataset, we can observe that the average accuracy

of distinguishing attentive and distracted states is 80% when we use a subject-specific

cross validation approach; i.e., when the classifier is trained on the data of the same

individual used for testing. Unfortunately, when we use a leave-one-person-out cross

validation approach, the accuracy drops to 61%, which is a rather weak result for

a binary classification problem. With the latter approach, we use more extensive

training data, but those data are acquired from different people than the individual
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Dataset Accuracy Confusion Matrix

Tester 1 68%
Attentive Distracted

41 19 Attentive
19 41 Distracted

Tester 2 62%
Attentive Distracted

47 13 Attentive
32 28 Distracted

Tester 3 86%
Attentive Distracted

49 11 Attentive
5 55 Distracted

Tester 4 84%
Attentive Distracted

50 10 Attentive
9 51 Distracted

Tester 5 82%
Attentive Distracted

48 12 Attentive
10 50 Distracted

Tester 6 100%
Attentive Distracted

60 0 Attentive
0 60 Distracted

Overall 80%
Attentive Distracted

295 65 Attentive
75 285 Distracted

Table 4.1: Image-labeling dataset. Subject-specific cross-validation.

used for testing.

With the Epoc dataset, we achieved similar results. Indeed, the average accuracy

of distinguishing attentive and distracted states is 72% when we use a subject-

specific cross validation approach. With the same approach, the average accuracy

of distinguishing attentive and drowsed states is 86%. The recognition achieved with

the latter problem is higher, probably because drowsiness is easier to distinguish from

attentiveness with respect to distraction. Also with this dataset, using a leave-one-

person-out cross validation approach determines a considerable drop of accuracy; i.e.,

68% accuracy in distinguishing attentive from distracted states, and 80% accuracy

in distinguishing attentive from drowsed states.

These results indicate that our method achieves relatively high accuracy only

when the system is trained with data acquired from the final user of the system.

Training the system with data acquired from different persons determines a relevant

drop in accuracy. This fact undermines the practical utility of this technique for some
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Accuracy Confusion Matrix

61%
Attentive Distracted

207 153 Attentive
130 230 Distracted

Table 4.2: Image-labeling dataset. Leave-one-person-out cross-validation

Dataset Accuracy Confusion Matrix

Tester 1 57%
Attentive Distracted

175 125 Attentive
131 169 Distracted

Tester 2 71%
Attentive Distracted

234 66 Attentive
107 193 Distracted

Tester 3 77%
Attentive Distracted

229 71 Attentive
59 231 Distracted

Tester 4 78%
Attentive Distracted

196 44 Attentive
62 178 Distracted

Tester 5 76%
Attentive Distracted

174 66 Attentive
50 190 Distracted

Overall 72%
Attentive Distracted

1008 372 Attentive
409 961 Distracted

Table 4.3: Epoc dataset. Subject-specific cross-validation. Attentive/distracted
classification.

applications, since the system would require an initial training phase by the user

which may be time-expensive and uncomfortable. This problem may be addressed

by using transfer learning methods explicitly proposed for EEG data [WYH+21].

Another worth noting finding of our experiment is that the more sophisticated

device used for the Epoc dataset achieves essentially the same accuracy of the simpler

device used for the Image-labeling dataset. This result indicates that even an off-

the-shelf device may be effective to support some attention-aware applications.
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Dataset Accuracy Confusion Matrix

Tester 1 75%
Attentive Drowsed

204 96 Attentive
52 248 Drowsed

Tester 2 87%
Attentive Drowsed

281 19 Attentive
58 242 Drowsed

Tester 3 89%
Attentive Drowsed

289 11 Attentive
53 247 Drowsed

Tester 4 92%
Attentive Drowsed

223 17 Attentive
20 220 Drowsed

Tester 5 89%
Attentive Drowsed

210 30 Attentive
21 219 Drowsed

Overall 86%
Attentive Drowsed

1207 173 Attentive
204 1176 Drowsed

Table 4.4: Epoc dataset. Subject-specific cross-validation. Attentive/drowsed clas-
sification.

Accuracy Confusion Matrix

68%
Attentive Distracted

940 440 Attentive
429 951 Distracted

Table 4.5: Epoc dataset. Leave-one-person-out cross-validation. Atten-
tive/distracted classification.

Accuracy Confusion Matrix

80%
Attentive Drowsed

1094 286 Attentive
240 1140 Drowsed

Table 4.6: Epoc dataset. Leave-one-person-out cross-validation. Attentive/drowsed
classification.



Chapter 5

GNN for HD EMG-based

Movement Intention Recognition

In the work presented in this Chapter, we proposed the use of a GNN architecture for

amputee movement intention recognition based on HD-EMG electrodes data. For

building the graph, we considered 32 ms sliding windows, since shorter window sizes

can be processed faster, leading to shorter controller delays and, consequently, better

experience for the user. We experimented our methods with a real-world dataset

acquired from 20 participants wearing on the forearm two HD-EMG electrodes with

64 channels each to recognize 65 gestures.

Section 5.1 reports some information about the public HD-EMG dataset we

used in our work. Section 5.2 explains our methodology. Section 5.3 reports our

experimental evaluation.

5.1 HD-EMG dataset

In order to evaluate our method, we conducted extensive experiments with a recently

released dataset [MOS+21]. Data were recorded at the forearm level from 20 able-

bodied participants (14 men and 6 women) aged between 25 and 57 (mean age 35).

Each participant performed five repetitions of 65 gestures, reported in Table 5.1,

with a rest period of 5 seconds between each repetition.
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Table 5.1: The 65 classified gestures with their respective

labels, their description, and their complexity expressed

in DoF.

Class Gesture DoF

1 Little finger: bend

1

2 Little finger: stretch

3 Ring finger: bend

4 Ring finger: stretch

5 Middle finger: bend

6 Middle finger: stretch

7 Index finger: bend

8 Index finger: stretch

9 Thumb: down

10 Thumb: up

11 Thumb: left

12 Thumb: right

13 Wrist: bend

14 Wrist: stretch

15 Wrist: rotate anti-clockwise

16 Wrist: rotate clockwise

17 Little finger: bend+Ring finger: bend

2

18 Little finger: bend+Thumb: down

19 Little finger: bend+Thumb: left

20 Little finger: bend+Thumb: right

21 Little finger: bend+Wrist: bend

22 Little finger: bend+Wrist: stretch

23 Little finger: bend+Wrist: rotate anti-clockwise

24 Little finger: bend+Wrist: rotate clockwise

25 Ring finger: bend+Middle finger: bend

26 Ring finger: bend+Thumb: down

27 Ring finger: bend+Thumb: left

28 Ring finger: bend+Thumb: right

29 Ring finger: bend+Wrist: bend
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30 Ring finger: bend+Wrist: stretch

