

This is the Author’s accepted manuscript version of the following
contribution:

Janovsky, A., Maiorca, D., Macko, D., Matyas, V., Giacinto, G. (2023).
Explaining the Use of Cryptographic API in Android Malware. In: Van
Sinderen, M., Wijnhoven, F., Hammoudi, S., Samarati, P., Vimercati,
S.D.C.d. (eds) E-Business and Telecommunications. ICSBT SECRYPT 2022
2022. Communications in Computer and Information Science, vol 1849.
Springer, Cham

The publisher's version is available at:
https://doi.org/10.1007/978-3-031-45137-9_4

When citing, please refer to the published version.

This full text was downloaded from UNICA IRIS https://iris.unica.it/

Explaining the use of Cryptographic API in
Android Malware

Adam Janovsky1, Davide Maiorca2, Dominik Macko1, and Vashek Matyas1 and
Giorgio Giacinto2

1 Masaryk University, Czech Republic
adamjanovsky@mail.muni.cz
2 University of Cagliari, Italy

{davide.maiorca,giacinto}@unica.it

Abstract. Cryptography allows for guaranteeing secure communications,
concealing critical data from reverse engineering, or ensuring mobile users’
privacy. Android malware developers extensively leveraged cryptographic
libraries to obfuscate and hide malicious behavior. Various system-based
and third-party libraries provide cryptographic functionalities for An-
droid, and their use and misuse by application developers have already
been documented. This paper analyzes the use of cryptographic APIs in
Android malware by comparing them to benign Android applications. In
particular, Android applications released between 2012 and 2020 have
been analyzed, and more than 1 million cryptographic API expressions
have been gathered. We created a processing pipeline to produce a report
to reveal trends and insights on how and why cryptography is employed in
Android malware. Results showed that the usage of cryptographic APIs
in malware differs from that made in benign applications. The different
patterns in the use of cryptographic APIs in malware and benign appli-
cations have been further analyzed through the explanations of Android
malware detectors based on machine learning approaches, showing how
crypto-related features can improve detection performances. We observed
that the transition to more robust cryptographic techniques is slower in
Android malware than in benign applications.

Keywords: Cryptography · Android · Malware

1 INTRODUCTION

The increased number of Android operating system users during the last decade,
reaching almost 3 billion in 2021 [7], is one of the key motivations of the increase
of security threats targeting Android showed [27]. The use of Smartphones
to store an increasing number of personal and business-related information,
including health, finance, and access tokens, made it one of the targets of cyber
attacks. Cryptographic primitives are employed to conceal critical information
and securely carry out communication with internal components, applications,
and web services. At the same time, it is natural to imagine malware authors
leveraging cryptography in many artful ways to serve their malevolent objectives.

2 A. Janovsky et al.

For instance, cryptography equips attackers with the ability to fingerprint the
parameters of an infected device, encrypt users’ media files, establish a secure
connection with a command-and-control server, or manage ransom payments
carried out by victims infected by, e.g., ransomware.

Previous research conveyed a significant effort in analyzing cryptography
in benign applications. The focus was mainly on the misuse of cryptographic
application programming interface (API) in benign Android applications, i.e.,
finding and eliminating vulnerabilities in the employed crypto-routines that may
allow attackers to obtain sensitive information [11,31,8,39].

To the best of our knowledge, however, no study explored how cryptography is
currently employed in malicious applications, the only example being a previous
work from the authors of this contribution [18]. That paper was focused on
providing details on the cryptographic API used in Android malware, its evolution
over time, and the potential contribution that such a study can provide for
improving malware detectors.

Notably, this paper is an extended version of a conference paper published
in SECRYPT 2022 [18]. In this extended work, we aim to make a step forward
by focusing on machine-learning techniques for Android malware detection. In
particular, we aim at assessing the effectiveness of considering the information
on cryptographic API as additional features in the design of Android malware
detectors.

We can summarise the aim of this paper as the answer to the following
research questions related to cryptography and Android malware:

1. RQ.1: Are there significant differences in how cryptography is employed in
benign and malicious applications?

2. RQ.2: How do features related to cryptography affect the performances of
Android malware detectors?

We believe that answering these questions will shed more light on the mecha-
nisms of Android malware, providing new insights for its analysis, characterization,
and detection. To this end, in this paper, we propose two main contributions.
First, we deliver a comprehensive comparison of how cryptography is employed
in 603 937 malicious and benign applications released in the last decade. Such a
comparison is carried out with an open-source3, scalable approach that inspects
(among others) the usage of hash functions, symmetric and public-key encryption,
PRNGs, etc. In total, we inspect over 106 of cryptographic API expressions.

Second, we show that cryptographic features demonstrate their discriminant
power in distinguishing malicious and benign applications by employing techniques
inherited from the interpretation of learning models. This allows us to point
out possible connections between cryptographic API and malicious actions and
augment state-of-the-art malware detectors’ performances.

The attained results show many intriguing and surprising trends. For example,
unlike benign applications, malware authors do not typically resort to strong
cryptography to perform their actions. We show that malware often favors the use

3 The code is accessible from github.com/adamjanovsky/AndroidMalwareCrypto.

github.com/adamjanovsky/AndroidMalwareCrypto

Explaining the use of Cryptographic API in Android Malware 3

of cryptographically defeated primitives, e.g., weak hash functions MD5 [43] or
SHA-1 [41], or symmetric encryption scheme DES [6]. These insights can also be
especially useful to learning-based models, which can leverage these cryptographic
trends to improve the detection rate of malware. We believe the results presented
in this work can constitute a seminal step to foster additional research on the
relationship between cryptography and Android malware.

The paper is organized as follows: Section 2 provides all the necessary technical
background. The proposed methodologies are reported in Sections 3 and 4,
where the processing pipeline and the machine-learning approaches are described,
respectively. Reported results on the statistics of crypto usage and in-depth
analysis for various crypto functions are reported in Section 6. Section 7 shows
how explaining machine learning-based Android malware detectors can provide
useful information for threat analysis. Moreover, crypto-related features can be
essential in detecting some malware samples. The limitations of the present study
are discussed in 8 while Section 9 provides a thorough analysis of the related
research works. Conclusions are reported in Section 10.

2 TECHNICAL BACKGROUND

This section provides the basic technical elements that will be used in the rest
of the paper. We first describe the structure of Android applications. Then, we
provide an overview of the techniques used to analyze Android applications.
Finally, we describe the prominent functionalities of the cryptographic APIs that
can be employed in Android applications.

2.1 Background on Android

Android applications can be represented as zipped .apk (Android application
package - APK) archives comprising: (i) The AndroidManifest.xml file, which
provides the application package name, the name of the app basic components,
and the permissions that are required for specific operations; (ii) One or more
classes.dex files, which represent the application executable(s), and which
contain all the implemented classes and methods executed by the app. This file
can be disassembled to a simplified format called smali; (iii) Various .xml files
that characterize the application layout; (iv) External resources that include
images and native libraries.

Although Android applications are typically written in Java, they are com-
piled to an intermediate bytecode format called Dalvik, whose instructions are
contained in the classes.dex file. This file is parsed at install time and converted
to a native ARM code executed by the Android RunTime (ART). The use of
ART allows speeding up the execution in comparison to the previous runtime
(dalvikvm, available till Android 4.4), where applications were executed with a
just-in-time approach: during installation, the classes.dex file was only slightly
optimized, but not converted to native code.

4 A. Janovsky et al.

2.2 Analysis Techniques for Android applications

Android applications, like any other application written for different platforms,
can be analyzed either statically or dynamically. Static analysis can be performed
in two different ways. The Dalvik bytecode’s instructions are disassembled, or the
executable is decompiled to its Java source. Typical analysis techniques involve,
among others, program slicing, data flow and taint analysis and the extraction
of the application call graphs. Dynamic analysis can be performed by tracing
the execution of the instructions, as well as the changes in memory during the
execution of the applications.

Both approaches feature their limitations, and a comprehensive analysis re-
quires the exploitation of the complementarities. Static analysis can be evaded by
obfuscation techniques, such as renaming user-implemented functions, modifying
the call graph, and using reflection or encryption API [25,16]. Dynamic analysis
can be especially challenging due to the so-called path-explosion problem, where
the application should be stimulated to take different execution branches. This
operation is particularly complex in Android apps, as there are numerous ways
to interact with them. As applications are typically executed in emulated envi-
ronments, a malicious application can first check whether the application is being
debugged or not. Finally, dynamic analysis can be resource- and time-consuming.

The choice of the right technique explicitly depends on the analysis goals.
Static analysis is typically recommended for large-scale analyses, as it is much
faster to carry out, and its scalability outweighs its limitations over many samples.

