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Abstract

The widespread use of personal mobile devices, including tablets and smartphones,
created new opportunities for collecting comprehensive data on individual move-
ments within cities while preserving their anonymity. Extensive research focused
on turning personal mobile devices into tools for measuring human presence. To
protect privacy, the data collected must be anonymous or pseudo-anonymous, lead-
ing to the preference for management data. A common approach involves analysing
probe requests, which are Wi-Fi protocol messages transmitted by mobile devices
while searching for access points. These messages contain media access control
(MAC) addresses, which used to be unique identifiers. To safeguard the privacy of
smartphone users, the major manufacturers (Google, Apple, and Microsoft) have
implemented algorithms that generate random MAC addresses, which change often
and unpredictably. This thesis focuses on the problem of fingerprinting Wi-Fi de-
vices based on analysing management messages to overcome previous methods that
relied on the MAC address and became obsolete. Detecting messages from the same
source allows counting the devices in an area, calculating their permanence, and
approximating these metrics with the ones of the humans carrying them. An open
dataset of probe requests with labelled data has been designed, built, and used to
validate the experiments. The dataset is also provided with guidelines for collecting
new data and extending it. Since the dataset contains records of individual devices,
the first step of this study was simulating the presence of multiple devices by aggre-
gating multiple records in sets. Many experiments have been conducted to enhance
the accuracy of the clustering. The proposed techniques exploit features extracted
from individual management messages and from groups of messages called bursts.
Moreover, other experiments show what happens when one or more features are
split into their components or when the logarithm of their value is used. Before
running the algorithm, a feature selection was performed and exploited to improve
the accuracy. The clustering methods considered are DBSCAN and OPTICS.
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Chapter 1

Introduction

Knowing how people move in urban areas is critical for effectively deploying and
managing many city services, such as transport mobility services, security proce-
dures during crowded public events, and designing new public spaces. Several tech-
nologies have been exploited to collect relevant data to get valuable insights on the
number of people that gather in different points of interest, the amount of time the
people spend there, and how frequently people return. Controlling the customers’
location helps to calibrate the services delivered to them. For example, a big group
of people near a bus stop might trigger demand for more buses operating on that
pathway. Sensing no people in an area for a long time might disable the public
lights and save energy. Discerning the normal flows of people from anomalies helps
promptly recognise emergencies or accidents and formulate timely responses to pre-
vent disorders. Many of these methods may be invasive to people’s privacy (e.g.,
recognition of the person by video or photo) or require people to pass through gates
(e.g., radar placed at entrances or exits), or be tied to objects that must be carried
by people specifically for tracking purposes (e.g., badges) (Singh et al., 2020). De-
vices sensing the crowding of an area should preserve privacy and be economically
and energetically sustainable. These issues can be overcome in most scenarios by
exploiting techniques that rely on analysing the messages broadcasted by devices
people carry daily, such as smartphones. Collecting signalling data allows the pro-
cessing of messages that devices send anyway, so there is no need to solicit them
to send extra data that might degrade the performance of the network. Moreover,
these messages have been designed to reach unknown receivers and do not contain
personal data. In the rest of the introduction, we depict the background of this
work, describe the main objectives of the thesis and outline the goals. The last
section of this chapter shows a list of publications related to this thesis.
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1.1 Motivation and Background

Crowd monitoring has become a key discipline in modern urban management. In
an increasingly interconnected world, effectively monitoring and managing flows
of people is crucial for ensuring safety and optimising resource allocation. Crowd
monitoring involves tracking individuals’ movement within a specific area to miti-
gate potential risks associated with overcrowding (e.g., stampedes and emergencies)
while ensuring a smooth and organised flow of people (Shu et al., 2017). It can be
applied to various contexts, like urban centres, public transportation hubs, events
or touristic attractions (Yang et al., 2023). Many technological solutions have been
developed in this field (Pintor et al., 2024).

Cameras are one of the most widely used technologies to monitor the flow of
people due to their versatility. Appropriately placing cameras makes it possible to
monitor very large areas compared to other types of sensors. On the other hand, it
is necessary to use appropriate shape-recognition algorithms to identify people and
their activities. The high accuracy of these methods made them the most popular
technologies for monitoring crowd flows (Redmon et al., 2016) (Ilyas et al., 2019)
(Sindagi and Patel, 2018). However, the privacy regulations established by many
countries limit their usage if people are recognisable.

Thus, other technologies have become more popular for some specific appli-
cations. Some examples are radars (radio detection and ranging) and lidars (light
detection and ranging), which are sensors to detect the presence of objects, includ-
ing people, and measure their distance (ranging) (Skolnik, 2008). These sensors
emit electromagnetic radiations that are reflected or absorbed by the surfaces of
objects on their way. When objects reflect this energy, it usually generates an
echo returning to the sensor. The time needed to reach the target object and
return to the sensor is proportional to the distance of the object. Nowadays,
many commercial radars and lidars implement people-counting functions. Radar
applications for detecting and identifying human targets are currently topics of
great interest in the scientific community because of the variety of use cases
they embrace (e.g., autonomous driving, search and rescue operations, intelligent
environments, etc.) (Jalalvand et al., 2019) (Zhao et al., 2019) (Günter et al.,
2020) (Shackleton et al., 2010). While radars and lidars have strengths, they
also have certain disadvantages in tracking people compared to other methods.
Radars and lidars are often more expensive to install and maintain and typically
require larger, fixed equipment. Moreover, raw data from radars and lidars can be
complex and require sophisticated algorithms for interpretation, making them less
straightforward for certain applications.

Therefore, given the widespread usage of personal mobile devices, including
tablets, smartphones, and smartwatches, novel opportunities for gathering ex-
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tensive data about people have appeared. As a result, many researchers utilised
personal mobile devices to create indicators to measure human presence. Mobile
devices produce considerable overhead traffic to connect with other devices and
access networks. Considering the Wi-Fi and Bluetooth protocols, this traffic is
usually management data emitted to transmit the requirements necessary to start
communications. Since it does not contain personal information about the device
owner, it can be used to characterise the source and track it. This approach
assumes that each person carries one personal device which emits electromagnetic
signals while its wireless interfaces (i.e., Wi-Fi interface and cellular antenna) are
active. These electromagnetic signals can be collected and processed to extract
features characterising the single device. This technique does not require users
to take any specific action, such as installing a particular application on their device.

Of course, the data collected must be anonymous or pseudo-anonymous to
protect users’ privacy, so it is usually preferred to collect management data.
Devices to collect Wi-Fi messages are called Wi-Fi sniffers and are usually very
cheap and easy to install, but their range is limited to a few dozen metres indoors
and just over 100 metres outdoors. In addition, if a tracked device leaves the
monitored zone for a long time, it may happen that the acquisitions of its packets
before and after leaving the monitored zone cannot be related. Thus, to have
effective monitoring, it is necessary to have several sensors with slightly overlapping
coverage to track the smartphones continuously and more precisely. This thesis
focuses on using Wi-Fi management messages, detailed in the next chapter, to
extract characteristics, or features, of the emitting device, create its fingerprint
and track it. Many studies demonstrated the benefits of this approach; hence, the
novelty of this thesis is the analysis of features which affect the accuracy the most.

Other technologies related to data collected by smartphones are available,
such as call data records (CDRs) (Berlingerio et al., 2013) (Janecek et al., 2015)
or data voluntarily shared by mobile device users (crowdsourcing). Yet, in the
first case, buying this data from the mobile network operators (MNOs) who own
CDRs is necessary. In contrast, in the second case, it is necessary to persuade
people to install specific apps on their smartphones and accept sharing their data
continuously. These two approaches are often not economically sustainable.

1.2 Scope of the Thesis

The focus of this work is the design of a methodology to evaluate the importance
of all the major features that could be used to track devices through Wi-Fi frame
sniffing and to compare alternative clustering algorithms. There are many chal-
lenges. First, these messages have no identifiers, so a dataset with real ground truth
is needed to validate the experiments properly. Other crucial steps are extracting
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information from the raw messages, selecting the best-performant features, choosing
the clustering algorithms, and calibrating them.

The work of this thesis can be summarised in the five phases depicted in Ta-
ble 1.1: i) Documentation, ii) Dataset realisation, iii) Scenario synthesis, iv)
Feature extraction and analysis, and v) Comparative analysis. The first phase
was concentrated in the initial six months but always accompanied the subsequent
phases. The in-depth study of the standard was crucial in identifying the research
topic, which is why Chapter 2 is dedicated to it. The literature search was also the
basis for identifying a gap in the state of the art, described in Chapter 3, which
directed our research towards creating a dataset of management messages with
ground truth to provide a tool for the validation of results and experimenting with
methods to increase the accuracy.