2

31 Ring finger: bend+Wrist: rotate anti-clockwise

32 Ring finger: bend+Wrist: rotate clockwise

33 Middle finger: bend+Index finger: bend

34 Middle finger: bend+Thumb: down

35 Middle finger: bend+Thumb: left

36 Middle finger: bend+Thumb: right

37 Middle finger: bend+Wrist: bend

38 Middle finger: bend+Wrist: stretch

39 Middle finger: bend+Wrist: rotate anti-clockwise

40 Middle finger: bend+Wrist: rotate clockwise

41 Index finger: bend+Thumb: down

42 Index finger: bend+Thumb: left

43 Index finger: bend+Thumb: right

44 Index finger: bend+Wrist: bend

45 Index finger: bend+Wrist: stretch

46 Index finger: bend+Wrist: rotate anti-clockwise

47 Index finger: bend+Wrist: rotate clockwise

48 Thumb: down+Thumb: left

49 Thumb: down+Thumb: right

50 Thumb: down+Wrist: bend

51 Thumb: down+Wrist: stretch

52 Thumb: down+Wrist: rotate anti-clockwise

53 Thumb: down+Wrist: rotate clockwise

54 Wrist: bend+Wrist: rotate anti-clockwise

55 Wrist: bend+Wrist: rotate clockwise

56 Wrist: stretch+Wrist: rotate anti-clockwise

57 Wrist: stretch+Wrist: rotate clockwise

58 Extend all fingers (without thumb)

>= 3

59 All fingers: bend (without thumb)

60 Palmar grasp

61 Wrist: rotate anti-clockwise with the Palmar grasp

62 Pointing (index: stretch, all other: bend)
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63 3-digit pinch

>=364 3-digit pinch with Wrist: anti-clockwise rotation

65 Key grasp with Wrist: anti-clockwise rotation

The 65 gestures include:

• individual fingers flexions and extensions;

• thumb flexions, extensions, abductions and adductions;

• wrist flexions, extensions, pronations and supinations;

• some combinations of the above movements;

• some of the most common synergistic multi-joint hand movements.

For EMG data collection, the authors used two HD-sEMG electrodes, each con-

sisting of 64 channels arranged in an 8 × 8 matrix with an inter-electrode spacing

of 10 mm (ELSCH064NM3, OT Bioelettronica, Turin, Italy). The electrodes were

placed approximately 3 cm from the elbow (elbow to closest electrode corner) and

2 cm from the ulna (edge of the ulna to edge of the electrode). The sensing device

is shown in Figure 5.1

The EMG signals were sampled at 2048 Hz. A hardware high-pass filter at 10

Hz and a low-pass filter at 900 Hz were used during recordings. To reduce the noise

in the EMG signal consecutive channels were subtracted during the registration.

Due to the orientation of the electrodes relative to the underlying muscles, the

subtraction of the EMG signals was done along with the muscle i.e. ch1 signal was

calculated as the difference between EMG signals at electrode contacts 2 and 1, ch2

as the difference between signals at contacts 3 and 2, and so on.

5.2 Methodology

In this Section, we explain how, based on the structure of the HD-EMG electrodes

used, the graph was created and we give details on the EMG-GNN architecture.
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Figure 5.1: In [MOS+21] the HD-sEMG electrodes, visible in more detail in Fig-
ure 2.5, are positioned approximately 3 cm from the elbow and 2 cm from the ulna.

5.2.1 Graph-based modeling of HD-EMG data

A graph consists of a set of nodes and edges connecting them. In our graph-based

model, each channel used to collect EMG data represents a node of the graph. To

connect nodes by means of edges, several strategies have been proposed in related

works [DKAW+21], including:

1. each pair of nodes is connected by an edge without a feature,

2. each pair of nodes is connected by an edge whose feature is the Pearson cor-

relation coefficient between the feature vectors of the two nodes,

3. only nodes closer than a heuristic distance are connected, or

4. nodes are connected through the use of k-nearest neighbours (k-NNG).

For the sake of this work, we decided to use the 3rd approach where the distance

is 15mm. The resulting topology is shown in Figure 5.2. As shown in the Figure,

in order to simultaneously consider the data acquired from the two electrodes, we

added edges from the nodes of the first electrode’s last row to the nearest nodes of

the second electrode’s first row.
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Graph nodes possess characteristics so each of them is associated with a feature

vector corresponding to a sliding window containing a time sequence of 65 samples

acquired from the respective channel. The sliding windows size generally used to

decode EMG signals is greater than 100 ms [KN21]. However, a key aspect when

working with prostheses is the response of the system, which can be improved by de-

creasing the size of the sliding windows used. For this reason, we divided the signals

from the different channels using non-overlapping sliding windows of 65 samples,

corresponding to 32 ms of recording. Before division into sliding windows, the EMG

signals were standardized, which implies scaling the distribution of values so that

the mean of the observed values is 0 and the standard deviation is 1.

Figure 5.2: The graph consists of 128 nodes and 884 edges. Each node corresponds
to a channel. Each node is connected, with not oriented edges, to nodes distant
less than 15 mm. For each node, the signal acquired from the respective channel is
split using sliding windows. Each sliding window corresponds to the feature vector
of the node. The nodes in the first row of the second electrode are connected to the
nearest nodes in the last row of the first electrode. The structure of its channels is
analogous to the organization of pixels in an image.
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5.2.2 EMG-GNN Structure

The GNN structure is analogous to the one proposed in [DKAW+21] for EEG signal

classification (Figure 5.3).

Figure 5.3: Schema of the EEG-GNN structure presented in [DKAW+21].

The structure of our EMG-GNN is shown in Figure 5.4, and it consists of:

• graph convolutional layers and ReLU non-linearity applied to the signals

mapped onto the graph structure to embed each node by performing multiple

rounds of message passing;

• a READOUT function to learn the representation vector of the entire graph

through the aggregation of the node representations from the final graph con-

volutional layer;

• a multi-layer perceptron (MLP) to classify the graph representation vector;

• a Dropout layer before the final layer to avoid overfitting;

• a Linear activation at the output layer.

SAGEConv implements the GraphSAGE operator proposed in [HYL17]. Graph-

SAGE is a general inductive framework that leverages node feature information to

efficiently generate node embeddings for previously unseen data. This framework

is designed for large graphs with a high number of nodes. GraphSAGE learns a

function that generates embeddings by sampling and aggregating the local neigh-

borhood features of a node, unlike most existing approaches that require all nodes

in the graph to be considered during embedding training.
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The number of layers and neurons was decided after several experiments.

We used the Adam Optimizer with a starting Learning Rate (LR) of 0.001. We

also used ReduceLROnPlateau, which reduces the LR when a metric has stopped

improving for a “patience” number of epochs. In our case, we monitor the Validation

Loss, and if its value does not decrease for 10 epochs, the learning rate is reduced

by 0.1.

We applied Cross-Entropy Loss and monitored the Validation Loss to decide

when to stop training. The Early Stopping allows us to speed up learning and

to avoid overfitting. If the Validation Loss value does not decrease for 30 epochs,

model training is stopped; otherwise, the model is trained until the 100th epoch is

executed.

We batched the graphs, setting the size to 32, before putting them into the GNN

to ensure full GPU utilisation.

The GNN we employed in this work was developed in Python programming

language using PyTorch Geometric (PyG) which is a library built upon PyTorch to

easily write and train GNNs for a wide range of applications related to structured

data [PyG].

5.3 Experiments

We decided to consider the different subjects’ datasets separately during the trials.

Therefore, before each trial, we shuffled the graphs of a single subject’s dataset, and

then divided them into 60% training set, 20% validation set, and 20% test set.

The metric used to evaluate the technique is the error rate, which corresponds

to the percentage of incorrect predictions in the classification of a test.

Error rate =
FP + FN

TP + TN + FP + FN
(5.1)

Table 5.2 shows, for each gesture identified by a number in the first column,

the standard deviation and the overall classification error rate (%) obtained by

considering all the results achieved during the execution of the different trials. As

mentioned above, only one subject’s dataset was used during each trial. A usable

system should achieve error rate levels less than 10% [SE11]. Then, we highlighted

in red the gesture classification error rates higher than this percentage value, i.e.,
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20 gestures out of 65.