2.3 Cryptography in Android

Android developers typically have several means to implement cryptographic
functionality for their applications: (i) Using Java Cryptographic Architecture
(JCA) via Android API; (ii) Using third-party Java cryptographic libraries; (iii)
Using third-party native cryptographic libraries; (iv) Designing and/or employing
their cryptographic functions. Note that the last method is widely discouraged by
the cryptographic community and is unfeasible to be reliably employed, as it has
no well-grounded fingerprint. We also stress that, in most cases, developers do
not need to develop their cryptographic functions because they can more easily
and reliably employ readily available tools. For these reasons, we will not discuss
the (iv) case in the rest of the section.

Android API cryptographic functionalities are delivered via JCA. JCA pro-
vides a stable set of classes and functions that can be called from two main
packages, javax.crypto and java.security [35,14]. These packages contain
more than 100 classes covering the majority of cryptographic primitives and
protocols, such as hash functions, symmetric encryption schemes, digital signa-
ture algorithms, and so forth. Although the Android documentation explicitly
recommends using specific primitives4, many weak and insecure cryptographic

4 AES-256 in CBC or GCM mode, SHA-2 for hash functions, SHA-2 HMAC for MACs
and SHA-2 ECDSA for signatures as of early 2020 [14].

Explaining the use of Cryptographic API in Android Malware 5

primitives (such as the MD5 hashing function or the symmetric cipher DES) can
be chosen. Apart from providing the API, the JCA introduces an abstraction
layer of the so-called Cryptographic Service Providers. Such providers regis-
ter themselves at the JCA and are responsible for implementing any subset of
the API. Different Android versions suggest using different providers, such as
BouncyCastle [21] and Conscrypt [15], which are among the most popular ones.
While these providers differ in their internals, they must comply with the API
and expose identical function names and argument ranges.

Apart from the Android API, practically any cryptographic functionality
can be supplied by some third-party library. Still, there is no curated list of
either Java or native cryptographic libraries for the Android platform to our
best knowledge. During our study, we noticed libraries specifically focusing on a
subset of cryptographic functions, such as providing functionality only for AES
encryption. We also noticed libraries exposing various cryptographic primitives
and protocols, such as the OpenSSL library. These full-fledged libraries can
provide functionalities similar to the Android API.

3 METHODOLOGY

This section describes the methodology employed to extract and analyze the
cryptographic API embedded in Android applications. We start by formalizing
the problem and properly defining its domain and constraints. We then show how
we implemented this formalism by discussing our developed analysis framework.
Our findings are based on the static analysis of the Java source code obtained by
decompiling the Android executables.

3.1 Problem Formalization

We organize the problem formalization in two parts: part one treats the definition
of the crypto-routines of interest for our analysis, and part two describes the
process of locating those routines in the application source code.

I. Definition of Crypto-Routines. Given a set of Android applications,
we denote the set of all possible functions F contained in their source code as:

F = U ∪ S ∪ T = C ∪ Cc,

Where U represents the set of functions defined by the user, S is the set of system-
related functions contained in the Android SDK, and T is the set of functions
belonging to third-party libraries. Given a set of known crypto-related functions
C, our goal is to study the intersection of C and S, denoted as Fcs. In other words,
Fcs is the set of cryptography-related functions that are defined in the system
package (in Android, represented by JCA functions). In this analysis, we discard
custom cryptographic functions that users or third parties may implement. The
automatic detection of such functions would be a complex task in a large-scale
analysis, which may lead to false positives (or negatives) without further manual

6 A. Janovsky et al.

inspection. In our study, we solely aim to answer what functions from Fcs the
malware authors favor.

From the cryptographical perspective, the functions contained in Fcs can be
divided into the following categories: (i) Hash functions. Cryptographic hash
functions such as MD5, SHA-1, or SHA-2; (ii) Symmetric encryption. Symmet-
ric cipher primitives such as AES, DES, or RC4; (iii) Public-key encryption.
Asymmetric primitives, in Android represented by the RSA cryptosystem; (iv)
Digital signature algorithms. Primitives that empower digital signatures, e.g.,
ECDSA; (v) MAC algorithms. Primitives that construct Message Authentication
Codes, also called MACs; (vi) PRNG. Functions to run pseudo-random number
generators (PRNG); (vii) Key agreement protocols. Algorithms for key exchange,
in JCA represented by Diffie-Hellman protocol; (viii) Others. Functions that do
not fall into any of the previous categories.

II. Locating Cryptographic API. All functions in Fcs are available through
two Java packages in Android API: javax.crypto and java.security. Our
research goal is to reveal which cryptographic functions have been chosen and
directly employed by the authors. Notably, Android applications typically contain
third-party packages that invoke crypto functions. We aim to exclude those
packages from our analysis as the application authors did not contribute to them.

Thus, for each Android sample, we are interested in extracting the crypto-
graphic API Fa ⊆ Fcs that is invoked from user-defined functions U. To obtain
the functions belonging to Fa, we developed the following two-steps procedure:
(i) We automatically detect the classes that belong to third-party or system
libraries, and we exclude them from the set of classes that should be explored. By
doing so, we establish the list of user-implemented functions U; (ii) We extract
all references to crypto-related functions Fcs that are invoked directly from U.

The first step is motivated by the discovery [42] that more than 60% of Android
APK5 code (on average) originates from third-party packages. To study user-
authored code, it is therefore critical to differentiate, with reasonable certainty,
whether a class belongs to a third-party library or not. This task can be extremely
challenging and was extensively studied, e.g., by [42,24,4]. It does not suffice to
merely search for the import clauses in the decompiled source code since non-
system packages could be renamed. This scenario is especially frequent in malicious
applications, as the authors aim to defend against forensic investigation techniques.
Inspired by the systematic review of third-party package detectors [44], we opted
to tackle this task with LibRadar, a popular third-party library detection tool that
uses clustering techniques and complex signatures to recognize such libraries [24].
The results reported in the review paper show that LibRadar achieved the highest
precision and second-highest recall while it took approx. 5 seconds to evaluate an
APK on average. The runner-up requires over 80 seconds per APK, which would
be unsuitable for large-scale analysis. LibRadar was trained on a large dataset
of Android applications and can reliably fingerprint more than 29 000 third-
party libraries without relying on package names. Consequently, LibRadar can

5 Android Application Package, an archive that encapsulates the whole Android appli-
cation.

Explaining the use of Cryptographic API in Android Malware 7

identify obfuscated packages. Using LibRadar6, we filter the identified third-party
packages of an APK from subsequent cryptographic API analysis.

3.2 Crypto API Extraction Pipeline

Given a dataset containing Android APKs, our system generates a comprehensive
report of the embedded cryptographic API. Our system requires configuration
files for the to-be-conducted experiment. Apart from other choices, the files
contain a list of APKs that can be loaded from a disk or downloaded from the
Internet.

The APKs are then processed in parallel, and each sample traverses the
following pipeline:

1. Pre-processor. This module decompiles the APKs to obtain their Java
source code. Then, the third-party packages of the APKs are identified, and
the whole Java source code of the APKs is extracted.

2. Crypto-extractor. This module extracts and analyzes the cryptographic
function call sites in the application source code. Their filtering is achieved by
matching pre-defined regular expressions. Additionally, the crypto-extractor
also detects both Java and native third-party cryptographic libraries.

3. Evaluator. This module stores, organizes, and aggregates the information
retrieved by the analyzed APKs to a JSON record.

The evaluator outputs a report of the cryptographic usage for each APK. We
designed the system in a modular fashion to allow for the addition of other
modules for extracting further valuable insights from the APKs.

4 Cryptography and Machine Learning

To accurately detect malicious applications through machine learning approaches,
multiple features are typically extracted. Among these features, cryptographic
usage statistics are undoubtedly helpful in pointing out differences between
benign and malicious applications. In this paper, we also aim to explore whether
the statistics on the usage of cryptographic functions can be useful to recognize
malicious samples from benign ones effectively. To answer this question, we
propose three approaches that employ machine learning techniques, described in
the following.

4.1 Cryptographic Learning Model

The first technique consists of defining a learning-based system whose structure is
inspired by other popular detection systems [10,9,26]. In particular, the proposed

6 Since LibRadar requires a large Redis database to run (preventing parallelization), we
actually leveraged its lightweight version LiteRadar. Before doing so, we compared
the output of both tools on a small subset to find out that this decision has a
negligible effect on the number of detected libraries.

8 A. Janovsky et al.

system performs the following steps: (i) it takes as an input an Android application
and extracts its cryptographic API usage with the pipeline described in Section 3.2;
(ii) it encodes this statistics into a vector of features; (iii) it trains a machine-
learning classifier to predict a benign/malicious label.

The feature vector includes features that can be categorized into the following
three sets:

– Set A: flags indicating the use of third-party cryptographic libraries (both
Java and native).

– Set B: frequencies of specific cryptographic API constructors and imports of
crypto-related classes, e.g., number of DES constructors in a sample.

– Set C: aggregated statistics of call sites and imports related to categories
of cryptographic primitives: hash functions, symmetric encryption schemes,
and so forth. For example: how many distinct hash functions a sample uses.