Our decision to publish the dataset in an open format and a framework to
replicate the process is fuelled by the need for further methods to test people
counting and tracking systems based on analysing Wi-Fi packets. Indeed, most of
the previously published works considered the number of people as the objective
for the counting system (Determe et al., 2022) (Nitti et al., 2020) (Uras et al.,
2020b). However, this is insufficient because unknown devices can be in the area
(e.g., access points), or even though the final count of devices is correct, the groups
of messages generated by the clustering algorithms might not reflect the real
classification according to the originating device. A study in which the obtained
results can be compared to the exact labelling helps to develop efficient clustering
algorithms and to identify paths for improvements. Thus, the innovation of our
dataset lies in capturing data from devices placed in isolated environments so that
one is certain of the source of each message, as described in detail in Chapter 4.

The next step is the simulation of real scenarios by fusing labelled data orig-
inating from different devices. Timestamps of management messages are modified
by adding an offset to make them contemporary. A separate file lists the MAC ad-
dresses of each device to keep track of labels. The scenarios thus realised are useful
to study which features of these messages are most useful to group them correctly
according to their sources. A detailed analysis of the methods for extracting valuable
information to characterise the sources of the messages in the dataset is presented
in Chapter 5. Various experiments, illustrated in Chapter 6, were conducted with
two different clustering algorithms to determine the optimal set of features and
input parameters. The algorithms considered are DBSCAN (density-based spatial
clustering of applications with noise) and OPTICS (ordering points to identify the
clustering structure). Their performance is compared with different sets of features
and input parameters. Some features are obtained by separating the message
fields into their components and calculating their values’ logarithms. Results are
shown as tables and discussed, highlighting the strengths and flaws of each approach.
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Phase Description
Documentation The first step in this work was an in-depth study of

the Wi-Fi standard and methods for counting and
tracking people via management messages.

Dataset realisation The lack of datasets with a real ground truth led
us to define criteria for collecting this data and a
framework to replicate the process and extend our
open source dataset.

Scenario synthesis Since each file in the dataset contains data collected
from a single device, they were merged to simulate
the presence of multiple devices contemporaneously.

Feature extraction
and analysis

Merged captures are converted into data frames con-
taining only useful information. The feature impor-
tance is calculated to discard the less influential data.

Comparative analysis Clustering methods are compared with different fea-
tures and parameters.

Table 1.1: Summary of the phases of the doctoral career

Chapter 7 discusses the experimentation conducted with the University of
Rennes 1 (France), with whom we collaborated to create a system that fingerprints
Wi-Fi signals at the physical level to characterise transmitting devices. As this is a
different topic from the rest of the thesis, an introduction and conclusions specific
to the chapter are presented. The concluding chapter, Chapter 8, summarises
the main contributions and presents some of the possible directions that could be
explored in the future.

1.3 Outline and Main Results of the Thesis

This thesis aims to define methods to evaluate the accuracy in identifying the source
of Wi-Fi devices by analysing the content of management messages. Management
messages are characterised by a time reference and the receiving power level related
to the receiver distance. These pieces of information are helpful in studying when
these devices are in a monitored area and how far they are from the sensing device,
so grouping messages with the same source allows for studying when a device
entered and exited a specific area or moved from a monitored area to another. This
makes it possible also to count the devices in an area, calculate their permanence,
and approximate these metrics with the ones of the humans carrying them.
Previous methods became obsolete because of the continuous evolution of the Wi-Fi
standard, shown in Figure 1.1, which implemented new features to preserve privacy.
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Figure 1.1: Evolution of the Wi-Fi standard

The contributions of this thesis include the design and realisation of a database
of management messages from various mobile devices and the analysis of key
elements enabling the classification and counting of users. In order to make our
work available to the community, the collected data is publicly available as an
open-source dataset, and the code to replicate the experiments can be found on
the GitHub platform. This effort addresses the frequently encountered obstacle of
the need for open and accessible databases. We used the dataset to validate the
experiments because it contains records of individual devices, so labels referring to
the originating device could be created.

The next step of this study is simulating the presence of multiple devices by
aggregating multiple records of individual devices in sets. After that, capture files
are converted into Python structures to analyse them with machine-learning tools.
So, each sample is transformed into an array of features containing the values
of the main fields of the management messages. Features are then ranked by
importance using a Random Forest algorithm to discard the less influential data in
analysing single messages and bursts, which are groups of adjacent messages where
the same randomised MAC address is kept. Details on these features are provided
in Chapter 5. Many experiments have been conducted to enhance the accuracy
of the clustering. Some of the proposed techniques show what happens when one
or more features are split into their components or when the logarithm of their
value is used. Finally, chapter 7 is an initial proof of concept for radio frequency
identification based on raw samples without decoding.

1.4 List of Pubblications

This thesis is based on the following publications:

• L. Pintor and L. Atzori. A dataset of labelled device wi-fi probe requests for
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mac address de-randomization - 2021, 2021. Open Source Dataset available
on Mendeley.

• L. Pintor and L. Atzori. A dataset of labelled device wi-fi probe requests for
mac address de-randomization. Computer Networks, 2022.

• L. Pintor and L. Atzori. Analysis of wi-fi probe requests towards information
element fingerprinting. GLOBECOM 2022 - 2022 IEEE Global Communica-
tions Conference, 2022.

• L. Pintor, M. Uras, G. Colistra, and L. Atzori. Monitoring People’s Mobility in
the Cities: A Review of Advanced Technologies. Springer Nature Switzerland,
2023.

The thesis is also based on experiments described in a paper still in submission,
whose title, authors and journal are documented below:

• L. Pintor and L. Atzori. Crowd-Monitoring through Wi-Fi Frames Fin-
gerprinting: Importance-based Feature Selection and Extensive Performance
Analysis. IEEE Transactions on Cognitive Communications and Networking.

https://data.mendeley.com/datasets/j64btzdsdy/1
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Chapter 2

IEEE 802.11 Wi-Fi

Wi-Fi, short for ”Wireless Fidelity,” is a widely used technology that allows mobile
devices that embed this technology to connect to the Internet and communicate
with each other wirelessly. It is a family of standards that have been defined by the
institute of electrical and electronics engineers (IEEE) to implement wireless local
area networks (WLANs). IEEE 802.11 uses various frequencies, including 2.4 GHz
and 5 GHz frequency bands. The 2.4-GHz band has between 11 and 14 channels,
depending on the geographical area. Channels are spaced 22 MHz apart but over-
lap, resulting in only three non-overlapping channels: 1, 6, and 11. The 5-GHz band
presents more channels and their bandwidth is variable. In the context of this thesis,
only the 2.4-GHz band is considered. Management messages are crucial for this com-
munication protocol because they are used for various purposes related to network
control and connectivity. Management messages contain characterising information
about the transmitting device and its connectivity, allowing for fingerprinting and
tracking as long as it remains in the monitored area. The activity of passively in-
tercepting data travelling through a network is called sniffing and can be performed
through Wi-Fi sniffing systems (or sniffers), which capture and inspect data packets
exchanged over Wi-Fi channels. Collecting management messages might provide in-
sights into the interaction between the humans carrying the mobile devices and the
environment (Li et al., 2020) (Tan and Gary Chan, 2021) (Vattapparamban et al.,
2016). The rest of the chapter highlights the interaction of Wi-Fi standard with
the layers of the open systems interconnection model, discusses different types of
management messages, describes how research has evolved after the spread of me-
dia access control (MAC) address randomisation algorithms, and delves into some
of the fields of probe requests and some aspects regarding how these messages are
transmitted. The last section presents how these technologies are considered from
the point of view of privacy regulations.
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2.1 The Open Systems Interconnection model

The open systems interconnection (OSI) model (ISO/IEC JTC 1, 1994) is a con-
ceptual model from the international organization for standardization (ISO) that
standardises the functions of a communication system into seven abstraction layers
that have the purpose of facilitating the interoperability and communication be-
tween systems and devices. Each layer in the OSI model performs specific functions
and interacts with adjacent layers, from the physical implementation of transmitting
bits across a communications medium to the highest level of applications. The seven
layers of the OSI model can be summarised as:

• The physical layer (or layer 1) is concerned with the transmission and reception
of raw unstructured bits over a physical medium.

• The data link layer (or layer 2) is responsible for the reliable transmission of
frames between devices over a physical medium.