The most difficult gestures to recognize are:

• 10 Thumb: up

• 19 Little finger: bend + Thumb: left

• 24 Little finger: bend + Wrist: rotate clockwise

• 26 Ring finger: bend + Thumb: down

• 27 Ring finger: bend + Thumb: left

• 29 Ring finger: bend + Wrist: bend

• 30 Ring finger: bend + Wrist: stretch

• 31 Ring finger: bend + Wrist: rotate anti-clockwise

• 32 Ring finger: bend + Wrist: rotate clockwise

• 34 Middle finger: bend + Thumb: down

• 35 Middle finger: bend + Thumb: left

• 38 Middle finger: bend + Wrist: stretch

• 43 Index finger: bend + Thumb: right

• 52 Thumb: down + Wrist: rotate anti-clockwise

• 53 Thumb: down + Wrist: rotate clockwise

• 56 Wrist: stretch + Wrist: rotate anti-clockwise

• 57 Wrist: stretch + Wrist: rotate clockwise

• 59 All fingers: bend (without thumb)

• 64 3-digit pinch with Wrist: anti-clockwise rotation

• 65 Key grasp with Wrist: anti-clockwise rotation
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The above list shows that the EMG-GNN has difficulty detecting mainly complex

gestures with 2 or more degrees of freedom (DoF).

In the last row of Table 5.2, we reported the standard deviation and the overall

classification error rate (%) obtained by considering all the results achieved during

the execution of the different trials, without taking into account the subdivision into

gestures.

These results, obtained with a baseline GNN implementation, are well aligned

with the state of the art, and support the importance of further investigation of our

approach.

Table 5.2: Standard deviation and overall error rate

(%). Classification error rates greater than 10% are high-

lighted in red. A usable system should achieve error levels

below 10%.

Gesture Standard deviation Overall error rate (%)

1 4,14 4,32

2 7,13 6,16

3 6,11 6,58

4 5,84 6,16

5 4,43 4,89

6 6,79 6,74

7 5,88 6,84

8 5,49 4,26

9 7,78 8,63

10 6,66 11,68

11 6,87 9,42

12 7,1 9,11

13 3,09 3,37

14 5,38 4,37

15 3,39 4,47

16 4,54 4,63

17 7,11 6,63

18 7,49 8,95
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19 8,89 10,21

20 5,35 8,16

21 6,12 6,89

22 6,6 8,74

23 6,66 7,74

24 7,19 10,26

25 6,64 7,42

26 9,52 14,42

27 10,16 14,58

28 5,06 8,47

29 8,89 12,26

30 9,15 12,84

31 10,1 12,37

32 8,98 12,21

33 3,78 6,74

34 5,32 10,32

35 6,94 11,21

36 5,67 8,74

37 7,88 8,63

38 10,18 12,37

39 5,77 7,95

40 7,52 8,84

41 4,94 6,84

42 7,2 9,58

43 8,65 11,16

44 7,03 8,05

45 7,3 9,42

46 6,96 8,84

47 8,39 9,26

48 8,46 8,26

49 5,9 6,58

50 5,27 7,79
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51 5,9 7,26

52 9,67 11,58

53 10,05 11,53

54 8,06 8,53

55 7,12 8,47

56 11,27 12,89

57 6,84 10,21

58 4,31 4,74

59 11,9 11,42

60 6,13 8,32

61 6,46 8,63

62 5,46 7,05

63 5,57 7,74

64 10,83 14,58

65 8,93 11,63

Overall error rate (%) 4,92 8,75
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Figure 5.4: Schema of the EMG-GNN structure
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Chapter 6

Recognition of Cooking Activities

Through Air Quality Sensor Data

In this Chapter, we presented a food journaling system for frail people living alone,

in which food preparation activities in the home are detected by exploiting data

from air quality sensors. In terms of non-invasiveness and privacy, the technique

has clear advantages over solutions based on wearable sensors or cameras.

How the air quality sensor data were acquired and how features have been en-

gineered in order to feed a deep neural network is covered within Section 6.1. The

experiments we have carried out, along with the results we have obtained, are pre-

sented in Section 6.2. Section 6.3 illustrates the prototype we have developed for

the proposed use case.

6.1 Acquisition and processing of air quality sen-

sor data

In this Section, we explain how we acquire and process air quality sensor data in

order to recognize the preparation of food. The diagram in Figure 6.1 shows our

framework for data acquisition and processing. An indoor air quality monitor de-

ployed in the kitchen is in charge of providing a stream of real-time sensor data to

a data cleaning module. That module performs data preprocessing to eliminate

possible errors in sensor readings. Then, the data is passed to a feature ex-

traction module, that builds feature vectors based on statistics computed on the
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current and past data. The feature vector is passed to the online recognition

module, which uses an Artificial Neural Networks classifier to detect whether the

user at home is cooking or not. The Neural Network is trained in advance using a

labeled training set of sensor data acquired during cooking and non-cooking activ-

ities. Finally, the prediction (either cooking or not cooking) is communicated to a

robot, who is in charge of interacting with the user in order to interactively collect

his/her food diary.

Figure 6.1: System that automatically recognizes cooking activities using an air
quality sensor.

6.1.1 Sensor data acquisition

As shown in our experiments, reported in Section 6.2, the act of preparing food

determines relevant changes in the air quality of the cooking area. In particular,

the use of a gas cooker determines an immediate increase in the carbon dioxide

(CO2) level in the kitchen. The preparation of certain kinds of food generates fumes

containing different levels of volatile organic compounds (VOCs) [CWL+16]; the

increase of VOC levels is particularly evident when certain foods are prepared, such

as meat and fish. Similarly, cooking certain kinds of food determines the emission

of particulate matter (PM); i.e., microscopic matter suspended in the air. The



6.1. ACQUISITION AND PROCESSING OF AIR QUALITY SENSOR DATA 73

concentration and size of particulate matter are determined both by the cooking

style (roasting, frying...) and by the used ingredients [ADSH13]. Natural gas stoves

also emit other gases, such as NO2, in the kitchen. Moreover, when cooking takes

place, the environmental parameters of the kitchen are affected both in terms of

temperature and humidity values.

Nowadays, indoor air quality monitors are becoming popular, due to their low

cost and increased attention of people to the healthiness of indoor air. Our intuition

is that it is possible to exploit off-the-shelf indoor air quality sensors in order to

recognize food preparation activities by applying machine learning techniques to

the sensor data stream. The advantage of this solution with respect to other ones

based on cameras or environmental sensors is that the indoor air quality sensor is

unobtrusive and requires negligible installation effort. Moreover, it is obviously more

privacy-conscious than solutions based on microphones and cameras.

At the time of writing, different indoor air quality monitors are available on the

market. These devices mainly differ from one another with respect to the kind of

monitored parameters, detection frequency, form factor, network interfaces, presence

of open APIs, and cost. For recognizing food preparation activities, we target a

device having the following characteristics:

• it is able to monitor at least the following parameters: temperature, humidity,

carbon dioxide, volatile organic compounds, particulate matter;

• it provides a detection frequency of at least one sensor reading per minute;

• for ease of installation, it provides a wireless network interface and electrical

connection to avoid battery exhaustion;

• it provides open APIs for acquiring the sensor data in real-time.

Among several indoor air quality meters currently available on the market, we

chose the uHoo device introduced in Section 2.3, which provides all the desired

characteristics mentioned above. In addition to the mentioned parameters, the uHoo

device also measures nitrogen dioxide, carbon monoxide, ozone, and air pressure.