By joining these sets, we obtain 300 potentially informative features. These
features are further filtered with the following feature selection process. The
dataset with candidate features is split in a 9:1 ratio into training/test sets. First,
we examine all possible pairs of features. If a pair exhibits Pearson’s correlation
coefficient higher than 0.95, we drop a random feature of such a pair. Second, we
remove the features deemed uninformative by Boruta [20]. Boruta is a supervised
algorithm that iteratively replicates features, randomly permutates their values,
trains a random forest, and removes redundant features based on the z-score.
This feature selection process yields 189 features on the dataset used in this
study, whose details are reported in Section 6.1.

To choose the classifier best suited for our study, we resorted to a preliminary
experiment on a dataset similar to the one used in this study. The following
machine learning approaches have been considered: Naive Bayes, Logistic Re-
gression, Support Vector Machines with linear kernel, Random Forest, Gradient
Boosted Decision Trees (GBDT), and Multilayer Perceptron (MLP). The clas-
sifiers’ hyperparameters have been tuned using 10-fold cross-validation on the
training dataset, optimizing for the F1 score. The best classifier, according to the
performances on the F1 score, was selected as the candidate model for carrying
out the explanation analysis, followed by experiments aimed at showing the
capability of crypto-related features to enhance the performances of Android
malware detectors. The selected classifier turned out to be the Random Forest
(which works as a majority-voting ensemble of decision trees trained on different
subsets of the data) with an F1 score of 57.07%. In this preliminary study, GBDT
and MLP had an F1 score of 56.89% and 56.41%, respectively, while the other
classifiers provided significantly smaller performances.

4.2 Explaining the Learning Model

To further advance the understanding of cryptographic API in Android de-
tection, we extracted explainations from the predictions of the cryptographic
classifier. Explanation techniques allow understanding of the learning process

Explaining the use of Cryptographic API in Android Malware 9

results through the analysis of the training samples’ features that influence the
classifiers’ decisions. In this paper, we used both global and local feature impor-
tances as reported in previous work dealing with the explanation of Android
malware detectors [28,29]. The global analysis evaluates the impact of the features
averaged over the whole dataset, while the local analysis evaluates the impact of
the features on specific samples.

To interpret the classifier’s predictions, we used Shapley additive explanations
(SHAP) [22] that are successfully used outside the computer science field. SHAP
can consistently explain both local predictions and global feature importance
by measuring each feature’s contribution to the prediction. This method uses
Shapley values [38] from coalitional game theory. Each player is a feature or a
coalition of features, and the game (payout) is the prediction. Shapley values are
considered optimal because they satisfy the properties of efficiency, symmetry,
and additivity.

4.3 Enhancing existing malware classifiers

The third approach consists of taking a well-established malware classifier for
Android as a baseline and measuring its performance when enhanced with features
related exclusively to cryptographic API. To this end, we chose R-PackDroid [26],
an available learning-based classifier (trained on random forests) based on static
features, and we expand its feature set by adding the cryptographic features
described above. There are multiple reasons for which this system was chosen as
a baseline: (i) It was initially designed to detect ransomware; (ii) It harvests a
relatively small number of features; (iii) It features a high detection rate (the
original paper documents over 97% F1 score).

Considering the characteristics described above, it would normally be chal-
lenging to improve the already strong performance of the system by adding more
features. To keep some space for improvement when enhancing the classifier with
cryptographic features, we decreased the number of R-PackDroid features from
211 to 10 in a controlled manner, leading to an F1 score of 76%. To measure the
effect of cryptographic API features on the model, we replicated the following
procedure 1000 times: (i) We sample 10 random features from R-PackDroid7;
(ii) We build a random forest classifier and measure its F1 score; (iii) We enhance
the 10 R-PackDroid features with all 189 cryptographic API features chosen by
feature selection; (iv) We use the expanded feature set to build another random
forest classifier and measure its performance gain over the baseline classifier.

With the three strategies described above, we unveil the role of cryptographic
API for malware detection, as will be shown in Section 7.

7 The tuples were sampled in advance to avoid repetition.

10 A. Janovsky et al.

5 IMPLEMENTATION OF THE PROCESSING
PIPELINE

We now provide a more detailed description of each module, as well as the technical
challenges that we had to face during the development of our system. Our tool
is implemented in Python 3.8 and is provided as an open-source repository for
further collaboration.

5.1 Pre-processor

The first task of the pre-processor is to obtain the decompiled Java source
code of the input APKs. To get object-oriented access to the source code, we
instrumented the open-source tool Androguard [3]. As Androguard supports
multiple decompilers, we made preliminary tests with various decompilers to
verify that applications would be correctly parsed. The attained results showed
that JADX decompiler [40] is capable of the most mature recovery of the Java
code, and hence was used in this study. For each APK, all .java classes in its
.dex files were recovered. In some samples, a small fraction (< 1%) of classes did
not survive the decompilation process. These classes were ignored from further
processing.

The second task of the pre-processor is to craft a list of third-party packages
residing in the scrutinized APK. As mentioned in the previous section, this task
is handled with the help of LiteRadar that was trained on a large dataset of
Android applications, and can reliably fingerprint more than 29 000 third-party
libraries. It should be stressed that the LiteRadar does not rely on package
names, and can thus identify obfuscated packages as well. Using LiteRadar, we
check every APK for the presence of third-party packages. Each package identified
as a third party is then excluded from the cryptographic API analysis.

5.2 Crypto-extractor

The crypto-extractor component executes two sub-tasks. The first objective is
to gather a list of third-party cryptographic libraries imported from the APK.
For this scenario, we discriminate between (i) Java cryptographic libraries and
(ii) native cryptographic libraries. In total, we searched for 23 distinct libraries.
Their names, together with the reasons behind choosing them, can be found in
Section 6.

The candidate list of native cryptographic libraries is then matched inside
any of the following three import statements that load a native library di-
rectly from the source code: ReLinker.loadLibrary, System.loadLibrary, and
Native.loadLibrary. The candidate list of Java cryptographic libraries is com-
pared with the list of third-party packages identified earlier by LiteRadar. If
any package appears in both lists, we note down the usage of the respective
cryptographic library.

The second goal of the crypto-extractor is to collect comprehensive data
about cryptographic API usage. Although the packages javax.crypto and

Explaining the use of Cryptographic API in Android Malware 11

java.security contain more than 100 classes and interfaces, only some of those
can reveal insights about the diversity of cryptography usage in the malware.
We analyzed all classes in these packages and discarded out-of-scope instances
to obtain 86 classes for our analysis. Most of the diversity in the cryptographic
API landscape can be explained by the study of object constructors, and of their
parameters. Whatever the developers’ aim concerning cryptography is, they must
first create a suitable object to address it. To give an example, when developers
want to hash a file, they must first obtain the hash object by calling the construc-
tor MessageDigest.getInstance(). When this constructor is called, e.g., with
a string parameter "SHA-256", this reveals the probable usage of the SHA-256
hash function in the APK. We specified 333 constructors and parameters and
recorded all occurrences of these in the source code8. Specifically, we performed a
line-by-line search of each of the user-defined classes. If the searched line contained
any of the constructors, we note down its usage. By doing so, we collected a
rough landscape of cryptography usage in the whole source code. This data was
further refined and processed to draw conclusions.

Notably, constructors parameters can be obfuscated (and thus missed by
our analysis - e.g., MessageDigest.getInstance(a), where a is some variable).
In this case, our system cannot properly parse such constructors. However, we
argue that this limitation could only partially be statically solved, as even more
advanced techniques (such as program slicing) can be easily defeated by more
advanced obfuscation [25,16]. Moreover, in large-scale scenarios, the problems
introduced by the presence of some obfuscation are significantly outweighed by
the dataset size. Nevertheless, for the sake of a fair analysis, we computed the
exact fraction of obfuscated constructors for each of the cryptographic primitives
we analyzed.

6 TRENDS IN CRYPTOGRAPHY

In this section, we answer RQ.1: Are there significant differences in how cryp-
tography is employed in benign and malicious applications? We report the most
significant statistics we obtained with the API extraction methodology presented
in Section 3.2. First, we discuss the general prevalence of cryptographic API that
can be extracted with static analysis by discussing the effects of obfuscation, the
incidence of third-party packages, and the overall differences between benign and
malicious applications. Then, we provide a more detailed focus on the distribution
of cryptographic API in malicious applications.

6.1 Dataset

To gain an all-around view of the cryptographic API landscape in Android
applications, we leverage the Androzoo dataset [1]. Currently, Androzoo is the

8 While having the capability to capture such diverse landscape, in Section 6 we present
results only for 220 constructor variants from 8 classes, since the rest is used very
rarely. No conclusions can be drawn from such rare events.