• The network layer (or layer 3) manages logical addressing, routing, and data
forwarding between devices on different networks.

• The transport layer (or layer 4) ensures reliable end-to-end communication by
providing error detection, flow control, and data segmentation and reassembly.

• The session layer (or layer 5) establishes, maintains, and terminates sessions
(or connections) between applications on different devices.

• The presentation layer (or layer 6) translates data between the application
layer and the lower layers.

• The application layer (or layer 7) provides network services directly to end-
users or applications.

Although the OSI model is not strictly adhered to in practice, it remains a
valuable reference for understanding network protocols and their interactions. This
model allows communications between two parties through protocol data units
(PDUs), which assume different denominations depending on the layer, as shown
in Figure 2.1. The original data from the application layer is encapsulated with
some additional header in each layer until it reaches the physical layer. After
that, it is transmitted through physical media to another device, which can be an
intermediate or the destination node, and layer by layer, the headers are decrypted
to access the information and process it.

In this context, the physical and data-link layers are of particular interest
for the work in this thesis because the Wi-Fi standard defines one of their
protocols. Wi-Fi operates wirelessly, depicting the physical characteristics of the
communication medium, so during the last decades, it has changed many times
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Figure 2.1: Layers of the OSI model

to adapt to different frequency bands, modulation techniques, and data rates for
wireless communication. The data-link layer is also involved in the evolution of the
Wi-Fi standard since its sublayers, the logical link control (LLC) and the media
access control (MAC), manage the flow control and the access to the media. The
many versions of the Wi-Fi standard added new procedures to share the medium,
encrypt data and authenticate users, so these sublayers have also been affected.
Moreover, new security measures have been deployed to handle issues that have
emerged in the previous versions of the standard.

2.2 Management Messages

Section 9.3.3 of the last Wi-Fi standard (IEEE, 2021) defines a set of MAC
frames as sequences of components in a specific order. The messages a mobile
device constructs and decodes are determined by the functions supported by that
particular device. As shown in Figure 2.2, a MAC frame always has a frame check
sequence (FCS), a MAC header, and a variable-length frame body. While the MAC
header has a fixed structure, the frame body is variable and contains information
specific to the frame type and subtype. The key to decoding the frame body is
reading the FCS field: the first octet of this field indeed uses two bits for the
protocol, two bits for the type of frame, and four bits for the subtype of the frame.

The three frame types are control, data, and management. Each of the
frame types has several defined subtypes. The frames related to the connection
of a mobile device to an access point are all management messages, as shown
in Table 2.1. The type is coded in the third and second most significant bits of
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the FCS field, whereas the subtype is coded in the following four bits. Beacon
frames are continuously broadcasted by access points (APs) at regular intervals to
announce the presence of a Wi-Fi network. Probe requests (PRs) are transmitted
on every channel by mobile devices to request information from APs in their
proximity (Fenske et al., 2021). Probe responses are sent by APs in response
to probe requests. Authentication requests are sent by the device that wants
to join a scanned network. On reception of the authentication frame, APs
send an acknowledgement and then an authentication response. Authentication
frames aim to validate the device type, in other words, verify that the requesting
device has the necessary capabilities to join the network. Association requests
are sent by the mobile device in the association phase after the authentication
succeeds. Association responses are sent by APs in response to association requests.

According to Section 11.1.4 of the last Wi-Fi standard (IEEE, 2021), the
connection process can be started either by a mobile device (active scanning) or an
access point (passive scanning), as shown in Figure 2.3. In passive scanning, the
mobile device listens to each channel scanned for a while and returns information
on all beacon frames received. After scanning one channel, the device initiates
scanning in another until it scans all indicated channels. If among the received
beacon frames, there are some emitted by known access points, the mobile device
sends a probe response to that specific AP to connect to it. The AP answers with
an acknowledgement message.

On the contrary, in active scanning, the mobile device broadcasts probe re-
quests on every channel to discover available APs. Access points within range
respond with a probe response frame, advertising the wireless network name,
supported data rates, encryption types if required, and other 802.11 capabilities of
the AP. If multiple APs answer, the mobile device selects the most suitable one.
Whatever the type of scan, the connection procedure continues with the authen-
tication and association phases. Thus, the mobile device sends an authentication
request to the selected AP, the access point responds with an authentication reply,
the mobile device sends an association request frame to the access point, and
finally, the access point replies with an association response.

Among all these messages, probe requests are usually collected because they
are transmitted without encryption by mobile Wi-Fi devices, even in the absence
of APs, and contain useful information to identify their sources (i.e., MAC address,
supported data rate, and vendor-specific fields). Sniffing these frames requires
a Wi-Fi antenna that supports monitor mode and specific software to capture
packets. One of the main critical issues is that mobile devices usually send probe
requests in rotation in different channels to increase the probability of finding an
AP. A sniffer collects packets transmitted in the channel into which it is tuned and
partially collects those of neighbouring channels. For this reason, a good practice
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Figure 2.2: Comparison between a general frame and a management message

Type Type Subtype Subtype
B3 B2 of FCS description B7 B6 B5 B4 of FCS description

00 Management message 1000 Beacon
00 Management message 0100 Probe request
00 Management message 0101 Probe response
00 Management message 1011 Authentication
00 Management message 0000 Association request
00 Management message 0001 Association response

Table 2.1: Main frames involved in connecting a mobile device and an access point

is to use a sniffer with three antennas tuned into three non-overlapping channels.

2.3 MAC Address Randomisation

In traditional Wi-Fi communication, devices typically use a fixed source MAC
address, their factory address (Dagelić et al., 2019). This made tracking and
identifying them relatively easy in the past (Cunche, 2014). This procedure was
used to detect the presence of personal devices by observing the unique MAC
addresses in the captured traces and consequently estimate the number of people
in a given area (Di Luzio et al., 2016). However, modern devices implement
algorithms to randomise and change it frequently and unpredictably depending
on the connection status (connected to an AP or not), vendor, model, and
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Figure 2.3: Procedure to connect a mobile device to an access point.

operative system (OS) (Vanhoef et al., 2016) (Li et al., 2019). Hiding factory
MACs has become necessary because, even though this address does not contain
any personal information, it might be linked to personal information through
data cross-checking. Most modern mobile OSs contrast these privacy breaches by
avoiding transmitting unnecessary information (i.e. SSID fields are often empty),
sending probe requests less frequently, and using random MAC addresses. MAC
address randomisation algorithms might differ depending on the OS installed
in the device: a new MAC address might be assigned every time the screen is
turned off, at regular intervals, or when the user does not interact with it for a while.

Therefore, a good practice of modern algorithms for grouping probe requests
originating from the same source device is separating factory and random addresses
and processing them separately (Uras et al., 2020b). According to the IEEE 802.11
standard, the discrimination between factory and random addresses is based on
the analysis of the seventh bit of each MAC address (IEEE, 2021): i) if this bit
is set to 0, then the address is globally unique and is used as a source address by
devices that do not perform randomisation algorithms; ii) whereas, if this bit is set
to 1, then the address is locally administered, meaning that the MAC address is
configured via software. Figure 2.4 shows the structure of a MAC address, which is
composed of two parts, the organisational unique identifier (OUI) and the network
interface controller (NIC). A MAC address comprises 48 bits, or 6 octets. If the
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Figure 2.4: Structure of a MAC address.

MAC address is globally unique, the first three octets are the OUI, a code the IEEE
assigned to identify the interface manufacturer. The last three octets are the NIC,
an identifier the manufacturer assigns to its product. If a device uses its factory
MAC as its source address, then the MAC address can be considered an identifier,
as it is unique and constant. On the contrary, this is not true for random addresses
because grouping all the MAC addresses generated by a single device is not trivial.

MAC address randomisation challenges the counting algorithms that use MAC
addresses as device identifiers. This functionality led to an evolution of these kinds
of algorithms that now perform additional steps to group the messages that might
have been produced from the same source by analysing valuable characteristics
or features of the sniffed messages (Oliveira et al., 2019) (Uras et al., 2020a)
(Vega-Barbas et al., 2021). This clustering does not compromise users’ privacy
because the factory MAC cannot be reconstructed. Moreover, once the tracked
device moves away from the sniffer, it might not be linked again to probe request
streams collected previously. Most algorithms were validated by comparing the
number of probe request clusters counted by each algorithm and the ground truth
of the number of people in the observed area. This comparison has some flaws
because the number of people might differ from the number of devices. Moreover,
although this comparison demonstrates good results, individual probe requests
might not be clustered correctly.