It provides sensor readings with a frequency of one minute, and the data can be

downloaded either in batch from a smartphone app, or in real-time thanks to open

APIs.
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6.1.2 Data cleaning

In general, sensor data are affected by a relevant level of noise. Hence, before being

used, the raw sensor readings must be preprocessed to reduce the noise, which could

negatively affect the accuracy of inferred data. However, several air quality monitors,

including the ones we use in this work, perform an internal preprocessing of the raw

data before sending them to the user or application. Preprocessing usually consists

in smoothing the values of consecutive readings, in order to correct values affected

by high level of noise. Since smoothing is already performed internally by the air

quality monitor, in this work we perform a limited data cleaning, which consists of

disregarding those portions of consecutive data where more than 50% of values are

missing due to network errors or power failures.

6.1.3 Feature engineering

Figure 6.2: Hourly trend of carbon dioxide in the kitchen in a day. Each point
represents the average carbon dioxide value in the kitchen during a given hour. The
points can take on different colors: green represents comfortable values for human
life; red represents uncomfortable values; yellow represents intermediate values.

In order to reliably recognize food preparation activities, it is necessary to provide

the machine learning algorithm with features useful to discriminate between cooking

and non-cooking activities. For this reason, we have carefully analyzed the trend of

air quality data when cooking was performed or not.

Figure 6.2 shows a screenshot of our air quality Web dashboard. The plot depicts

the trend of carbon dioxide hourly average during a day. On that day, breakfast

and lunch were prepared at around 7:30 a.m. and at around 1:30 p.m., respectively.

From the plot, it is easy to observe that the absolute value of carbon dioxide is not

sufficient to reliably distinguish cooking from non-cooking activities. Indeed, during
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all that day, the value of CO2 was relatively stable, with a value slightly above 1,000

ppm. The value of CO2 started to increase in the morning at 7:00, when people

went to the kitchen and initiated preparing breakfast. The increase in carbon dioxide

levels was due both to the breathing of people in the kitchen and the usage of a

natural gas stove. The CO2 value reached a local maximum at 9-10 a.m., and kept

stable until 12:30 p.m., when a user opened the window to ventilate the kitchen.

Soon after, a person started the preparation of lunch, and this activity determined

an increase in carbon dioxide, whose value reached 1,000 ppm and remained stable

for the rest of the day.

Figure 6.3: Hourly trend of temperature in the kitchen in a day. Each point rep-
resents the average temperature value in the kitchen during a given hour. Green
points represent comfortable values for human life.

From the analysis of Figure 6.2, it emerges that, in order to distinguish cooking

from non-cooking activities, it is important to analyze the trend of CO2 levels, not

only its absolute value. A similar point holds for the other parameters, such as the

temperature, whose plot on the same day is reported in Figure 6.3. For this reason,

we engineered features taking into account not only the absolute values or averages,

but also the difference between the current value and the past values. In particular,

we build features considering the differences between the most recent value and the

one in the previous 5, 10, 15, 20, and 25 minutes. We also use statistical features

considering the average, minimum, and maximum value in the last 5 minutes, as

well as the standard deviation of those values. Using these features, which are built

using only the current values and past values, it is possible to recognize the current

activity online; hence, we name this feature engineering modality online feature

extraction.

However, especially to reliably determine the end of the cooking activity, it
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would be useful to observe the sensor data even after the end of the cooking ac-

tivity. Indeed, the end of a cooking activity is often characterized by a drop of

certain parameters, such as temperature, CO2, and particulate matter; hence, the

difference between those values during and after the cooking activity might gener-

ate characteristic spikes that are easy to recognize. Obviously, the use of features

computed considering succeeding values determines a delay in the recognition pro-

cess. Hence, for those applications having real-time requirements, such as the one

addressed in this work, we only use features considering current and past values. For

all the other applications, we also build features considering succeeding values in a

temporal sliding window of 25 minutes. For instance, in order to build the feature

vector referring to the activity executed at 12:00, we need to wait until 12:25, since

the feature vector is built based on data acquired from 11:35 to 12:25. We name

this feature engineering modality delayed feature extraction. In our experiments,

reported in Section 6.2, we evaluate both modalities.

It is worth to note that a single parameter is not sufficient to reliably recognize

cooking activities. In general, increasing levels of carbon dioxide indicates the prepa-

ration of food using a gas stove; however, there may be some false positive when

several people are in the kitchen, especially if the window is closed and the kitchen is

small or poorly ventilated. Relying on CO2 only, false negatives may happen when

a meal is prepared without using a gas stove. For instance, in the day concerning

Figures 6.2 and 6.3, a dinner was prepared at around 9 p.m. using an electric oven.

We can observe that the increase of CO2 in that period of time was very limited,

and due only to the sporadic presence of one person in the kitchen. The usage of the

oven was clearly captured by the increase of the temperature. However, temperature

alone is not a reliable parameter for food preparation, since it is strongly influenced

by climatic factors and other external conditions. For this reason, we build our fea-

ture vectors considering six sensor data parameters: temperature, humidity, carbon

dioxide, volatile organic compounds, particulate matter, and nitrogen dioxide. We

disregarded carbon monoxide, ozone, and air pressure, because we experimentally

found that they were not reliable indicators of food cooking.

Finally, the time of the day is another important indicator of food preparation,

since cooking is normally carried out at specific times. We compute the current time

of the day as the number of minutes that passed from midnight.
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6.1.4 A deep neural network for food preparation

We have built a deep neural network for the classification task. The type of deep

neural network chosen is a Multilayer Perceptron (MLP). Figure 6.4 shows its ar-

chitecture. In particular, our MLP is composed by four layers: one input layer,

two hidden layers, and one output layer. The layers are fully connected (dense).

The units per layer have been selected considering the number of features. Let nF

be the number of features in input. The input layer has nF/2 number of units,

the first hidden layer has exactly nF number of units, the second hidden layer has

2nF number of units. The output layer has only one unit, since we are performing

a binary classification. We have used the Leaky Rectified Linear Units function

(LeakyReLU) as activation function, with negative slope coefficient set at 0.2. In-

stead, for the output layer, we chose as activation the Sigmoid function, since we

need a binary output value.

Figure 6.4: Architecture of the proposed deep neural network.



78CHAPTER 6. RECOGNITION OF COOKING ACTIVITIES THROUGHAIR QUALITY SENSORDATA

To prevent over-fitting we have added Dropout layers after every LeakyReLU

layer. The fraction of the input units to drop has been set at 0.5. To speed up

learning and to increase the stability of the neural network, we have also added

Batch Normalization layers: one before the input layer and the other before every

LeakyReLU layer. Batch Normalization layers have allowed us using a low learning

rate (set at 0.0001) with Adam chosen as optimizer. As loss function, we used the

binary cross-entropy function.

The deep neural network we have employed in this paper has been developed

in Python programming language using the Keras framework [ker] and Scikit-Learn

library [sci]. The used environment has been Google Colaboratory [col].

The collected sensor data, the related annotations provided by humans, and the

code related to the deep neural network we have developed can be freely downloaded

from a GitHub repository1.

6.2 Experimental evaluation

In this Section, we report the results of experiments carried out with an extensive

set of real-world data.