12 A. Janovsky et al.

2012 2020

10%

30%

50%

70%

(a) cryptographic API

%
o
f
A
P
K
s
in

d
a
ta
se
t

malicious

benign

2012 2020
0%

25%

50%

75%

100%

(b) third-party package

malicious

benign

2012 2020
0%

5%

10%

15%

20%

(c) Benign AES/DES

AES

DES

2012 2015 2020
0%

5%

10%

15%

(d) Malicious AES/DES

AES

DES

Fig. 1: Time evolution of important dataset characteristics. The y-axis shows the
percentage of APKs exhibiting a given feature, whereas the x-axis represents the
time in years. In subplot (a) we see the ratio of APKs in which we detected any
cryptographic API. Subplot (b) shows APKs for which we detect any third-party
package. These are the main artifacts of increasing obfuscation. Subplots (c), (d)
document the usage of AES vs. DES in benign, and malicious samples respectively.
AES has been the most prevailing cipher suite in benign applications since 2012.
On the contrary, DES was more popular in malware in previous years, only in
2015 being outrun by AES [18].

largest available dataset of Android applications, containing more than 15 million
of APKs. We sampled 302 039 benign applications and 301 898 malicious appli-
cations from Androzoo released in the years 2012-2020. We strived for uniform
distribution of samples in the studied timeline. Yet, for years 2018 and 2020 we
could only collect a limited number of malicious samples – 19 305 and 10 039,
respectively. To speed up the computation, we only gathered APKs smaller
than 20MB (approximately 89% of malicious APKs in the Androzoo fulfill this
criterion).

To accurately discriminate malicious files, we consider an APK as malicious
if it was flagged malicious by at least five antivirus scanners from the VirusTotal
service9, which should reliably eliminate benign files deemed malicious, as reported
by Salem [37]. Our samples are predominantly originating from 3 distinct sources:
Google Play (60%), Anzhi (19%), and Appchina (13%). Note that the samples
were deduplicated on a per-market basis [1] to avoid over-counting.

6.2 Evaluator and post-processing

Once the overall JSON report for all APKs in the dataset is acquired according to
the pipeline described in Section 5, we post-process the results by automatically
generating CSV files containing usage statistics and the related plots for all
categories (and their sub-categories) described in Section 3.1. Apart from that,
useful general information about the nature of the dataset is provided in the

9 virustotal.com. The number of VirusTotal positive flags is already contained in the
Androzoo dataset.

virustotal.com

Explaining the use of Cryptographic API in Android Malware 13

report. The resulting data serves as input for the pipeline of a cryptographic
learning model.

6.3 System deployment

The parallel processing of all 604 thousand samples took 16 days on 42 cores
of Intel Xeon X7560, and each core consumed approximately 1.6GB of RAM.
That is the equivalent of processing 7 thousand APKs per 24 hours on a single
CPU with 4 cores and 16 GB of RAM, making the system well scalable. The
subsequent post-processing of the JSON record to the form of the cryptography
usage report takes 5 minutes on a regular laptop with 4 cores.

6.4 General API Distribution

Application Obfuscation The first interesting trend of this study is a decreas-
ing ratio of malicious applications for which we detect usage of cryptographic
API, as depicted in Figure 1a. However, such a ratio is not visible for benign
applications. We conjecture that this drop does not represent a genuine decrease
in usage of cryptographic functionality in time but rather a consequence of an
increasing ratio of obfuscated malicious applications. To confirm this hypothesis,
we randomly sampled 4444 malicious applications from 2018-2020 that allegedly
contained no cryptographic API or third-party libraries. We dissected them using
commercial dynamic analysis tool apklab10 and searched for clues of obfuscation.
We identified that 98% applications use some form of Android packer, with jiagu

being the most popular. Each packed application also uses reflection API and
dynamic library loading, which prevent static analysis from registering crypto-
graphic API call sites. We also report that 83% of applications use some form
of encryption API (AES being the most prevalent, followed by RSA), often to
decrypt application resources. Such reduced prevalence of crypto API constitutes
a limitation of our study, further discussed in Section 8.

Third-party Packages and Crypto Libraries Another closely related trend
is the dropping ratio of third-party packages captured by LiteRadar in malicious
applications. Before 2018, we documented a high ratio of malware employing third-
party packages (86%). Starting with 2018, this ratio quickly drops as depicted in
Figure 1b. Similar to obfuscation, this drop is not evident in benign applications.
Overall, LiteRadar was able to identify at least one third-party package in
94.6% of analyzed goodware with little variance between years (see Figure 1b).
On average, 8 packages were identified in benign APKs. This underpins the
importance of robust third-party package detection. In contrast to prior work
that did not consider third-party package filtering, we discarded over 4 million
third-party packages with at least 44 thousand unique package names from the
analysis.

10 Kindly provided by Avast, available at http://apklab.io.

http://apklab.io

14 A. Janovsky et al.

3rd-party cryptographic libraries

Java

whispersystems/curve25519

guardianproject/netcipher

springframework/security/crypto

gnu/crypto

apache/shiro/crypto

rsa/crypto

keyczar

jasypt

googlecode/gwt/crypto

sqlcipher

spongycastle

bouncycastle

facebook/crypt

native

crypto-algorithms

libgcrypt

monocypher

PolarSSL

tint-AES-C

xxHash

libsodium

openssl

libressl

wolfssl

Table 1: List of 23 third-party cryptographic libraries that were searched in each of
the studied samples. The Java libraries were identified using the LiteRadar tool,
whereas the native libraries were matched as case-insensitive regular expressions
inside the import statements ReLinker.loadLibrary, System.loadLibrary,
Native.loadLibrary from the decompiled source code.

Apart from Android API, cryptographic functions can also be delivered
by third-party libraries, typically adopted to integrate functionality missing in
system-based libraries. To our best knowledge, no curated list of third-party
cryptographic libraries for Android exists. We manually selected 13 Java and
10 native candidate libraries to be searched for. These candidates were found
through the Google search engine and in popular databases [5], and their fit was
confirmed by manual inspection. Although this process is inherently incomplete,
and some libraries could have been missed out, we argue that this is not a
practical limitation since the most prevalent libraries were unlikely to be missed,
and even these are rarely used. The full list of third-party cryptographic libraries
searched in the samples can be found in Table 1.

We identified only 796 benign and 198 malicious applications that import
third-party cryptographic libraries. Of the studied libraries, sqlcipher was most

Explaining the use of Cryptographic API in Android Malware 15

popular in goodware (found in 622 samples), and keyczar was most popular in
malware (found in 124 samples). The ratio of these applications has been stable
throughout the studied timeline. As for the native libraries, not a single call to a
native cryptographic library was detected in the malicious dataset, and merely
91 imports of OpenSSL occurred in the benign dataset.

From these results, it is possible to observe that third-party cryptographic
libraries are not widely used in Android applications. This aspect demonstrates
that attackers often resort to standard crypto functionalities provided by system
libraries (that can use various backends, e.g., BouncyCastle).

Crypto API in Goodware and Malware
We now describe the general prevalence of cryptographic API in the dataset

presented in Section 6.1 by showing the differences between malicious and benign
applications and comparing our results with two studies conducted on benign
datasets. For this comparison, we employed: (i) A dataset collected in 2012 as
a part of the study CryptoLint [11] that we refer to as CryptoLint-B12; (ii) A
dataset collected in 2016 as a part of Binsight study [31] that we refer to as
Binsight-B16. To avoid temporal data drift, we cast four subsets of our dataset:
Androzoo-B12, Androzoo-M12, Androzoo-B16, and Androzoo-M16, limited to
malicious (M), and benign (B) samples from years 2012 (12), and 2016 (16). As
explained in Section 3, our goal is to analyze only cryptographic APIs contained in
user-defined code. From this respect, both [11,31] employ weaker methodologies to
filter third-party libraries, relying on whitelisting and package names. Conversely,
our approach of LiteRadar filtering captures the code written by the application
authors more reliably. The numbers drawn from the Androzoo datasets serve as
conservative estimates, with the real number of cryptographic API call sites even
higher. The overall comparison with benign datasets is depicted in Table 2 (also
reported in [18]). It can be seen that the malicious datasets have a dramatically
higher density of cryptographic API call sites than their benign counterparts.

Dataset #APKs #User-def. call sites #User-def. call sites/10k samples

CryptoLint-B12 145 095 20 967 1445
BinSight-B16 115 683 78 163 7006
Androzoo-B12 39 838 81 698 20 507
Androzoo-B16 37 493 124 705 33 260
Androzoo-M12 39 767 125 225 31 489
Androzoo-M16 39 325 208 625 53 051

Table 2: Comparison of cryptographic API spread in benign vs. malicious datasets.
The last column normalizes by the size of the datasets, allowing for direct
comparison [18].

CryptoLint-Androzoo Comparison. The CryptoLint-B12 dataset resulted
from scanning 145 095 samples for the presence of cryptographic API (and

16 A. Janovsky et al.

Dataset AES DES 3DES RC4 Blowfish Unknown

CryptoLint-B12 58.9% 19.0% 8.8% 0.4% 1.9% 10.9%
BinSight-B16 64.4% 14.3% 1.1% 2.1% 0.9% 17.2%
Androzoo-B12 52.4% 16.9% 3.8% 0% 0.0% 26.8%
Androzoo-B16 59.0% 12.2% 2.0% 0.1% 0.0% 26.8%
Androzoo-M12 12.1% 56.0% 0.9% 0.0% 0.0% 31.0%
Androzoo-M16 45.1% 22.8% 2.1% 0.0% 0.0% 30.0%

Table 3: Distribution of symmetric ciphers in benign and malicious datasets with
AES dominating all but Androzoo-M12 [18].

its misuse). The study concluded that 15 134 (10.4%) of APKs contain some
cryptographic call sites. However, the subsequent BinSight study attributed
79.5% of these call sites to the ignored third-party packages, showing that the
original CryptoLint study suffered from overcounting.