2.4 Information Elements

Due to the widespread randomisation of MAC addresses, searching for other in-
formation that could characterise the messages transmitted by the same device is
necessary. In this thesis, we considered the components of the frame body, which
is a variable-length field of the management messages, as shown in the lower part
of Figure 2.2. This field includes the information elements (IEs), also known as
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Figure 2.5: Example of a device sending bursts of probe requests

tagged parameters or just elements, which are fundamental components of Wi-Fi
frames. Each IE is identified by a unique information-element identifier (IE ID)
and contains specific data elements. The content of an IE varies depending on its
purpose. Some examples are lists of supported rates, the transmission channel, and
transmission capabilities (e.g., the channel width, supported modulation and coding
scheme). IEs are detailed in Section 9.4.2 of the last version of the Wi-Fi standard
(IEEE, 2021). In Chapter 6 of this thesis, we demonstrate that a carefully selected
set of IEs makes it possible to create a fingerprint and thus catalogue messages
according to the device that emitted them.

2.5 Bursts of Frames

As mentioned above, several PRs are usually transmitted in close succession; these
messages can be aggregated in groups called bursts. Frames within the same burst
have an inter-time shorter than 1ms, while the distance between two bursts origi-
nating from the same device is over 1 second. The time necessary to send a complete
burst is shorter than 10ms, whereas the inter-burst time is longer than 1s (Matte
et al., 2016), as shown in Figure 2.5. Furthermore, all the frames of the same burst
have the same MAC address, while frames of different bursts usually have a differ-
ent MAC if the transmitting device performs the randomisation. The fact that the
MAC address does not change within the burst makes it easy to aggregate these
messages and calculate further metrics. In particular, the inter-timing between PRs
of the same burst can be studied, or errors in specific fields can be corrected using
the fashion or median of the values.
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2.6 Privacy Regulations

One of the reasons why interest in counting and tracking people via management
messages has grown is due to privacy constraints that limit other technologies.
Notably, in 2018, the most restrictive privacy regulation was adopted in Europe, the
general data protection regulation (GDPR) (Eur, 2018). GDPR gives individuals
greater control over their personal data and imposes strict rules on organisations
and businesses that collect, process or store it. Personal data refers to any
information that allows for direct or indirect identification of a person (e.g., a
name, an identification number, or an online identifier). GDPR also has a global
impact, as many non-EU businesses that handle EU citizens’ data must comply
with its regulations. The law strongly emphasises transparency and responsible
data handling.

However, if the identification of a person requires additional information, it
is considered as pseudonymisation. Although a factory MAC address is a unique
identifier, it is not personal data because it is tied to a device. Without knowing
the relationship between the device and its owner, it is nearly impossible to identify
a certain individual with the MAC address only. If randomisation of the MAC
is applied, the device more or less frequently changes the address it transmits
in probe requests, making it almost impossible to identify the device owner. To
completely remove any breach of privacy that might occur with the issuance of new
regulations, MAC addresses can be anonymised by using non-reversible encryption
within the sniffer itself so that this information is neither transmitted nor stored.
The experiments presented in this thesis use a public dataset in which the names
of device owners do not appear, so it was not necessary to anonymise the data.
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Chapter 3

State of Art

Several works exploit the analysis of Wi-Fi traffic to count or track people. Yet, the
randomisation of the MAC address still limits these methods. One of the papers
that pioneered in this research field is Vanhoef et al. (2016), which demonstrated
that PRs contain enough information to perform tracking, even though the MAC
address changes periodically. This work models a tracking algorithm that finger-
prints mobile devices depending on the IEs. The same authors proposed additional
metrics based on the arrival time to group frames into bursts with an incremental
learning algorithm (Matte et al., 2016). However, this work still has flaws, such
as the used dataset was collected in 2013, before MAC address randomisation was
first implemented. The dataset was indeed anonymised before the publication, but
the authors of the dataset were not the same as the paper, so the ground truth
might not be reliable.

Among the fields of PRs, the service set identifier (SSID) used to be a use-
ful source of information because, in the past, mobile devices were filling this field
with the names of their preferred network list (PNL). This vulnerability has been
exploited to fetch the provenance of the crowds and their relationships (Di Luzio
et al., 2016) (Cunche et al., 2012), to create fake access points and perform attacks
(Vanhoef et al., 2016) (Rusca et al., 2023). Nowadays, the SSID is usually blank
because it allows malicious attackers to create networks with the names of known
SSIDs and exploit this vulnerability to hijack or manipulate the traffic of unaware
users.

The last trend is based on passively collecting management messages and
clustering them with unsupervised Machine-Learning algorithms. Table 3.1
compares some methods from the literature, which mostly rely on the information
elements and other frame features stable for frames coming from the same source.
Some methods have a time window for the acquisition shorter than 1 minute (Hao
et al., 2023), (Determe et al., 2022), (Simončič et al., 2023a), while others have
longer ones that last 5 minutes (Trasberg et al., 2021) or more than 10 minutes
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Reference Method Validation compar-
ison

Average Error

Hao et al. (2023) Neural Networks Manual count 13.44%
Determe et al. (2022) Statistical estimator Count of a video-

processing algo-
rithm

12%

Trasberg et al. (2021) Dynamic regression
model

Data about sales in
shops and restau-
rants

18.4% and 6.2%

Furuya et al. (2021) Sequential algorithm Manual count 1.58%
Tan and Gary Chan
(2021)

Cost function Label of the Probe
Request

20%

Simončič et al.
(2023a)

Clustering with OP-
TICS

Manual count 4%

Uras et al. (2022) Clustering with
DBSCAN, OPTICS,
and HDBSCAN

Manual count 10%

Our method Clustering with
DBSCAN and HDB-
SCAN

Label of the Probe
Request

7.5%

Table 3.1: Comparison with related works

(Uras et al., 2022). However, methods with shorter time windows also exploit
information about the received signal strength to aggregate messages originating
from the same device. These approaches are valid in situations where the people are
waiting or staying in the same location but might not be optimal while considering
people in transit. Moreover, only some approaches (Trasberg et al., 2021) (Simončič
et al., 2023a) (Uras et al., 2022) use public open datasets (Simončič et al., 2023b)
(Mohorčič et al., 2023) (Pintor and Atzori, 2021) (London, 2019), allowing for
the reproducibility and comparison of results. Datasets with labeled samples
also enhance the validation that is no longer based on the manual count or an
alternative counting system that might be affected by errors. Summarising, two
limitations characterize these works: i) the performance is provided by applying
the algorithm on traffic traces that are not publicly available and that are difficult,
if not impossible, to reproduce; ii) an extensive analysis of the importance of the
feature to drive their selection to fingerprint has not been performed.

3.1 Counting

The simplest application for the management data is the count people, which in-
volves detecting and characterising the changes in the environment or the signals
emitted by different devices. Sensors should cover the entire region to be monitored.
The channel state information (CSI) analysis can be used to detect changes in Wi-
Fi signal features caused by user presence. Machine learning models such as neural
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networks (NNs) can be trained to correlate signal patterns with user counts (Zhang
et al., 2021) (Cheng and Chang, 2017). Other approaches detect the Wi-Fi devices
of people moving through the area and elaborate the messages they broadcast to
create a transmitter signature and distinguish individual devices from one another
(Oliveira et al., 2019) (Yang et al., 2023). The counting algorithm must consider
factors such as device mobility, signal strength, and potential fluctuations in the
number of devices connected to Wi-Fi (e.g., due to people entering or leaving the
area). Finally, the accuracy can be evaluated manually or by comparing the results
with other reliable counting methods. The technique presented in this thesis allows
labels to be assigned to all Probe Requests, so it is possible to count people by
counting the labels assigned in a given time range (Pintor and Atzori, 2022b).