6.2.1 Dataset

The dataset is composed of 350,551 data readings taken at each minute during more

than 8 months in total from volunteers living in 8 different homes. The participants

self-annotated the start and end time of cooking activities on a printed form, also

specifying the kind of food that they cooked. At the end of data acquisition, the

annotations were digitized by researchers using a custom program. The researchers

actively interacted with the participants to clarify the meaning of those annotations

that were ambiguous or unclear. The dataset was acquired in real-world environ-

ments and in naturalistic conditions; we did not rely on multiple annotators and

we could not evaluate inter-rater reliability. As a consequence, even though the

participants took annotation with care, the self-annotations inevitably may contain

missing or wrong labels [TBW+18]. Data have been collected in homes having dif-

ferent characteristics, and at different periods of the year, to guarantee diversity and

1https://github.com/FG2511/MLP_ForFoodPreparation

https://github.com/FG2511/MLP_ForFoodPreparation
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to ensure that the data represented real situations and conditions. In particular,

six homes were situated in a city area by the sea with a Mediterranean climate, one

in a big continental city, and one home was situated in a mountain area with an

alpine climate. Climate influences temperature and humidity, and the area (city vs

countryside) may influence air pollutants, particulate matter, and volatile organic

compounds. In five homes, data was affected by the presence of people in the kitchen

after the completion of the cooking activity, while in the other homes the meals were

consumed in a different room. The season influences the frequency of other activ-

ities, such as opening the window or turning on a heating system, that may affect

ambient and air parameters. The participants’ age ranged from 23 to 71 years, with

10 females and 8 males. The volunteers were recruited among the families and mates

of the authors, in order to include different kinds of inhabitants. Specifically, homes

included six different typologies of inhabitants: middle-aged single inhabitants, cou-

ples, families with children, groups of roommate students, a senior living alone, and

a senior living with a middle-aged person. The participants did not receive any

compensation for taking part in the study. All volunteers were informed about the

procedure used for data acquisition, the kind of data that would be acquired, the

frequency of acquisition, and the kind of sensitive information that could be ex-

tracted from the acquired data. We explained that the data could be released in

anonymous form to third parties for research purposes. In particular, we explained

that we would not release any micro-data to third parties. Instead, we would release

only aggregated macro-data; i.e., statistical feature vectors to be used for classifica-

tion. Released data would not include neither explicit identifiers, nor quasi-identifier

information. We also explained the potential impact of the research for supporting

several kinds of medical conditions. The volunteers gave written informed consent

to their participation to the experiments. Each data record contains:

1. date,

2. time,

3. temperature (in ◦C),

4. relative humidity (in percentage %),

5. PM2.5 (Fine Particulate Matter in µg/m3),
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6. TVOC (Total Volatile Organic Compound in ppb),

7. CO2 (Carbon Dioxide in ppm),

8. CO (Carbon Monoxide in ppm),

9. air pressure (in hPa),

10. O3 (Ozone in ppb),

11. NO2 (Nitrogen Dioxide in ppb),

12. current activity,

13. type of cooked food (e.g., rice, salad).

The current activity attribute can take two values: 1 if the user is cooking a meal,

0 otherwise. The number of data records with activity set to 1 is 16,323, while the

remaining 334,228 are set to 0, meaning that “cooking” and “not cooking” classes

are strongly unbalanced. As an example, Table 6.1 indicates a few records of the

dataset with the information above.

Timestamp Temp. Hum. PM2.5 TVOC CO2 CO Pres. O3 NO2

2018-11-24 13:13 27.7 60.14 5.54 66.0 442.0 0.0 1012.91 9.15 28.60
2018-11-24 13:14 27.7 60.21 4.56 67.0 461.0 0.0 1012.92 9.14 28.76
2018-11-24 13:15 27.7 59.84 8.37 67.0 465.0 0.0 1012.89 9.35 32.29
2018-11-24 13:16 27.6 58.96 6.19 67.0 467.0 0.0 1012.91 9.57 36.25

Table 6.1: Few examples of dataset records. Each record is annotated with the
current activity (1 if the user is cooking a meal, 0 otherwise), and the list of cooked
food.

The data are subject to many variables: the kind of person who cooked most in

the house (3 men and 5 women, ages ranging from 20 to 72), the sensor distance from

domestic appliances used for cooking (ranging from 5 cm to 1.5 m), the presence

of air conditioning, pellet stove or windows in the kitchen, and the house structure

(separate kitchen from the dining room or open-space). The data were acquired in

different seasons; this feature strongly affects some parameters such as temperature

and humidity.

Eight volunteers were given one air quality monitor to place in their homes, and

for one month each they collected sensor data by writing down specific information
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each time they cooked: date, start and end time of cooking, cooked foods, domestic

appliances used for cooking, and presence of an open window. The composition of

home inhabitants was disparate, and included couples, students sharing a house,

elderly living alone, and families with children.

6.2.2 Experimental setup

In order to optimize the deep neural network, it has been necessary to perform

preliminary experiments to fine-tune the model parameters: activation function,

optimizer, learning rate, batch size, dropout rate value. The optimized module that

we devised is the one described in Section 6.1.4. As the classes in the dataset are

strongly unbalanced (as explained in Section 6.2.1), the class weights have been set

up before the model generation.

Hence, we carried out several experiments, using two different types of validation.

1. Initially, the model has been evaluated using a one-shot split of the dataset.

The model took 80% of the dataset as training set, the following 10% as

validation set, and the remaining 10% for testing. The number of epochs has

been decided using the Early Stopping function, which stops the evaluation

when the loss function starts to increase. The patience parameter (i.e., the

number of epochs with no improvement after which training stops) has been

set to 2.

2. With the second type of validation, the model has been tested using a 10 fold

cross-validation. Specifically, we have used the Scikit-Learn KFold function

to split the dataset. The split has been done maintaining the temporal order

of the dataset by setting the shuffle parameter to False. This peculiarity

is important, since shuffling the instances can introduce bias. Indeed, two

instances that are contiguous in the dataset (i.e., two set of data measured at

one-minute distance) are very similar: if an instance goes to the training set

and the following goes to the test set, we have a bias.

We evaluate our model using two modalities. The first modality is named

“minute-by minute”, and considers each prediction, referring to a one-minute data,

in isolation. The second modality is named “cooking instance” recognition, and

refers to the recognition of whole instances of cooking, where a cooking instance is

a continuous interval of time during which the cooking activity took place.
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For minute-by-minute modality, a correct recognition of cooking at minute m is

counted as a true positive (TP). A false positive (FP) happens when the network

predicts cooking at m, but cooking was not taking place at that minute. A false

negative (FN) is counted if cooking was occurring at m, but the reasoner wrongly

predicts “not cooking” for that minute. Finally, a true negative happens when the

reasoner correctly predicts that cooking is not taking place at m.

For cooking instance modality, we consider each segment of contiguous minute-

by-minute predictions of “cooking” starting at minute m and ending at minute n

as the prediction of a single instance of cooking. Then, we count a TP if an actual

instance of cooking has an interSection with a predicted cooking instance. If it has

no interSection, then we count it as a FN. A FP occurs when (i) an actual instance

of “not cooking” contains a predicted cooking instance, or (ii) a predicted instance

of “cooking” contains an actual instance of “not cooking”. A TN occurs when a

predicted instance of “not cooking” does not contain an actual “cooking” instance.

The metrics used to evaluate the model are: accuracy, precision, recall, and F1

score

The results obtained have been improved with a post-processing step. The post-

processing has been developed using a simple sliding windows algorithm. We have

used More Itertools [mor] library to implement sliding windows. The length of the

windows has been set to 35 minutes. In each window, we look at the class of the

central element (e.g., class 1), then we count the elements belonging to the same

class. If they are less than a certain threshold (set at the half of the window plus

one), the central element is set to the other class (e.g., class 0). In the other case,

the class of the central element remains the same. The purpose of this step has been

to remove small clusters of outliers and to merge close clusters of the same class.

6.2.3 Results

In the following, we present the experimental results. In all experiments, we applied

10-fold cross-validation. Since air quality data values change relatively slowly with

time, we have built the folds sequentially, in order to avoid the risk of having consec-

utive data instances (which may be very similar among them, if not even identical)

appearing in the training and test set, which could bias our results.