In contrast, we report that 27.4% of Androzoo-B12 contains cryptographic
API call sites and nearly twice as much malware from Androzoo-M12 (53.1%).
This highlights the extensive use of cryptographic API in malicious applications
compared to the benign landscape. A closer examination of symmetric ciphers in
Table 3 (also reported in [18])reveals considerable differences between malicious
and benign datasets. AES dominates benign datasets with 58.9% in CryptoLint-
B12 and 52.4% in Andozoo-B12. The situation is strikingly different in the
malicious dataset. In Androzoo-M12, the most popular primitive is DES with
56% of call sites, followed by AES (12.1%) and 3DES (0.9%). We provide a
more in-depth comparison of individual ciphers and their modes of operation in
Appendix A.

BinSight-Androzoo Comparison. The BinSight paper aimed to answer
what proportion of cryptographic API misuse can be attributed to third-party
packages. The authors identified 638 distinct third-party packages in 115 683
unique samples in BinSight-B16, relying on the package name as an identifier.
The authors attributed at least 90.7% of the call sites to third-party packages,
underlying the need for their robust detection. Even after we discarded 9 870
third-party packages from Androzoo-M16, the malicious dataset still contains
much more cryptographic API in the user-authored codebase. Again, the relations
between Androzoo-M16 and BinSight-B16 are depicted in Table 2. Interestingly,
in 2016, AES was dominant in Androzoo-M16 as well with 45.1% of call sites,
followed by DES (22.8%). We depict the time evolution of AES vs. DES in
Androzoo dataset in Figure 1 (also reported in [18]), showing that it was only in
2015 when AES outran DES in malicious applications.

6.5 Crypto API Categories in Malware

Apart from the comparison to benign applications, we also report a broad view
of the distribution of cryptographic API in malicious applications, concentrating

Explaining the use of Cryptographic API in Android Malware 17

on the years 2012-2018, for which we can rely on a set of representative samples
not clouded with high ratios of obfuscated applications.

Table 4 (also reported in [18]) illustrates that the majority of call sites from
this period can be attributed to hash functions (66%) and symmetric encryption
(26%), which leaves the rest of the categories rarely used. Nevertheless, we
comment on our findings in all categories, observing the time evolution trends
and showing the most prevailing primitives. We could not attribute 21% of the
identified constructors to the exact cryptographic primitive (partial obfuscation)
during our experiments. We still manage to pinpoint their presence and category,
as the system-based API calls are challenging to obfuscate entirely.

Hash Functions. The hash functions are by far the most popular category
of cryptographic API in malicious applications, as they are present in 40% of all
studied APKs and responsible for 424 858 call sites in our dataset. Interestingly,
the majority of the call sites resort to primitives MD5 or SHA-1 that were already
shown to be broken [43,41]. Specifically, MD5 can be attributed to more than 80%
of these call sites and does not lose any popularity in time. This may suggest that
MD5 is either not meant to provide secure integrity protection for the authors or
that the developers are unaware of its weakness. The time evolution of SHA-1 and
SHA-256 points to the former case. Indeed, the overall dominant SHA-1 (almost
16% of call sites) is gradually decreasing over time in favor of the more secure
SHA-256 (3% overall). In 2018, SHA-256 was present in more APKs (708) than
SHA-1 (528). This phenomenon can mean that, when secure integrity protection
is needed, more secure SHA-256 is nowadays being selected instead of SHA-1.
Still, MD5 is preferred by malware creators for other use cases. Apart from the
hash functions mentioned above, only SHA-512 and SHA-384 are represented in
the dataset, but these are responsible for less than 1000 call sites in total.

Symmetric Encryption. A large portion of the symmetric encryption API
landscape was already described in Section 6.4, but some important aspects
were yet omitted. Overall, our dataset contains 165 994 symmetric encryption
call sites distributed in approximately 20% of APKs. A large portion of the call
sites (26%) is obfuscated. Besides AES and DES, only 3DES is used in more
than 1000 APKs. We also report that the concept of password-based encryption
is applied merely in 837 APKs. A closer look at the encryption modes offers
an interesting perspective. Our observations confirm that the authors favor the
default constructors ("AES" and "DES") compared to constructors that specify
encryption mode and padding (e.g., "AES/CBC/PKCS5PADDING"). The default
constructors fall back into the ECB mode with PKCS#7 padding, which is
(under most circumstances) considered insecure [30].

Public-key Encryption. The only asymmetric encryption scheme appearing
in the Android API is RSA. The RSA encryption occurs in approximately 1.55%
of all APKs in our dataset. Until 2013, RSA appeared very rarely, but then it
peaked within two years at almost 1 800 APKs in 2015.

Digital Signature Algorithms. Surprisingly, digital signature algorithms
occupy 4.5% of the malicious APKs and are present in 17 505 call sites. Con-
sidering possible applications of digital signature primitives in malware, this

18 A. Janovsky et al.

Category #call sites %obfusc. %APK

Hash functions 424 858 16.8% 39.7%
Symmetric enc. 165 994 25.9% 19.4%
Public-key enc. 13 262 25.9% 1.5%
Digital sig. alg. 17 505 81.4% 4.5%
MAC 11 661 46.4% 3.0%
PRNGs 10 381 6.6% 2.9%
Key agreement 87 29.9% 0%

Sum 646 018 21.5% 44.6%

Table 4: Popularity distribution of cryptographic API categories. The ratio of
APKs for symmetric encryption and RSA is approximate since one cannot differen-
tiate the obfuscated constructors of these two categories. Note that approximately
1% of APKs contain cryptographic API outside of these categories [18].

constitutes a rather large number. Despite the highest obfuscation rate among
categories (81.43%), the SHA1withRSA primitive is responsible for almost 80% of
the unobfuscated call sites. As in the case of the hash functions, SHA256withRSA
is on the rise in time, first appearing in 2015 and steadily increasing the fraction
of APKs it appears in ever since. Still, in 2018 it is less than four times probable
to appear compared to SHA1withRSA.

While multiple schemes supporting elliptic curves over RSA or DSA are
offered in the API, these are explicitly specified only in 19 APKs in total, with
the first use appearing in 2014.

MAC Algorithms. The situation with MAC algorithms is similar to that
of digital signature algorithms. The MAC systems are responsible for 11 661 call
sites and are present in 3% of APKs. Still, a large portion (46.4%) of the call
sites are obfuscated. Nevertheless, only two functions are called in more than 1%
of the call sites – HMACSHA1 and HMACSHA256. The former is heavily dominant
throughout the studied timeline, being responsible for 70% of the MAC call sites.

PRNGs. The functionality of PRNGs is utilized in nearly 3% of the APKs,
being responsible for 10 381 call sites. A relatively small fraction of the call sites
(6.6%) are obfuscated, and virtually all unobfuscated call sites (over 90%) can be
attributed to SHA1PRNG.

Key Agreement Protocols. The key agreement API’s functionality consists
purely of the Diffie-Hellman protocol (DH) for key exchange. Concerning the
DH protocol parameters, we can only differentiate between the use of DH over
finite fields or elliptic curves. The key agreement API appears only in 53 APKs
over the nine years, occupying 87 call sites in total. 36 of the APKs use elliptic
curves, whereas 20 APKs use obfuscated calls. Interestingly, only a single APK
was detected to be explicitly using DH over finite fields. The dominant use of
elliptic curves over finite fields is in contrast with the situation in digital signature
algorithms.

Worth noting, we did not thoroughly explore how cryptographic primitives
were employed in the context of the applications (e.g., to send SMS, encrypt data,

Explaining the use of Cryptographic API in Android Malware 19

et cetera). This analysis is extremely complex due to the variety of application
contexts, and it is hardly feasible with static analysis. However, to give readers
possible directions about the motivations for using cryptography in malware, we
manually inspected a small subset of samples during our study. For the categories
defined in Section 3.1 we documented the following use-cases: (i) Hash functions
are generally used to fingerprint the attributes of a device (IMEI, Android version,
etc.), to hash whole file or string, or to construct home-brew MACs or signature
primitives; (ii) Public-key encryption was witnessed to provide hybrid encryption
or to construct digital signature algorithms from its basic blocks; (iii) Symmetric
encryption is used to encrypt files, as well as strings, and to obfuscate expressions
directly in the source code. We also witnessed the use of PRNG to generate
random keys (often with static seeds) or to provide nonces for more complex
scenarios; (iv) Both key agreement protocols and digital signature algorithms
were found to empower more complex network protocols, e.g., SASL (Simple
Authentication and Security Layer [17]); (v) We report no surprising use-cases
for MAC primitives that serve their original purpose of data authentication.