3.2 Localisation

Localisation techniques are usually based on multilateration and ranging methods.
Distances are calculated through the received signal strength indicator (RSSI), a
metric to quantify the power level of the received signal from a transmitting de-
vice which has a mathematical relationship with the distance between transmitter
and receiver (Jianwu and Lu, 2009) (Luo and Hsiao, 2019). Some approaches are
based on mapping the monitored area: they generally create a database of reference
RSSI values during the training (survey phase) by manually collecting signal data
at different known locations, then, when a device is to be localised (query phase),
the RSSIs measured by that device are compared with the reference values in the
database. The system finally estimates the device location based on the closest
match or through machine-learning techniques. However, radio maps are highly
susceptible to environmental modifications and their performance drops when the
number of devices to localise increases (Qureshi et al., 2019) (Chabbar and Chami,
2017) (He and Chan, 2016). Moreover, experimental results shown in Tonggoed and
Panjan (2022) indicated that the accuracy of the proposed system is about 2.4 m,
so the authors suggest combining this approach with the data from other sensors.
Similar applications localise devices with other technologies like frequency modu-
lation (FM) (Mukhopadhyay et al., 2017), Bluetooth low energy (BLE) (Thaljaoui
et al., 2015), and Zig-Bee (Arif et al., 2018). The technique presented in this thesis
does not consider the distance of the mobile devices from the sensors because all
dataset samples were collected by keeping constant the distance between the sensor
and the sensed devices.

3.3 Tracking

Generally speaking, tracking relies on detecting, estimating and recording a succes-
sion of locations. The route of a person is stored as a series of geographic locations
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ordered over time, allowing for user profiling. Identifying the habitual paths allows
to understand common origins or destinations and points of convergence joined to
many trajectories. The main issue is privacy protection, which leads to a preference
for anonymous tracking systems such as those based on management-message anal-
ysis. Following this approach, it is necessary to distribute the sensors appropriately
because if the devices leave the monitored area for long periods, then it is no longer
possible to reconstruct the entire path. The size of each area monitored by a single
sensor depends on the sensitivity of the antenna and the presence of obstacles in
the line of sight (Determe et al., 2022). An origin-destination (OD) matrix can be
calculated if multiple sensors are associated with points of interests (POIs) (Uras
et al., 2020b) (Nitti et al., 2020) (Traunmueller et al., 2018): this matrix is a data
representation used in transportation analysis to illustrate the flow of people or
goods between different origins and destinations within a given network or region.
It presents a comprehensive snapshot of movement patterns, showing the volume of
trips or transfers between specific starting points (origins) and ending points (desti-
nations). The technique presented in this thesis can be applied to data collected by
a sensor network. By augmenting the data with information about the sensor that
collected it, it is possible to cluster all the messages generated by a mobile device,
assign it the same label and determine its path by combining the positions of the
sensors, which become the anchors of the system.

3.4 Device Fingerprinting

Fingerprinting a device involves measuring its characteristics or something related
to it, such as the signals it emits. Various pieces of information can be extracted
from management messages, but not all are equally useful to distinguish messages
from different sources (Potort̀ı et al., 2016) (Togashi et al., 2016). In the past, a
widely used technique to identify devices was to use their factory MAC addresses,
which are globally unique identifiers. However, with the spread of randomisation al-
gorithms, identifying all devices this way is no longer possible (Martin et al., 2017).
Thus, it is necessary to consider other information contained in the Wi-Fi messages,
such as IEs (Vega-Barbas et al., 2021) (Vanhoef et al., 2016) (Pintor and Atzori,
2022b), the Wi-Fi protected setup (WPS) (Fenske et al., 2021) (Martin et al., 2017),
or the sequence number and statistics related to the burst (Uras et al., 2020b). The
IE analysis approach is probably the most popular because it is entirely passive and
realises a packet signature by considering the content or size of information elements
in management messages. On the other hand, the WPS-based methods involve real-
ising fake access points so that when the device tries to connect to them, additional
information is collected to retrieve the factory MAC address, performing the de-
randomisation. These methods obviously cannot be used legally in contexts other
than academic experiments, but they have raised interest in the possible privacy
violations inherent in the Wi-Fi protocol. Experiments that rely on burst statistics



3.4. DEVICE FINGERPRINTING 31

instead produce new metrics related, for example, to the packet transmission fre-
quency and the number of packets sent in the same burst. It is possible to measure
these quantities because the packets in the same burst keep the same MAC address
and can be easily grouped. Other approaches are based on analysing Wi-Fi signals
at the physical level and will be explored in more detail in Chapter 7.
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Chapter 4

A dataset of Labelled Device
Probe Requests

Our dataset was designed to provide detailed information about the device which
had emitted the probe requests to allow the analysis of the behaviour of each model
separately. The dataset contains captures taken according to a standard procedure,
not specifically designed for using specific algorithms. However, in the next chapter,
we present one of the possible applications, namely the selection of particular parts
of each sample to improve the accuracy of a clustering system based on unsupervised
machine-learning algorithms. The need for this kind of dataset depends on the
fact that even though many probe request datasets are accessible and open-source
(Ferrara et al., 2020) (V. Barbera et al., 2013) (Robyns et al., 2017), none of
them considers devices separately. Distinguishing a device from another in an
unknown environment might be unfeasible because there are no unique identifiers:
IP addresses are not defined in probe requests, and MAC addresses might be
randomised. Additionally, not knowing the environment and the position of each
device restricts the usage of power thresholds for discriminating devices. These
aspects also highlight the need for datasets with labelled Wi-Fi probe requests
that were missing in the literature. The collection of probe requests from multiple
devices that implement the randomisation of MAC addresses is complex because
we cannot discriminate against more than one device at a time, even using power
threshold filters. The power level fluctuates depending on the distances between
the source-emitting channel frequency and the sniffer-detecting channel frequency.
Moreover, unpredictable noise and the structure of the environment might affect
this measure. Due to this fact, considering different thresholds for more than one
device might lead to errors.

In order to get labelled probe requests, a simple solution is to collect them
separately for each device and then simulate the presence of multiple devices
simultaneously by modifying the timestamp of each probe request. This method
generates synthetic captures of labelled probe requests with multiple devices.
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Having data similar to the one we can collect in real time can be helpful for
testing and training algorithms that directly count the number of people in an
area. However, our dataset is not appropriate for algorithms based on power
threshold (i.e., counting the number of devices or calculating the relative locations
of each source) because the original captures are collected in similar environmental
conditions (same distance from the sniffer) and particular power thresholds have
been already used to filter data. Our dataset might be used to achieve different
purposes related to probe request analysis. Some use cases of this dataset might
be: i) assessment of the performance of clustering algorithms; ii) training of new
ML-based algorithms to improve clustering performance; iii) analysis of other
elements such as the information elements, sequence numbers, or burst structures.
In the rest of the chapter, we present the devices used for data collection, their
configuration, the collection and filtering process, and how we used the dataset to
simulate realistic scenarios.

4.1 Sensing Devices and Configuration

The dataset was acquired with a Raspberry Pi 3 (Model B+) with three additional
Wi-Fi interfaces. The Wi-Fi interface embedded in the Raspberry does not support
the monitor mode, which is necessary to collect probe requests, so it was necessary
to use extra antennas that can be powered through the embedded USB ports of
the Raspberry. We selected three low-consumption antennas that can be directly
plugged into the Raspberry Pi to inspect three channels contemporaneously. These
antennas are the same model, Realtek RTL8188CU, and support the 2.4 GHz band-
width and various modes, including the monitor mode. The minimum signal power
that can be detected is -110 dBm. The Raspberry Pi was configured with a Rasp-
bian Buster OS where the Wireshark library was installed. The sniffing script is
written in Python language and performs the following operations: it configures the
monitor mode in all interfaces, sets them to specific channels (namely 1, 6, and 11
at the 2.4-GHz band), and starts the data acquisition. The script is available in the
public GitHub repository “WiFi-Sniffer”. The data collected from each interface
is saved in a different file. The sniffing script is composed of two parts: i) inter-
face configuration (configure interfaces.py) and ii) a sniffing sub-process launcher
(start sniffing.py). Further details are provided in the code documentation (Pintor
and Atzori, 2022a). The files in the dataset are in packet-capture (PCAP) format
and contain only probe requests from a device at a time. All packets originating
from the sniffer were removed.

https://www.wireshark.org/
https://github.com/luciapintor/WiFi-Sniffer 
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4.2 Data Collection

The dataset comprises 315 capture files and some tables to match each capture with
its source device. Since each file takes a few KB, the whole dataset weighs 1.44 MB.
A total of 22 devices were analysed: 8 were observed in an anechoic chamber and 14
in an unshielded environment. The main feature of the dataset is its subdivision by
device, which allows a more accurate analysis of the behaviour of individual devices
in different modes. Moreover, the data can be labelled to train machine learning
algorithms or verify the correct functioning of algorithms that aim to count devices
through probe requests in the presence of random MAC addresses. A complete
list of the analysed devices is provided in 4.1 (extract of devices.csv file in Pintor
and Atzori, 2021). Most of these devices use Android OS (17) and the others iOS (5).