At first, we evaluated the performance of classification using different state-

of-the-art machine learning algorithms. In these experiments, we used the Weka
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toolkit [HFH+09] for machine learning. Results obtained with minute-by-minute

modality are shown in Table 6.2. Results show that the classification problem we

are addressing is particularly challenging. Overall, among the evaluated classifiers,

the one achieving highest accuracy was Random forest (95.95% accuracy). How-

ever, it is well known that, especially when classes are unbalanced, accuracy alone

is not an adequate metric to evaluate the effectiveness of classification. Indeed, that

classifier obtains good precision (70.57%), but low recall (22.62%), meaning that

the predictions of “cooking” were quite reliable, but most cooking instances were

actually not recognized. The classifier obtaining the highest F1 score (35.63%) was

Bayes networks, that (contrary to Random forest) exhibited good recall (69.88%),

but low precision (23.91%). The Naive Bayes and Logistic regression classifiers

obtained lower recognition rates than the former algorithms. The kNN classifier

achieved a very good balance between precision (28.15%) and recall (28.85%); how-

ever, its overall recognition performance was low (F1 score = 28.5%). The Support

Vector Machines classifier obtained one the highest scores for recall (64.65%), but

the lowest score for precision (20.71%), reaching an F1 score of 31.37%.

R.F. B.N. N.B. L.R. kNN SVM
TN 332208 297465 308529 332056 321735 293351
FP 1539 36282 25218 1691 12012 40396
TP 3691 11403 7519 2665 4707 10549
FN 12626 4914 8798 13652 11610 5768
Accuracy 95.95% 88.23% 90.28% 95.62% 93.25% 86.81%
Specificity 99.54% 89.13% 92.44% 99.49% 96.40% 87.90%
Recall 22.62% 69.88% 46.08% 16.33% 28.85% 64.65%
Precision 70.57% 23.91% 22.97% 61.18% 28.15% 20.71%
F1-Score 34.26% 35.63% 30.66% 25.78% 28.50% 31.37%

Table 6.2: Results with minute by minute modality, online recognition. Classifiers:
Random forest (denoted as R.F., max depth = 10, iterations = 10), Bayes networks
(B.N., using K2 hill climbing search algorithm), Naive Bayes (N.B.), k nearest neigh-
bor (kNN, using k = 1), Logistic regression (L.R.), Support Vector Machines (SVM,
using polynomial kernel and class balancing).

Then, we performed classification using our deep learning model. Table 6.3 sum-

marizes the results of online recognition obtained with minute-by-minute modality.

Before post processing, despite the overall accuracy obtained being 87.95%, the

overall F1 score was slightly higher than 36%. Hence, the overall accuracy was
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Original Predictions After Post-Processing
TN 296219 301258
FP 37978 32939
TP 12055 11985
FN 4269 4339
Accuracy 87.95% 89.36%
Specificity 88.64% 90.14%
Recall 73.85% 73.42%
Precision 24.09% 26.68%
F1 score 36.33% 39.14%

Table 6.3: Deep neural network. Results with minute by minute modality, online
recognition.

comparable to the one obtained by the Bayesian network classifier, which was the

one achieving the highest F1 score in our pool of classifiers. However, our neural

network obtained higher recall (73.85% vs 69.88%) and essentially the same pre-

cision (24.09% vs 23.91%). Moreover, the size of the dataset was relatively small

for training a deep neural network. We expect that the results of our deep neural

network may significantly increase using additional training data. For these rea-

sons, we decided to use the deep neural network in the rest of the experiments. The

relatively low recognition rates that we achieved may be probably due to the fact

that the dataset is strongly imbalanced, since time of cooking covers less than 5% of

the dataset. For this reason, it was hard for the neural network to identify the few

“cooking” activities within the vast majority of “not cooking” instances. Moreover,

the dataset was acquired in several different real-world conditions. In particular,

our neural network achieved good recall, but low precision. Results were slightly

improved by post-processing, reaching an F1 score close to 40%. By inspecting the

results, we observed that post-processing improved the precision by around 3% with-

out negatively impacting recall. We repeated the same experiments with delayed

recognition. We recall from Section 6.1.3 that in this modality the recognition of the

current activity is delayed by 25 minutes in order to consider the succeeding trend

of air quality values. With minute-by-minute recognition, we observed that delayed

recognition achieved essentially the same accuracy of online recognition, as shown

in Table 6.4. We performed a statistical study in order to understand whether the

difference in the results obtained with online vs offline recognition was statistically
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significant. For this reason, we applied the well-known measures of Φ coefficient and

χ2 test [Gui41] to the output of the classifiers using the two recognition methods.

We recall that the Φ value of two binary variables having identical distribution tends

to 1, while the p value of χ2 test tends to 0. In our case, we obtained a Φ value of

0.90, and the p value of the χ2 test of 2.2e-16. Hence, we can conclude that the two

techniques produced results that are statistically very similar for minute-by-minute

classification.

Original Predictions After Post-Processing
TN 293027 297008
FP 41140 37159
TP 12687 12461
FN 3637 3863
Accuracy 87,22% 88,30%
Specificity 87,69% 88,88%
Recall 77,72% 76,34%
Precision 23,57% 25,11%
F1 score 36,17% 37,79%

Table 6.4: Deep neural network. Results with minute by minute modality, delayed
recognition.

However, for our application, it is important to identify whole instances of cook-

ing activities, not the single minutes during which the activity takes place. In

cooking instance modality, our online recognition method achieved better results

than in minute-by-minute modality. Results can be found in Table 6.5. In partic-

ular, before post-processing, the technique achieved an F1 score slightly lower than

46%. This modality significantly increased both precision (from 24.09% to 32.21%)

and recall (from 73.85% to 78.77%). Results were further improved by post pro-

cessing, reaching an overall F1 score close to 60%. In particular, post-processing

provided more balance between precision and recall values. Note that, after post-

processing, the total number of predicted instances was strongly reduced, and this

fact had obviously an impact on the overall numbers of TN, FP, TP, and FN. The

reduction of the total number of predicted instances was due to the fact that our

post-processing algorithm merged multiple predicted cooking instances that were

temporally close. The reader is referred to Section 6.2.2 for the definition of cooking

instance modality. In cooking instance modality, accuracy improved using delayed
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recognition (Table 6.6), achieving an F1 score larger than 62%.

Original Predictions After Post-Processing
TN 4506 727
FP 1109 482
TP 527 491
FN 142 178
Accuracy 80.09% 64.86%
Specificity 80.25% 60.13%
Recall 78.77% 73.39%
Precision 32.21% 50.46%
F1 score 45.73% 59.81%

Table 6.5: Deep neural network. Results with cooking instance modality, online
recognition

Original Predictions After Post-Processing
TN 3988 698
FP 957 454
TP 549 505
FN 120 164
Accuracy 80,82% 66,06%
Specificity 80,65% 60,59%
Recall 82,06% 75,49%
Precision 36,45% 52,66%
F1 score 50,48% 62,04%

Table 6.6: Deep neural network. Results with cooking instance modality, delayed
recognition

6.2.4 Discussion

Overall, despite we carefully designed the deep neural network, the achieved results

are not fully satisfactory. This fact may be explained in several ways.

• First of all, while the dataset includes both hot and cold meals, our system is

suited to recognize only the former. Indeed, it fails to recognize the majority

of cold meals. This is an intrinsic limitation of any recognition system based
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on air quality data. In order to recognize cold meals, different kinds of sensors

should be added to the system.