7 MACHINE LEARNING AND CRYPTOGRAPHIC
API

0 0.01 0.02 0.03 0.04

Number of MD5 constructors

Number of hash function imports

Number of PRNG imports

Number of classes that import hash functions

Number of cryptographic key imports

Sqrt. of total number of unique crypto. imports

Sqrt. of total number of crypto. imports

Number of DES cipher constructor imports

Number of PRNG constructors

Number of digital signature imports

0.038

0.015

0.015

0.013

0.01

0.01

0.008

0.007

0.007

0.007

|SHAP value| (effect on model output)

Fig. 2: A representation of 10 most influential features (their |SHAP| values are
high, averaged over all samples). These represent the spots in cryptographic API
with the largest difference in usage between malicious and benign samples. The
x-axis shows the average effect on the model output in either direction. The
model outputs values from 0 (benign) to 1 (malicious) [18].

In this section, we answer RQ.2: How features related to cryptography affect the
performances of Android malware detectors? To do so, we analyze the outcome
of the experiments outlined in Section 4.

20 A. Janovsky et al.

Cryptography-Based Learning Model According to the preliminary re-
sults reported in Section 4, we trained a random forest model based only on
cryptography-related features described in the same Section and compared its
performance to R-PackDroid. To obtain a valid comparison, we replicated the ex-
perimental setup of the original R-PackDroid paper [26], considering10 thousand
applications divided 50:50 into benign/malicious and split 50:50 into training/test
sets. The proposed classifier achieved 62.4% F1 score on the malicious samples set
(see also Table 5), showing that cryptographic information is discriminant enough
to separate malicious from benign samples. Even though R-PackDroid performs
significantly better than the proposed system11, the proposed classifier was able
to correctly identify 88/180 malicious samples that were misclassified as benign
by R-PackDroid (with all 211 features). This shows that cryptographic API can
assist the classification of samples that would otherwise fly under the radar of
existing classifiers that does not include specific features related to cryptographic
usage.

Explanations of Decisions Figure 2 (also reported in [18]) shows the 10
most influential features of the cryptographic-API classifier, based on the SHAP
values calculated for the whole dataset (i.e., global explanations) according to the
methodology described in Section 4. Model outputs are mapped as follows: values
range from 0 (benign) to 1 (malicious), and the expected value of the model on a
balanced dataset is hence 0.5. The SHAP value of a feature thus represents a
deviation from this expected value after inspecting a particular feature.

It is rather interesting to see that the usage of certain hashing functions
is discriminative w.r.t. maliciousness of the samples. More specifically, weak
hash functions (MD5) are especially used in malicious samples (as also reported
by the analysis in Section 6.4), and they constitute an important indicator of
maliciousness. Additionally, the classifier is also sensitive to the general number
of imported cryptographic functions. An increasing number of imported functions
lead to an increasing suspicion of maliciousness. We can thus conclude that the
statistical analysis reported in the previous Section is confirmed by the analysis
of explanations provided by Android malware classifiers.

Concerning the local explanation, we present an example related to the mal-
ware samples with MD5 hash e1001da40929df64443f6d4037aa3a9f. VirusTotal
classifies this sample as a riskware of type SMSpay. By extracting the local
SHAP values (Figure 3, also reported in [18]), it is possible to see the significant
importance of a DES encryption that steers the classifiers’ decision towards mali-
ciousness. Driven by this explanation, we manually disassembled the sample and
looked for the usage of DES-related cryptographic API. We found that, in this
case, DES is used to encrypt sensitive information, such as the phone device id,
which is then subsequently exfiltrated to a remote server. This detail is especially
useful to attract the attention of the analyst toward malicious operations carried

11 Remember that our goal was not to build a better classifier but to show that it
is possible to distinguish between malicious and benign Android applications by
resorting to their cryptographic API usage only.

Explaining the use of Cryptographic API in Android Malware 21

out by the sample. Also, note that this sample employs name obfuscation, and
the required effort to carry out a similar analysis without such guidance would be
higher. Explanations can thus provide further insights into the malicious behavior
of malware samples, confirming once again that effective threat analysis requires
the usage of multiple different tools.

0.5 0.6 0.7 0.8 0.9 1.0

Model output

180 less important features

Number of secretkeyfactory class imports

Number of PRNG imports

Number of generateSecret() call sites

Number of DES generated keys

Number of Cipher class imports

Number of DES cipher constructors

Number of DES key constructor imports

Number of secureRandom(generateSecret()) call sites

Number of DES/CBC/PKCS5Padding constructors

180 less important features

Number of secretkeyfactory class imports

Number of PRNG imports

Number of generateSecret() call sites

Number of DES generated keys

Number of Cipher class imports

Number of DES cipher constructors

Number of DES key constructor imports

Number of secureRandom(generateSecret()) call sites

Number of DES/CBC/PKCS5Padding constructors +0.09

+0.06

+0.06

+0.05

+0.03

+0.03

+0.03

+0.02

+0.02

+0.1

Fig. 3: Local impact of the 10 most influential features w.r.t the models’ prediction
on a particular sample. The shown APK is a malware sample of the SMSpay
type. It exfiltrated DES-encrypted data through SMS. Apart from the features,
the figure also depicts how the value of each feature shifts the models’ output
from a neutral score of 0.5 to the final output of 1 which labels the APK as
malware [18].

Enhancing Existing Classifier with Cryptographic API Features In the
original work, R-PackDroid achieved a 97% F1 score distinguishing between three
classes (ransomware in addition to malware/benign). Leveraging on the source
code provided by the authors, we achieved a 92.71% F1 score with R-PackDroid

on the Androzoo dataset. Thus, enhancing this classifier would be a hard task,
as it would result in a not significant performance gain. Hence, we decided to
rely on a light version of R-PackDroid that employs a reduced feature set made
up of 10 features, reducing the F1 score to 74.47% when averaged over different
10-tuples of features. We then added the cryptographic features following the
methodology reported in Section 4.

This experimental setup allowed us to better appreciate the influence of
crypto features in increasing the classifiers’ performance. Reported results show
that adding cryptographic features significantly improved both recall (+5.61%),
and precision (+4.18%) of the classifier, which in turn increases the F1 score by
+4.86%. See the summary in Table 5.

22 A. Janovsky et al.

Classifier # features F1 score

Cryptographic API 189 62.40%
RPackDroid (full) 211 92.71%

RPackDroid (limited) 10 76.47%
RPackDroid + cryptoAPI 10 + 189 81.33%

Table 5: Comparison of the performance of malware classifiers without and with
cryptographic API features. The performance metrics measure the result of
the malicious samples. Enhancing the limited RPackDroid with cryptographic
features causes a 4.18% increase in precision and 5.61% increase of recall on the
Androzoo dataset, projecting into a 4.86% F1 score increase [18].

8 DISCUSSION AND LIMITATIONS

Our main goal was to provide a comprehensive overview of the role of cryptography
in the analysis of Android applications and malware detection. The description
of the experimental results reported in Section 6.4 clearly showed that recent
malicious applications are characterized by a significant amount of obfuscation,
thus preventing the extraction of detailed information about their usage of
cryptography. We recognize that this is an inherent limitation of static analysis.
While other static techniques such as program slicing may provide additional
insights, we consider dynamic analysis as the only reliable way to cope with
dynamic code loading and other types of packing. On the other hand, it is
infeasible to analyze more than half a million of APKs with dynamic analysis
only. Hence, we support our proposed approach as providing an effective balance
between effectiveness, precision, and analysis time.

The results reported in this paper can be affected by possible biases that
can be present in the data we analyzed. In particular, we did not have control
over the contents of the Androzoo dataset. According to the indications provided
by the Androzoo authors [1], we can safely rule out the presence of possible
duplicates for applications coming from the same sources (e.g., the same stores).
We point out that the risk of finding duplicates across stores is significantly lower
for malicious applications than benign ones. Nevertheless, even if such duplicates
were found, their number should not influence a large-scale analysis.

9 RELATED WORK

Most of the research on cryptographic API in Android is mainly focused on
benign applications where the ultimate goal is to mitigate its misuse. Several
steps are needed to achieve this, and the respective works usually treat one or
two steps at a time. We can summarize these steps as follows: (i) Inferring the
rules of cryptographic API misuse; (ii) Evaluation of cryptographic API misuse;
(ii) Attribution of cryptographic API misuse; (iv) Automatic cryptographic API
repairs. The following paragraphs discuss the related research for all these steps
mentioned above.

Explaining the use of Cryptographic API in Android Malware 23

Inferring Rules of Cryptographic API Misuse. In the area of inferring
the rules of cryptographic API misuse, the goal is to create a list of specifications
for developers and researchers that imply the insecure use of cryptography. Such
rules can be crafted manually as done in [11,8,39]. However, this approach does
not scale well, leading to the works [33,13] that attempt to infer these rules from
git commits, conjecturing that newly introduced commits typically eliminate
security vulnerabilities from the code. Surprisingly, Paletov et al. [33] reported
success with this approach, whereas chronologically later work [13] commends
against the initial assumption.