Part of the data was collected in the anechoic chamber of the Department of
Engineering of the University of Cagliari by placing only the sniffer and a smart-
phone inside for each capture. Before the data collection, we verified that the
anechoic chamber shielded any Wi-Fi communications to ensure each file contained
probe requests from a single device. We performed a background capture with the
door closed, placing only the sniffer inside. The only captured packets were emitted
by the embedded interface of the sniffer, easily identifiable because it was using
its factory MAC address. We repeated the same experiment, keeping the door of
the anechoic chamber open. We collected probe requests from unknown devices
and management packets of the Wi-Fi Access Points of the University. After this
calibration, we sniffed a series of devices alone on three channels for 20 minutes for
each mode. The length of the captures was selected after some experimental tests
in which we observed some devices for an hour with the Wi-Fi interface switched
off. In this case, the sending of probe requests is rarer, so a group of frames is
transmitted at most every 20 minutes instead of every 3.

Modes are device settings that we classified as A, S, PA, PS, WA, and WS.
These modes can be subdivided into active-screen modes (A, PA, and WA) and
inactive-screen modes (S, PS, and WS). The device kept the screen switched on
during the whole capture in the active-screen modes by playing a video. On
the contrary, the device kept the screen on standby in inactive-screen modes.
Furthermore, power-saving modes (PA and PS) refer to captures in which the
device kept the power-saving setting active (all other captures have this setting
disabled). Finally, captures in WA and WS modes were made with the device
keeping the Wi-Fi interface switched off, whereas, in all other modes, devices
kept the Wi-Fi interface active without connecting it to any access point. Table
4.2 summarises the settings of each mode with the three aspects considered. For
example, the mode WS implies that the examined device has its screen on standby,
its Wi-Fi interface is switched off, and the power saving setting is disabled.
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Figure 4.1: Sending time of the probe requests

After analysing the data collected in the anechoic chamber, we made addi-
tional captures in other environments. The analysis of this data allowed us to
design a filtering algorithm based on power threshold for environments with a
specific setting. Any undesired Wi-Fi interface within two meters from the sniffer
must be removed, and the smartphone to analyse must be placed near the sniffer
(within 20 centimetres) to use our filtering procedure. The radius of the free space
around the sniffer was defined through experiments in which various captures
had been made with sources (smartphones and other Wi-Fi devices) at different
distances. At distances greater than 2 meters, no power peak of signal equal
to or over -60 dBm was detected, which is distant enough from the -40 dBm
threshold used for filtering. The name of each PCAP file in the dataset contains
information about the ID of the device under consideration, the timestamp of the
capture, the selected channel, and the device setting. For example, in the file
”A-ts-2021-May-21-h11-m57-s24-modeS-ch-1-th-40.pcap”, we consider the device
with ID A, the capture occurred on 21st May 2021 at 11:57, considering channel 1,
S mode (i.e., screen off, Wi-Fi on, and power-saving mode disabled), and a power
threshold of- 40dBm.
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Device
ID

Device
OS

Device OS
version

Device
vendor

Device model Anechoic
room

Random
MAC

A Android 11 Samsung Galaxy M31 YES YES
B Android 6.00.01 Xiaomi Redmi 4 YES YES
C Android 4.02.02 Samsung Galaxy S4 YES NO
D Android 6.0 Huawei ALE-L21 YES YES
E Android 10 Xiaomi Mi A2 Lite YES YES
G Android 10 Huawei P20 YES NO
H Android 7.0 Samsung Galaxy S6 NO NO
I Android 8.00.00 Samsung Galaxy S7 NO YES
J Android 8.01.00 Xiaomi Redmi 5 Plus NO YES
K Android 10 Samsung Galaxy J6 NO YES
L Android 11 Google Pixel 3A NO YES
M iOS 14.05.01 Apple XS max YES YES
N iOS 12.05.02 Apple iPhone 6 YES YES
O Android Oxygen 11 One Plus Nord NO YES
Q Android 9 Huawei P10 NO NO
R Android 9 Huawei Honor 9 NO YES
S Android 10 Xiaomi Redmi Note 7 NO YES
T Android 11 Xiaomi Redmi Note 9S NO YES
U iOS 14.6 Apple iPhone XR NO YES
V Android 11 Google Pixel 3A NO YES
W iOS 14.05.01 Apple iPhone 12 NO YES
X iOS 14.6 Apple iPhone 7 NO YES

Table 4.1: Smartphones used to produce the dataset

Mode Active screen on Wi-Fi on Power saving on
A X X
S X
PA X X X
PS X X
WA X
WS

Table 4.2: Device modes (“X” means that the relevant setting is enabled)
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4.3 Filtering

Our filtering algorithm performed additional steps in case of capture in a non-
isolated environment to simulate anechoic chamber capture conditions. The first
step of the filtering is the removal of packets originating from a list of known in-
terfaces (e.g., those of the Raspberry). Access-point MAC addresses are added to
this list next. MAC addresses from APs are easily identifiable because these devices
also send other management messages (probe response and beacon messages) with
the same MAC they use for probe requests. Later, this list is used to discard all
the packets that use one of these addresses as its source. The second filtering step
uses a particular power threshold that takes advantage of the sending pattern of
probe requests. Figure 4.1 is a plot showing the behaviour of devices with screen
active and power-saving mode off. A similar sending pattern is observed when the
power-saving mode is active and/or the screen is on standby. The letters in the
vertical axis refer to the devices in the database. Moreover, we have verified that
iOS devices transmit packets with almost the same power level in all channels in
the experimental tests in the anechoic chamber. In contrast, Android devices have
more variable power values. Android devices send a series of packets in short inter-
vals (bursts) followed by pauses of a few minutes in which nothing is transmitted.
During the burst, all packets maintain the same MAC address. Also, in the case of
some Android devices, if the screen remains active, the MAC does not change even
in different bursts. Our filtering algorithm, “SnifferFiltering”, is composed of four
parts: i) file-name grouping (merges all files of the same capture), ii) data conver-
sion in Python structures, iii) power-threshold filtering, and iv) statistics and chart
generation.

4.4 Simulation of Realistic Scenarios

Our dataset is freely available in the Mendeley repository (Pintor and Atzori, 2021)
and allows for studying the individual behaviour of different smartphones with vari-
ous settings based on display status, Wi-Fi connection, and power saving. Since the
database captures contain only data emitted from a single smartphone, we combine
multiple files to mimic realistic scenarios. Labels are preserved through external
files that record the list of MAC addresses associated with each device. No scenario
has different devices with the same MAC address. At the end of this phase, twelve
merge files are generated to contain the synthesised scenarios (identified with num-
bers from 0 to 11): the merged files from 0 to 5 contain probes of devices set in the
same modes, and other files contain probes of devices set in various modes. The
composition of the scenarios is shown in Table 4.3. Each row refers to a device mode,
and each column refers to a merged file (or scenario). Each file from the original
dataset has a device ID and a mode. The devices of the first half of scenarios have
the same setting, whereas they are shuffled in the second half. When the merged file
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Scen. 0 1 2 3 4 5 6 7 8 9 10 11
mode
A

all A, G,
M, S

B, H,
T

C, I,
O, U

D, J,
V

E, K,
Q, W

L, R,
X

mode
S

all B, H,
N, T

C, I,
O, U

D, J,
V

E, K,
Q, W

L, R,
X

A, G,
M, S

mode
PA

all C, I,
O, U

J, V E, K,
Q, W

L, R,
X

A, G,
M, S

B, H,
N, T

mode
PS

all J, V E, K,
Q, W

L, R,
X

A, G,
M, S

B, N,
T

C, I,
O, U

mode
WA

all E L, R G, S B, T I, U D, J

mode
WS

all L, R A, G B, H,
T

I, U J E, K

Table 4.3: Composition of the synthesised scenarios

contains only data from devices in the same mode, ”all” is reported. Otherwise, the
IDs of the devices in the corresponding mode are listed. We are aware that combin-
ing artificial captions collected from individual devices may not perfectly replicate
the behaviour of a group of devices located in the same area under the coverage of
a sniffer. Yet, as far as we know, the literature does not propose other methods to
label PRs according to the source device.
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Chapter 5

Extraction and Analysis of
Features for Device Fingerprinting

A feature refers to an individual, measurable property or characteristic of data.
Features can be numerical, textual, categorical, or related to images. Feature engi-
neering is the process of extracting and selecting them to improve the performance
of a machine-learning model. This involves converting into numeric formats, scaling,
normalising, and creating new features from existing ones. This way, features be-
come arrays of numbers typically between 0 and 1. Normalisation is a good practice
to ensure that high-value features do not overshadow others with lower values. A set
of samples is usually organised in a matrix (an array of arrays) and associated with
an array containing the labels corresponding to the classes if these are known. Su-
pervised algorithms use the vector of labels to train themselves to recognise known
classes, characterising them according to the feature values of their samples. These
algorithms can then be tested with data other than the training set to verify their
accuracy. On the other hand, no training is required for unsupervised machine-
learning algorithms, so it is not necessary to know the class of the samples and, in
some cases, not even the number of classes. The testing of these algorithms is more
complex and requires calibration to predict reliable results. In summary, features
are fundamental for machine learning, as they capture the characteristics of data
that the model uses to learn patterns and make predictions. In this chapter, we de-
scribe how the conversion from packet to array of samples takes place, how features
are selected and the calculation of their importance in the model prediction.