• Secondly, the dataset was acquired in disparate real-world conditions. Homes

included single inhabitants, couples, families with children, and groups of

roommate students. Of course, the age and number of inhabitants has an

impact on the kind and quantity of cooked food, and consequently on the

change in air quality conditions determined by cooking. The topology of the

home also has an impact on air quality data. Indeed, if inhabitants consume

the meal within the kitchen, their presence determines an increase of tempera-

ture and CO2 levels even after cooking has ended. If the inhabitants consume

the meal in a different room, the CO2 and temperature levels in the kitchen

decrease as soon as cooking is finished. In our dataset we had both cases,

depending on the home. This aspect could be taken into account by selecting

only the subset of the training data acquired in conditions that resemble those

of the target environment.

• Thirdly, being manually annotated, the dataset labels have an inevitable level

of noise, which may include wrong start and end time of cooking execution,

or wrong labels.

Nonetheless, considering that each activity recognition system has a consider-

able error rate, our system based on air quality data can be coupled with other

activity recognition tools in the home to increase the overall activity recognition

rate. For instance, the accuracy of the system may be increased by coupling our

air-quality based system with other sensors attached to kitchen furniture and instru-

ments. Moreover, as explained in Section 6.3, the user’s feedback resulting from the

interaction with the robot is used to periodically re-train the neural network using

additional training data. Hence, we expect the accuracy of the system to increase

with time thanks to human-robot interaction. Even though we did not evaluate this

aspect in our experiments, we also believe that the number of false positives may

be significantly reduced thanks to the usage of computer vision APIs of the robot,

as described in Section 6.3.2.

The average execution time of the neural network algorithm for recognizing an

instance of data is 0.0317 milliseconds on a cloud computing infrastructure. Hence,

our system is feasible for real-time applications as in the proposed use case.
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6.3 Use case on a robotic platform

In this Section we are going to describe the use case we have set within the social

robotics domain. A humanoid robot has been employed to interact with the user

when the system recognizes that something is being cooked. In such a case, the

robot asks the user what he/she is cooking. More in detail, Section 6.3.1 will include

details of the robotic platform we have adopted whereas Section 6.3.2 will include

the architecture of the use case we have designed.

6.3.1 Zora, the used humanoid robot

The Zora robot [zor] uses the same robotic infrastructure of Nao, an autonomous,

programmable humanoid robot developed by Aldebaran Robotics, a French robotics

company headquartered in Paris, which was acquired by SoftBank Group in 2015 and

re-branded as SoftBank Robotics. With respect to Nao, Zora adds an extremely sim-

ple and intuitive user interface that allows any user to play loaded behaviors (apps,

dances, and games targeting care, kids, STEM market), to give action commands

to the robot to change posture and move each part of her body, to make her talk in

eight possible languages, and to use the Composer to create simple robot behaviors,

composing a sequence of actions in a visual environment where no programming

knowledge is needed.

Like Nao, Zora is also completely programmable through the Choregraphe suite

[cho], which allows users to:

• create and combine different robot behaviours using a visual approach making

use of the Python programming language;

• develop animations by leveraging an intuitive and dedicated user interface;

• test the robot behaviours and animations on either the simulated robot or the

real one;

• develop complex behaviours and human-robot interactions by leveraging calls

to REST APIs of external services on the Internet.

In order to capture the voice of the user when he/she speaks, the robot is

equipped with four microphones, two of them in the front of the head and two



6.3. USE CASE ON A ROBOTIC PLATFORM 89

Figure 6.5: An image of Zora, the employed humanoid robotic platform.

at the back. The robot can therefore record the human voice, which is contextu-

ally analyzed and transformed into text by a speech recognition module powered by

Nuance [nua]. However, we are currently relying on cloud computing systems for

speech recognition in order to improve the accuracy of the speech to text process. In

fact, this allows us pre-processing the sound recorded by Zora and removing noise

(e.g background noise, fan noise, etc.), which may compromise the conversion of hu-

man voice into written text. As such, the resulting audio file is sent to IBM Watson

Speech to Text [wat] to perform speech recognition. Figure 6.5 shows an image of

Zora.

6.3.2 Architecture of the use case

Figure 6.6 shows the architecture of the proposed use case. A Deep Learning mod-

ule contains the annotated data and the trained deep learning model. That module

exposes REST APIs to classify as cooking or non cooking a new collected record of

sensor data. One more software agent, periodically, collects sensor data and calls

the REST APIs of the Deep Learning module. If the new read data is classified as

cooking then this is communicated to the robot via a socket communication. Be-

fore starting the interaction with the user, the robot checks if someone is actually

in the kitchen. For such a purpose, it takes a picture of the environment, which
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Figure 6.6: Overall architecture of our use case prototype implementation. Note
that point (4) is optional: the user may enable or not the camera-based object
detection of the robot. If (4) is disabled, action goes directly from point (3) to point
(5).

is sent to an object detection module to identify potential persons. However, for

the sake of privacy, the object detection task is optional, and the user may decide

whether to activate it or not. More specifically, we have employed the TensorFlow

Object Detection API [ten], which provides an open-source framework built on top

of TensorFlow that makes it easy to construct, train and deploy object detection

models. TensorFlow Object Detection API can be used with different pre-trained

models. More in detail, we have chosen a Single Shot MultiBox Detector (SSD)

model with Mobilenet (ssd mobilenet v1 coco) which had been trained using the

Microsoft COCO dataset[COC], consisting of 2.5M labeled instances in 328000 im-

ages, containing 91 object types. The ssd mobilenet v1 coco is reported to have

mean average precision (mAP) of 21 on the COCO dataset. For further details on

the SSD and the evaluation carried out on the COCO dataset please check the work

of authors in [LAE+16]. The back-end of the object detection module has been

embedded into a server-side application which exposes REST APIs that, given an

input image, return the bounding box of each recognized object in the image along

with a category and a confidence value. We considered valid only the objects that
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were recognized with a confidence value equal or higher than 60%. The back-end is

hosted within the Deep Learning Module.

When a cooking instance is recognized, the robot starts the interaction with the

user. If camera-based recognition is enabled, the robot takes six pictures in the

kitchen, each 60 degrees distant from the other. If the robot identifies one or more

persons (class person of the COCO dataset) in the images, it asks what food the user

is preparing. If camera-based recognition is disabled, the robot makes its question

in any case. Once the user replies, the robot performs speech to text processing and

sends the extracted food as well as the sensors data to the Deep Learning module

which extends its training data with the new annotation and, periodically, retrains

the overall model. Note that, in the current implementation of our system, the

speech interaction to acquire food journaling data is over-simplistic, being based on

a simple question-answer paradigm. Since most food journaling applications require

detailed information about the kind and quantity of food, we will investigate a

more sophisticated conversational agent for food journaling in future work. Voice-

based identification methods will also be used to recognize the inhabitant, in case of

multi-resident homes. If the classifier forecasts a cooking activity using the current

air quality data and the user is not actually cooking (i.e. the user replies nothing to

the robot question above) the classification is wrong and the new record is sent to the

Deep Learning Module together with the not cooking label. If the object detection

module does not identify any person in the kitchen, it overrides the classification

of the Deep Learning Module thus reducing the false positives and improving the

overall classification. Moreover, the new pair (sensor data, not cooking) is sent as

further training element. Periodically and when enough new annotated data have

been collected, the Deep Learning Module trains again the model.

We would like to point out that the robot has not been employed for the col-

lection of the annotated data during the eight months from the annotators. During

that period, only our air quality sensors were employed and their measurements

were saved for the whole period. After the creation of our gold standard and the

training of our model, we set up the whole architecture shown in Figure 6.6 for a

preliminary test on real settings. Advanced methods to improve our use case, in-

cluding techniques for optimized path planning of the mobile robot [SRR20], will be

investigated in future work.
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Time Food
8:11 coffee
13:18 pasta and potatoes
17:09 chocolate
20:23 broccoli and steak
22:34 tea

Table 6.7: Five entries of the food diary filled during one day through the human
robot interaction use case.