Evaluation of Cryptographic API Misuse. After having a set of rules
that suggest security violations at hand, it is vital to explore these violations
in the Android applications market. While more powerful dynamic analysis is
employed in [8,39] to show that more than half of the examined applications
violate the static set of rules, the application dataset is relatively small (size
< 100). On the contrary, the static analysis approach used by Egele et al. in [11]
allowed examining a large dataset of 145 thousand benign applications to reveal
that 10.4% of them uses some form of cryptography. 88% of such applications
were found to violate some rules of secure cryptography usage. These results
were confirmed by a later study [31] that gathered a new dataset of 109 thousand
APKs that contain at least one cryptographic API call and showed the analogical
proportion of insecure applications. Static rules were substituted by a more
sophisticated definition language in [19] where 10 000 Android applications were
analyzed and misuses detected in over 95% of cases.

Some of the solutions above are impractical to run against large projects
due to many false positives. This is treated by CryptoGuard [36] that prunes
the alerts to achieve 98% precision and is successfully run against real-world
projects. As of early 2022, an open-source project named CRYLOGGER [34] can well
complement CryptoGuard, as it is based on dynamic analysis and was tested on a
sufficiently large dataset (approx. 1800 applications). In 2021, the first systematic
evaluation study [2] was published that allows measuring the quality of such
detectors and reveals many flaws in their design or implementation.

Concentrating on the TLS protocol, this work from 2012 [12] analyzed 13
thousand Android applications to reveal inadequate TLS usage in 8% of cases. The
authors also managed to launch 41 MiTM attacks against selected applications.
Iterating on this effort, another paper [32] studied Network Security Configuration
files12 in Android. The authors revealed that 88% of applications employing
custom settings downgrade the security compared to the default configuration.
Also, the authors penetrated Google Play safeguards that are supposed to protect
from publishing applications vulnerable to MiTM.

Attribution of Cryptographic API Misuse. Reliable third-party package
detection is central for attribution of misuse. This problem has been addressed,
e.g., in [42,24,4,4] where matching algorithms were proposed to reliably detect
third-party libraries. As already discussed, a systematic review [44] then compared
these detectors from various perspectives confirming that LibRadar is superior

12 developer.android.com/training/articles/security-config

developer.android.com/training/articles/security-config

24 A. Janovsky et al.

to others when used for large-scale analysis due to result quality comparable
with the most precise tools, yet running much faster.

Automatic Cryptographic API Repairs. More distant to our research
are papers that concentrated on automatic cryptographic API misuse repairs.
From this area of research, we refer the reader to [23,45].

Study of Cryptography in Android Malware. We point out that all the
aforementioned research results on the Android platform did not focus on the
usage of cryptographic API in malicious applications or in its comparison to the
benign landscape. The work presented in this paper aims to fill this knowledge
gap.

10 CONCLUSIONS AND FUTURE WORK

The main motivation behind this research work is the qualitative observation of
the increased use of cryptographic APIs in Android malware. Cryptography is
used in various malware modules such as external communication, file encryption,
etc. Moreover, cryptography is also employed to obfuscate the malware content
and behavior.

We thus performed a quantitative evaluation based on collecting a large
number of malware samples covering the past decade. We designed a system based
on the static analysis of Android applications to assess the use of cryptographic
APIs and computing the related statistical measures. The results of this first
phase provided a clear picture of the evolution in the use of cryptographic APIs
in Android malware and the difference between goodware and malware in the
use of cryptographic APIs.

To get more quantitative information, we trained machine learning classifiers
to discriminate between goodware and malware according to the statistical
measures on cryptographic APIs computed in the first phase. Thus, we could
assess the extent to which features related to the use of cryptographic APIs
contribute to the discrimination between goodware and malware. Then, we also
ranked the features according to the explanation of their influence in the final
decision of the classifier.

The result of this analysis is twofold: on the one hand, the developed tool
allows a deeper understanding of the internals of a malware sample. On the other
hand, we showed that the highest-ranked features could be used to improve the
classification performance of malware detectors. This is a clear advance with
respect to the state of the art, as cryptographic features until now have been
neglected in the design of Android malware detectors.

Reported results have been obtained through the analysis of 603 937 applica-
tions and the extraction of over 1 million call sites. The most prominent facts
can be summarised as follows:

1. Use of weak hash functions. Most malicious applications featuring crypto-
graphic routines resorted to weak MD5 hash functions.

Explaining the use of Cryptographic API in Android Malware 25

2. Late transition from DES to AES. In the symmetric cipher category, malware
authors switched from weak DES to modern AES only in 2015, while AES
was the most popular cipher in benign samples already in 2012.

3. Very limited use of third-party cryptographic libraries. Android application
authors favor using system-based libraries to deliver cryptographic function-
ality.

4. Contrast between malicious and benign usage of cryptography. Our study
shows that cryptographic API is generally more frequent in malware than in
benign samples (in relative measures).

The results in this paper open the door to several follow-up research projects.
On the one hand, malware samples could be clustered into families according to
their usage of cryptography. On the other hand, it would also be of interest to
understand for which main purpose specific crypto-routines have been included,
to better understand and profile the characteristics of malware authors.

Finally, as the results of this work are entirely based on static analysis, it
could be complemented by dynamic analysis to check if our findings also hold for
packed and obfuscated applications.

ACKNOWLEDGEMENTS

Davide Maiorca was supported by the project PON AIM Research and Innovation
2014–2020 - Attraction and International Mobility, funded by the Italian Ministry
of Education, University and Research; and by the European cybersecurity pilot
CyberSec4Europe. Giorgio Giacinto was supported by Fondazione di Sardegna
under the project “TrustML: Towards Machine Learning that Humans Can
Trust”, CUP: F73C22001320007. Vashek Matyas was supported by Czech Science
Foundation project GA20-03426S. Adam Janovsky was supported by Invasys
company. We are grateful to Jonas Konecny who ran the initial machine-learning
experiments. We also thank Avast for providing the dynamic-analysis tool apklab.
io.

References

1. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: Collecting millions
of Android apps for the research community. In: Proc. of MSR ’16. pp. 468–471.
ACM (2016)

2. Ami, A.S., Cooper, N., Kafle, K., Moran, K., Poshyvanyk, D., Nadkarni, A.: Why
Crypto-detectors Fail: A Systematic Evaluation of Cryptographic Misuse Detection
Techniques. arXiv:2107.07065 [cs] (Aug 2021)

3. Anthony, D., Geoffroy, G.: Androguard (2012), https://github.com/androguard/
androguard, accessed on August 4, 2019

4. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: Proc. of CCS ’16. pp. 356–367. ACM (2016)

5. Bauer, V.: Android Arsenal (2014), https://android-arsenal.com, June 5, 2020

apklab.io
apklab.io
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://android-arsenal.com

26 A. Janovsky et al.

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal
of CRYPTOLOGY 4(1), 3–72 (1991)

7. BusinessOfApps: Android statistics. http://businessofapps.com/data/

android-statistics (2022), https://www.businessofapps.com/data/

android-statistics/
8. Chatzikonstantinou, A., Ntantogian, C., Karopoulos, G., Xenakis, C.: Evaluation

of Cryptography Usage in Android Applications. In: Proc. of EAI BCT ’16. pp.
83–90. ACM (2016)

9. Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: Stormdroid: A streaminglized machine
learning-based system for detecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security. pp. 377–388.
ASIA CCS ’16, ACM, New York, NY, USA (2016)

10. Daniel, A., Michael, S., Malte, H., Hugo, G., Rieck, K.: Drebin: Efficient and
explainable detection of android malware in your pocket. In: Proceedings 2014
Network and Distributed System Security Symposium. pp. 23–26. The Internet
Society, San Diego, CA (2014)

11. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in android applications. In: Proc. of CCS’13. pp. 73–84. ACM
(2013)

12. Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why eve and mallory love android: An analysis of android SSL (in)security. In:
Proc. of CCS ’12. pp. 50–61. ACM (2012)

13. Gao, J., Kong, P., Li, L., Bissyande, T.F., Klein, J.: Negative Results on Mining
Crypto-API Usage Rules in Android Apps. In: Proc. of MSR ’19. pp. 388–398.
IEEE (2019)

14. Google: Android Cryptography API Guide (2020), https://developer.android.
com/guide/topics/security/cryptography, accessed on March 4, 2020

15. Google, i.: Conscrypt - a java security provider (2013), https://github.com/

google/conscrypt, accessed on June 5, 2020
16. Hoffmann, J., Rytilahti, T., Maiorca, D., Winandy, M., Giacinto, G., Holz, T.:

Evaluating analysis tools for android apps: Status quo and robustness against
obfuscation. In: Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy. pp. 139–141. Association for Computing Machinery, New
York, NY, USA (2016)