5.1 From Packets to Arrays

The scenario files are in PCAP format, as the captures in the original dataset.
PCAP files contain network packet data and are typically used to analyse the
network traffic for diagnostics. Features are extracted from the PCAP files with
a Python algorithm that uses the scapy library and converted into Python data

https://scapy.net/
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frames. A Python data frame is a 2D data structure of the Pandas library
that arranges data in rows and columns, providing a convenient way to store
and manipulate structured data. These data frames contain the scenarios de-
scribed in Section 4.4: columns represent features and rows represent samples.
From each probe request, the mac address, the sequence number, the receiving
power, the timestamp of acquisition, and a list of information elements are extracted.

Particularly, the IEs extracted and analysed are:

• IE 0 - The SSID (service set identifier) usually contains the network name of
an AP memorised in the list of known APs of the mobile device. Nowadays,
this field usually assumes an empty value with a length of 0 to prevent attacks
that mimic known APs.

• IE 1 - The supported rates specify if the device supports the eight basic sup-
ported transmission rates, also called the basic service set (BSS).

• IE 3 - The DSSS parameter set contains the information about the direct
sequence spread spectrum (DSSS). This field has a fixed length because it
contains an integer number that encodes the identifier of the Wi-Fi channel
used for the transmission.

• IE 45 - The HT capabilities is used for advertising the values of the following
parameters used by the source device: optional high transmission (HT) capa-
bilities, aggregate MAC service data unit (A-MSDU), supported modulation
coding scheme (MCS), HT extended capabilities, transmit beamforming ca-
pabilities, and antenna selection (ASEL) capabilities. Figure 5.1 details the
structure of this IE.

• IE 50 - The extended supported rates specifies if the device supports the ex-
tended service set (ESS) with supported transmission rates above those defined
in IE 1.

• IE 107 - The Interworking contains information about the access network op-
tions and the SSID of hotspot networks. Most of the devices in the considered
dataset do not support this functionality.

• IE 127 - The extended capabilities adds information about the capabilities of
a mobile station that are not contained in IE 45. The length of this field is
variable.

• IE 191 - The VHT capabilities states if a device supports very high throughput
(VHT) capabilities, e.g., higher length of the MAC protocol data unit (MPDU)
or the support for space-time block coding (STBC).

https://pandas.pydata.org/
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• IE 221 - The vendor specific is composed of a field for the organisation-unique
identifier (OUI) and a variable field for additional information customised by
the producer of the device, as shown in Figure 5.2. Multiple IEs 221 can be
found in a single probe request.

• IE 255 - The element ID extension identifies a series of new IEs with the
primary ID 255 and a secondary ID contained in the field element ID extension.
The combination of these identifiers defines the content of this IE. Multiple
IEs 255 can be found in a single probe request.

All these IEs are converted into numeric values as described in the Algorithm 1
and normalised with the scikit-learn (Pedregosa et al., 2011) MinMaxScaler so
that these can be processed correctly in the following statistical analysis. The
percentage of packets in the dataset affected by each IE is illustrated in Table 5.1.

Notably, it should be considered that a single PR frame can contain multiple
221 and 255 IEs with different values (Tan and Gary Chan, 2021). We managed
this aspect by summing the values of all the replicated IEs. Moreover, IE 221 has
been divided into the OUI and the fields features, and IE 45 into the bitmask
and the flag features. This decision derives from the fact that the two fields that
compose the IEs mentioned above sometimes have different scales, as shown in
Figures 5.2 and 5.1, so the importance of fields with low values (221 fields and
45 flags) is nullified through the sum with the other fields of the corresponding IEs
(221 oui and 45 bitmask). Another transformation considered in the performed
experiments is the conversion in base-10 logarithms, which might be needed because
the range of values is very wide and spread.

Moreover, other experiments are conducted using bursts as samples with ad-
ditional features related to: i) the number of probes in a burst; ii) the difference
in sequence number between the first and last PR; iii) and the difference in arrival
time between the last and first probes of a burst. The new features are calculated
after grouping PRs by MAC address and sorting them by time. After that, the
inter-time between consecutive probes is calculated to aggregate PRs into bursts.
Once PRs are grouped into bursts, a single array of values is extracted for each
burst. At the burst level, the IEs are also considered features; in this case, the
statistical mode of the values of the same IE of the PRs of that burst is computed.
Calculating the statistical mode of the IEs should remove outlier values, which
sometimes occur. Furthermore, these new features can improve the clustering.

5.2 Feature Selection

Feature selection involves choosing a subset of the most relevant features (or input
variables) from the dataset while discarding less important or redundant ones. Re-
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IE ID Name Type Affected packets %
0 SSID string 69701 100.0
1 Supported Rates array 69701 100.0
3 DSSS Parameter Set number 68211 97.9
45 HT Capabilities array 67487 96.8
50 Extended Supported Rates array 69700 99.9
107 Interworking array 2327 3.3
127 Extended Capabilities array 58236 83.6
191 VHT Capabilities array 7770 11.1
221 Vendor Specific array 63465 91.1
255 Element ID Extension array 10007 14.4

Table 5.1: IEs in the dataset with the percentage of frames where they are included

Figure 5.1: IE 45 comprises fields and subfields

Figure 5.2: IE 221 fields: the organisation unique identifier (OUI) and the vendor-
specific content
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Algorithm 1 Conversion of the IEs content

if ie content is not present then
value← −1

else if ie is number then
value← number

else if ie is string then
value← sum of chars converted in decimals

else if ie is array then
value← sum of elements converted in decimals

end if
if ie has multiple instances then
value← sum of instance values

end if

moving irrelevant or noisy features enhances the predictive accuracy and reduces the
risk that the model is perfectly adapted only to specific training sets (overfitting).
Moreover, if fewer features are used, the dataset complexity decreases, and model
training becomes easier. Among the methods for feature selection, there are some
that i) include statistical tests (filter methods), ii) use the machine learning model
itself to evaluate feature subsets (wrapper methods), and iii) select features as part
of the model training process (embedded methods) (Abubakar et al., 2022). In order
to study the impact of the information contained in the IE fields, we used wrapper
methods based on the random forest (RF) classifiers from the scikit-learn frame-
work, which contains ensemble algorithms. Ensemble methods are machine-learning
algorithms that use multiple decision trees to improve classification performance.
Each tree predicts a class for the input, and the most predicted class becomes the
output of RF (Breiman, 2001) (Chen et al., 2020). The internal classification trees
have different sub-sets and orders of features, leading to the reduction of over-fitting.
We performed this analysis to identify and eliminate the features that might be ir-
relevant or even add noise to the classification. The following subsections describe
how Random Forest can be exploited for the feature selection (Menze et al., 2009)
(Behnamian et al., 2017) and the obtained results.

5.3 Feature Importance

Decision trees are suitable for finding non-linear prediction rules. Additionally,
random-forest classifiers offer measures for feature ranking such as the Gini im-
portance (Altmann et al., 2010) and the Permutation importance (Altmann et al.,
2010). Gini importance is calculated by summing the impurity (or level of disorder)
reductions achieved by changing how the tree uses the features to split its branches.
In other words, it calculates how much a particular feature reduces the misclassi-

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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fication. Thus, features with higher Gini importance scores are more significant in
decision-making within the model, while features with lower scores have less impact.
Permutation importance is another metric to evaluate the significance of individual
features in a predictive model. It measures how much a specific feature contributes
to the performance by examining the impact of randomly permuting the values of
that feature. This procedure breaks the relationship between the feature and the
sample. Thus, the drop in the model score indicates how much the model depends on
the feature. Usually, the value of the Permutation importance is an average of mul-
tiple algorithm iterations. However, this process can be computationally intensive,
requiring repeatedly re-evaluating the performance for each permutation. Impor-
tance scores range from 0 to 1, where 0 implies no importance, and 1 indicates that
the feature perfectly separates the data into distinct categories. Machine-learning
libraries like scikit-learn provide tools to calculate Gini and Permutation importance
for decision trees and ensemble models. It is essential to understand which features
contribute most to performance and simplify it by focusing on the most important
attributes.