6.3.3 Preliminary results on human-robot interaction mech-

anism

After having collected all the information related to the air quality sensors, in one of

the houses of the annotators we performed a preliminary technical validation of the

human-robot interaction mechanism. In order to interact with the user, the robot

employs a state of the art object detection classifier, text-to-speech and speech-to-

text technologies, which are widely evaluated in the literature. We have already

mentioned the used speech-to-text technologies. As far as the object detection is

concerned, we have used the classifier based on the work of authors in [LQQ+18].

The object detection software (that was enabled in our use case) and the classifi-

cation software (to identify a cooking instance out of the air sensor data) were run

in a pc we brought in the house to perform the test together with the robot and

the air sensors. The whole human-robot interaction architecture has been prelimi-

narily tested for short time (one full day), and the only errors we noticed occurred

because of the wrong prediction of the activity recognition module. As mentioned

earlier in the paper, the human-robot interaction has been kept simple. To easily

recognize the food spoken by the user, we first collected a list of food items online

that were enriched by each of the annotators. Basically, we asked each of them to

write the list of food items they have cooked or might cook in the future. After we

removed the duplicates, we obtained a list of 86 food items that were organized in

a two-levels hierarchical structure. The first layer contained general terms, whereas

the second levels contained items that were associated to one food item of the first

level. For example, egg is a general item, while omelette is a specific item related

to egg. Therefore, when the machine learning module predicted a cooking activity

(and the robot identified a person in the kitchen), the robot asked the user what
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he/she was cooking. Out of the natural language expressions spoken by the user,

after the robot performed speech-to-text, it was just a matter of recognizing terms

we had in the vocabulary without performing any comprehension of the semantics

involved in the natural language text. This process did not lead to any errors and

all the spoken items have been correctly identified within the defined vocabulary.

There was one researcher present in the morning during the first cooking activity

and in the evening during the last cooking activity that monitored the human robot

interaction after having trained the English speaking person living in the house and

informed her on the behaviour of the robot. Some facts, comments and impressions

that turned out from our preliminary experiment were the following:

• the object detection module correctly identified all the times when someone

was in the kitchen;

• one out of five cooking activities was not recognized as a cooking activity by

the classifier;

• two times the robot thought that there was a cooking activity (two false pos-

itives occurred of the Deep Learning module): that was fixed as soon as the

user replied nothing to the robot question What are you cooking? and the

correct pair (sensor data, no cooking activity) was sent to the Deep Learning

module;

• we have developed everything (vocabulary, human robot interaction, etc.) in

English and the user involved within our experiment was an English speaker;

• out of five cooking activities, there were not cases when the user mentioned a

food not present within the dictionary we had prepared;

• the entries we filled in our food diary for the short experiment are depicted in

Table 6.7;

• we asked what the impressions of the user interacting with the robot were and

she was very curious and excited to talk it. She did not think the robot was

intrusive and liked the simple human robot interaction we designed. She would

even have liked if the robot could have entertained her with songs, music, radio,

or simple interaction or question-answering capabilities provided, for example,

by voice assistant tools today.
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Chapter 7

Conclusions

In this thesis, we worked on different types of disorders that affect the mind and

body by first creating ad-hoc solutions for specific disabilities and finally creating

a versatile interactive system that can be useful to people with different types of

disabilities.

In the first work, we introduced the use of EEG data mining to assess the perfor-

mance of humans carrying out annotation tasks. Our method relies on a consumer

EEG sensor and on supervised machine learning. We have collected a dataset from

five volunteers. Initial results indicate that our approach is promising. This work

can be improved in several directions. Our results indicate that the system is re-

liable when the training set is acquired from the specific individual for which it is

used. However, the utility and scalability of the system should be improved by using

training data from different individuals. To this aim, we will investigate the use of

transfer learning methods specifically tailored to EEG data. We will also investigate

cost-effective techniques to acquire training data from the specific subject. Finally,

we will acquire a larger dataset to thoroughly evaluate our techniques.

In the first part of the thesis, we also conducted a study to understand the in-

fluence of the cost of the EEG device used in estimating the level of attention. We

then tested the data collected through two sensors, a low-cost and a more expensive

one, using the same techniques for feature extraction and classification. The results

obtained are very similar and in both cases, the system obtains better values when

the classifier is trained on the data of the same individual used for testing. Future

work includes investigating different machine learning algorithms for the classifica-

tion task, including deep learning methods, to improve the accuracy of the system,
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and feature selection techniques to reduce overfitting.

In the third work, we have introduced a novel approach, using GNNs for process-

ing HD EMG data to support the movement intention recognition of amputees. The

use of GNNs allows the modeling of complex topological relations of the electrodes,

which are not captured by traditional machine learning algorithms or by other deep

learning architectures. An investigation of our method, including experiments with

a real-world dataset, shows that the approach is promising. Future work includes

a deeper investigation of the spatiotemporal characteristics of HD EMG data to

refine the graph structure. We are also considering using explainable artificial intel-

ligence methods to investigate the internal functioning of the deep learning model

to fine-tune the network structure for reducing computational costs. Finally, we will

experiment with our methods with additional datasets, and perform an experimental

comparison with state-of-the-art techniques.

In the last presented work, we have laid the foundation of a novel method to

support food journaling, addressed to frail people who live alone or with family

members who are away from home for most of the day and cannot constantly take

care of them. Our system relies on advanced air quality sensors for cooking recogni-

tion. We have shown the process of collecting and analyzing air quality sensor data

to detect when the user is cooking in order to trigger the interaction with a digital

agent to acquire food data. We have developed a deep neural network trained on a

large dataset acquired over 8 months in disparate conditions by different people. An

experimental evaluation has been carried out to assess the accuracy of the model

on the given classification problem and the feasibility of the method for real-time

applications. We have also developed an initial prototype considering a use case

where a social robot interacts with the neural network and with the user. Our

preliminary prototype is the first in its kind and shows several challenges we had

to face and many more that we still need to address. However, we believe that

the technologies to address these challenges are out there and our work provides a

significant step in this direction. Several challenges to be addressed in future work

remain open. First of all, we will investigate methods to increase the accuracy of our

cooking recognition system. An obvious direction is to couple the air quality sensor

with other sensors to recognize the preparation of cold meals. As explained, the

temperature alone is not sufficient to reliably recognize cooking activities, because

indoor temperature is influenced by external temperature. A similar point holds for
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humidity and other factors. In order to mitigate the influence of external conditions,

we could include additional data taken from online weather services. Since both the

topology of the home and the characteristics of inhabitants (including their num-

ber and age distribution) affect the air quality conditions at cooking time, we will

investigate techniques to couple our data-driven method with a knowledge-based

one, to fine-tune recognition to home’s and inhabitants’ characteristics. Other do-

main knowledge, such as the expected duration of cooking activities, may be used

to improve the recognition rates of our cooking recognition system, and this is a

research direction we will pursue. Future work also includes the definition of an ef-

fective and engaging conversational interface for interactively filling the food diary,

and voice-based identification methods to recognize the current inhabitant in the

case of multi-resident homes. For such a purpose, one direction we are heading is

to employ Google Assistant technology for the human-robot interaction exploiting

the APIs and open-source tools (e.g. DialogFlow) that Google makes available to

the community. We would like to extend the vocabulary we have defined according

to Semantic Web best practices in order to have a more comprehensive ontology

involving all the food items that might be cooked according to any international

recipes. Finally, we plan to execute extensive tests and a much more comprehensive

evaluation of the human-robot interaction approach based on our preliminary use

case prototype implementation
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