17. Isode Limited, OpenLDAP Foundation: RFC 4422 - simple authentication and
security layer (sasl). http://tools.ietf.org/html/rfc4422 (2006), March 2, 2022

18. Janovsky., A., Maiorca., D., Macko., D., Matyas., V., Giacinto., G.: A longitudinal
study of cryptographic api: A decade of android malware. In: Proceedings of the
19th International Conference on Security and Cryptography - SECRYPT,. pp.
121–133. INSTICC, SciTePress (2022). https://doi.org/10.5220/0011265300003283

19. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: An Extensible
Approach to Validating the Correct Usage of Cryptographic APIs. In: Proc. of
ECOOP ’18. pp. 10:1–10:27. LIPIcs vol. 109, LZI (2018)

20. Kursa, M.B., Rudnicki, W.R., et al.: Feature selection with the boruta package. J
Stat Softw 36(11), 1–13 (2010)

21. Legion of the Bouncy Castle Inc.: The Legion of the Bouncy Castle. https://www.
bouncycastle.org/java.html (2020), accessed on April 6, 2020

22. Lundberg, S.M., Lee, S.I.: A unified approach to interpret-
ing model predictions. In: Proc. of NIPS ’17, pp. 4765–4774.
Curran Associates, Inc. (2017), http://papers.nips.cc/paper/

7062-a-unified-approach-to-interpreting-model-predictions.pdf

http://businessofapps.com/data/android-statistics
http://businessofapps.com/data/android-statistics
https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/android-statistics/
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://github.com/google/conscrypt
https://github.com/google/conscrypt
http://tools.ietf.org/html/rfc4422
https://doi.org/10.5220/0011265300003283
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

Explaining the use of Cryptographic API in Android Malware 27

23. Ma, S., Lo, D., Li, T., Deng, R.H.: CDRep: Automatic Repair of Cryptographic
Misuses in Android Applications. In: Proc. of ASIACCS ’16. pp. 711–722. ACM,
Xi’an, China (2016)

24. Ma, Z., Wang, H., Guo, Y., Chen, X.: LibRadar: Fast and accurate detection of
third-party libraries in Android apps. In: Proc. of ICSE ’16. pp. 653–656. ACM,
Austin, Texas (2016)

25. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: An
extended insight into the obfuscation effects on android malware. Computers &
Security 51(C), 16–31 (Jun 2015)

26. Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C.A., Martinelli, F.: R-PackDroid:
API package-based characterization and detection of mobile ransomware. In: Proc.
of SAC ’17. pp. 1718–1723. ACM (2017)

27. McAfee Labs: McAfee labs threats report, august 2019. http://mcafee.com/

enterprise/en-us/threat-center/mcafee-labs/reports.html (2019), http:

//mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html,
March 7, 2022

28. Melis, M., Maiorca, D., Biggio, B., Giacinto, G., Roli, F.: Explaining black-box
android malware detection. In: 26th European Signal Processing Conference, EU-
SIPCO 2018. pp. 524–528. IEEE, Rome, Italy (2018)

29. Melis, M., Scalas, M., Demontis, A., Maiorca, D., Biggio, B., Giacinto, G.,
Roli, F.: Do gradient-based explanations tell anything about adversarial ro-
bustness to android malware? Int. J. Mach. Learn. Cybern. 13(1), 217–232
(2022). https://doi.org/10.1007/s13042-021-01393-7, https://doi.org/10.1007/
s13042-021-01393-7

30. Menezes, A.J., Katz, J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
cryptography. CRC press (1996)

31. Muslukhov, I., Boshmaf, Y., Beznosov, K.: Source Attribution of Cryptographic
API Misuse in Android Applications. In: Proc. of ASIACCS ’18. pp. 133–146. ACM
(2018)

32. Oltrogge, M., Huaman, N., Amft, S., Acar, Y., Backes, M., Fahl, S.: Why eve and
mallory still love android: Revisiting TLS (In)Security in android applications. In:
Proc. of USENIX ’21. pp. 4347–4364. USENIX (2021)

33. Paletov, R., Tsankov, P., Raychev, V., Vechev, M.: Inferring crypto API rules from
code changes. In: Proc. of PLDI ’18. pp. 450–464. ACM (2018)

34. Piccolboni, L., Guglielmo, G.D., Carloni, L.P., Sethumadhavan, S.: CRYLOGGER:
Detecting Crypto Misuses Dynamically. In: Proc. of IEEE SP ’21. pp. 1972–1989.
IEEE (2021)

35. Platform, J.: Java Cryptography Architecture (JCA) Reference Guide
(2017), https://docs.oracle.com/javase/7/docs/technotes/guides/security/
crypto/CryptoSpec.html, accessed on March 4, 2020

36. Rahaman, S., Xiao, Y., Afrose, S., Shaon, F., Tian, K., Frantz, M., Kantarcioglu, M.,
Yao, D.D.: CryptoGuard: High Precision Detection of Cryptographic Vulnerabilities
in Massive-sized Java Projects. In: Proc. of CCS ’19. pp. 2455–2472. ACM (2019)

37. Salem, A.: Towards accurate labeling of Android apps for reliable malware detection.
arXiv preprint arXiv:2007.00464 (2020)

38. Shapley, L.: A value for n-person games. contributions to the theory of games.
Annals of mathematics studies (2) (1953)

39. Shuai, S., Guowei, D., Tao, G., Tianchang, Y., Chenjie, S.: Modelling Analysis
and Auto-detection of Cryptographic Misuse in Android Applications. In: Proc. of
DASC ’14. pp. 75–80. IEEE (2014)

http://mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
http://mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
http://mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
http://mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
https://doi.org/10.1007/s13042-021-01393-7
https://doi.org/10.1007/s13042-021-01393-7
https://doi.org/10.1007/s13042-021-01393-7
https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html

28 A. Janovsky et al.

40. skylot: Jadx decompiler (2020), https://github.com/skylot/jadx, Dec. 15, 2019

41. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first
collision for full SHA-1. In: Proc. of CRYPTO ’17. pp. 570–596. Springer (2017)

42. Wang, H., Guo, Y., Ma, Z., Chen, X.: WuKong: A scalable and accurate two-phase
approach to Android app clone detection. In: Proc. of ISSTA ’15. pp. 71–82. ACM
(2015)

43. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Proc. of
EUROCRYPT ’05. pp. 19–35. Springer (2005)

44. Zhan, X., Fan, L., Liu, T., Chen, S., Li, L., Wang, H., Xu, Y., Luo, X., Liu, Y.:
Automated third-party library detection for Android applications: are we there yet?
In: Proc. of ASE ’20. pp. 919–930. ACM (Dec 2020)

45. Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., Gu, D.: Embroidery: Patching Vulnerable
Binary Code of Fragmentized Android Devices. In: Proc. of ICSME ’17. pp. 47–57.
IEEE (2017)

Symmetric encryption scheme Androzoo-M12 CryptoLint-B12

DES* 6356 741
DES/CBC/PKCS5Padding 1203 205

AES* 924 4803
AES/CBC/PKCS5Padding 786 5878

DESede/ECB/PKCS5Padding 231 473
AES/ECB/PKCS5Padding 122 443

DESede* 107 501
DES/ECB/PKCS5Padding 93 221

DES/ECB/NoPadding 68 1151
AES/CBC/NoPadding 43 468
AES/ECB/NoPadding 41 220

AES/CBC/PKCS7Padding 37 235
AES/CFB8/NoPadding 24 104

AES/ECB/PKCS7Padding 1 155

Sum AES where freq. > 100 1832 12306
Sum DES where freq. > 100 7559 2318

Sum DESede where freq. > 100 338 974
Sum where freq. > 100 9729 15598

Table 6: Comparison of distribution of symmetric encryption schemes in malicious
vs. benign applications (Androzoo-M12 and CryptoLint-B12). The frequency of
malicious encryption schemes was normalized to fit the size of the benign dataset.
In the benign set, only the schemes with frequency > 100 were taken. There is
no prevalent malicious scheme (freq. > 100) that would not appear in the benign
dataset. The default schemes marked with * symbol fall back into the ECB mode
with PKCS7 padding.

https://github.com/skylot/jadx

Explaining the use of Cryptographic API in Android Malware 29

A Detailed comparison of symmetric ciphers between
Androzoo-M12 and CryptoLint-B12

Table 6 displays an in-depth comparison between symmetric encryption schemes
in the datasets CryptoLint-B12 and Androzoo-M12. It should be stressed that
even though the absolute number of call sites in CryptoLint-B12 is higher (15 598)
than in Androzoo-M12 (9729), this comparison is severely skewed by the overall
distribution characteristics of CryptoLint-B12 vs. Androzoo-M12. In other words,
it takes 145 thousand of benign applications (where only each fifth call originates
from user-defined codebase) to get 15 thousand calls, whereas 34 thousand of
malicious applications would provide a similar number of symmetric encryption
API call sites.