5.4 Results

Before performing any statistical analysis on the features to evaluate their signifi-
cance, their physical meaning has been considered to understand their role in the
clustering procedures. The first information element analysed is IE 3, which defines
the emitting channel and can assume multiple values, as shown in Figure 5.3, since
the transmitter broadcasts messages in all the channels during the active scanning.
No device has a single characteristic value. Most values are shared among multiple
devices. These graphs refer to scenario 0, but similar results are obtained for
the other scenarios. When the IE 3 is missing, a red cross has been drawn. The
IE 3 cannot be considered a good feature because many devices have the same
values, and also, a single device assumes as many values as the number of channels
allowed in the carrier. However, this field is useful to discard corrupted packets
because when its value is missing, other fields are affected and are different from
other PRs emitted by the same device. These behaviours have been observed in
the entire dataset. Removing these samples has been necessary to avoid affecting
the classification procedure (Tan and Gary Chan, 2021). Another field that is
discarded is IE 0 because it is usually empty in modern devices for security reasons.
Moreover, when it is present, the transmitter fills it with one of the network names
memorised into the preferred network list to accelerate the connection procedure.
Accordingly, IEs 0 and 3 are discarded because unsupervised algorithms do not
perform well when features vary within the same class (intra-class variance) or have
similar values for different classes (inter-class similarity) (Venkataramanan et al.,
2021). Intra-class variance might create more clusters for samples of the same class,
while inter-class similarity might cluster together samples of different classes.
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Features Gini
ie127 0.334
ie45 0.223
ie221 0.220
ie255 0.077
ie191 0.060
ie1 0.047
ie107 0.025
ie50 0.015

(a) Gini importance

Features Permutation
ie127 0.161
ie221 0.060
ie45 0.059
ie107 0.009
ie191 0.005
ie1 0.005
ie255 0.004
ie50 0.001

(b) Permutation importance

Table 5.2: Ranking of the features averaged in all the scenarios, considering each
Probe Request as a sample

The analysis of features continued with the search for the optimal set of fea-
tures with the support of decision trees (Wang et al., 2021) of the random-forest
family. This supervised algorithm is trained with labelled data, and its structure
is exploited to measure the Gini and Permutation importance. The RF algorithm
of scikit-learn (Pedregosa et al., 2011) library has been used, setting the max
depth of the tree equal to 4 and the random state parameter to 0. The max
depth is set to limit memory consumption. Instead, the random state controls
the randomness of the sampling and is set to allow repeatability. About the IE
content, since the selected version of Random Forest accepts only numeric inputs,
we converted and normalised them as described in Section 5.1. We did not separate
training and testing sets because this analysis focused on the study of the feature
importance rather than the classification of the RF algorithm. While calculating
the Permutation importance, the number of its iterations is set to 30. Gini and
Permutation importance ranked similarly when the samples are individual probe
requests, as shown in Table 5.2. In this case, selecting the features was simple
because the IEs 45, 127, and 221 cover 77.7% of the Gini importance and 92.1% of
the Permutation importance. All features below 0.1 in Gini importance and below
0.01 in Permutation importance have been discarded. The results obtained using
these and other derived features are shown in Chapter 6. The ranking differs when
bursts are used as samples, as shown in Table 5.3. According to Gini importance,
the best features are IEs 1, 45, 127, 255, 221, delta time, and probes. These
features account for 86.0% of the Gini importance and are all scored above 0.1.
According to the Permutation importance, the best features are IEs 1, 45, 107,
127, 221, probes, and delta time. Their importance constitutes 94.7% of the whole
Permutation importance. These sets of features and some of their subsets are used
in the experiments described in Subsection 6.2.2 The scikit-learn library (Pedregosa
et al., 2011) is used to calculate both kinds of importance.
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Figure 5.3: Subplot of the IE-3 values
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Features Gini
delta time 0.151
probes 0.132
ie45 0.132
ie1 0.121
ie127 0.110
ie255 0.109
ie221 0.105

delta seq 0.054
ie107 0.053
ie191 0.025
ie50 0.008

(a) Gini importance

Features Permutation
ie45 0.035

delta time 0.031
ie127 0.030
ie221 0.024
ie1 0.022

probes 0.022
ie107 0.017
ie255 0.016

delta seq 0.008
ie191 0.002
ie50 0.001

(b) Permutation importance

Table 5.3: Ranking of the features averaged in all the scenarios, considering each
burst as a sample
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Chapter 6

Clustering Methods for Wi-Fi
Fingerprinting Towards
Information Element Analysis

We selected unsupervised clustering algorithms to group messages originating from
the same device because, in a real environment, neither the number of Wi-Fi
devices nor the sources of probe requests are known. Clustering can be defined
as the process of discovering structure in data to group related objects together
in clusters. A cluster is a group of objects that are more similar to each other
than to objects in other groups. Each sample is defined by a set of features (or
characteristics) that are used by a metric called a distance or similarity function to
create clusters of similar items. The similarity of objects can be calculated as a
geometric distance between arrays that measure the features of samples. Samples
with similar values are more likely to be grouped in the same cluster, while samples
far apart are more likely to be assigned to different clusters. In this scenario,
clustering is applied to discover structure in the sequence of probe request frames
and group them into clusters of frames predicted to be generated by the same
source. Devices in an area transmit many management messages, which contain
the requirements of the network they want to connect to. These requirements
should not change often because they relate to the hardware and operative system
installed in the mobile device. So, since the similarity of samples can be calculated
as a geometric distance between arrays of features, messages from the same device
should have similar features and be very close to each other.

Previous similar studies (Tan and Gary Chan, 2021) (Delzanno et al., 2023)
(Covaci, 2022) used the DBSCAN (Ester et al., 1996) algorithm to cluster the
input samples. DBSCAN groups data points based on their closeness to dense
regions, not requiring prior information about setting the number of clusters. The
inputs of the DBSCAN algorithm are the maximum distance between neighbour
samples of the same cluster (eps), the minimum number of points to consider the
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group a cluster (min samples), and a set of features for each sample. DBSCAN
starts by choosing an arbitrary point p, thus selecting all the points in the radius
eps. If at least min samples points, including p, are within distance eps of it,
then p is considered a core point and assigned to a new cluster. If an additional
core point is found in this cluster, the neighbourhood is expanded to include
all its neighbouring points. The process is repeated until no more points can
be assigned to the cluster. The algorithm terminates once all points have been
processed. However, DBSCAN cannot detect clusters of varying density because
it uses a constant distance value (eps) to determine whether a point is in a
dense neighbourhood. DBSCAN algorithm assumes that the densities of different
clusters are equal, even though many real-world datasets manifest different densities.

OPTICS algorithm (Ankerst et al., 1999) extends DBSCAN by generating a
hierarchical clustering result for a variable neighbourhood radius. OPTICS gener-
alises the DBSCAN approach by relaxing the eps parameter from a single value to
a value range and automatically selects the one that fits better with the density
variance. OPTICS builds a reachability graph with the vector distances of the input
samples, differently from DBSCAN. The reachability graph shows the ordering of
the points processed by OPTICS on the x-axis and the reachability distance on
the y-axis. Points belonging to a cluster have a low reachability distance to their
nearest neighbour, so clusters look like valleys in the reachability plot. The deeper
the valley, the denser the cluster. In the rest of this thesis, when DBSCAN and
OPTICS are mentioned, reference is made to the respective algorithms implemented
in the scikit-learn library (Pedregosa et al., 2011). The default distance functions
of the scikit-learn library were used for both algorithms: the Euclidean distance for
DBSCAN and the Minkowski distance for OPTICS.

The rest of the chapter describes the metrics used to verify the accuracy of
both clustering algorithms and the results obtained. The final section summarises
the strengths and weaknesses of this approach.

6.1 Metrics to Verify the Accuracy

Since the dataset used for the experiments contains the true label of the samples,
it is possible to use metrics that exploit the ground truth information to evaluate
the clustering quality. The main objective of this work is to find a clustering
methodology whereby the number of clusters is equal to or very close to the number
of real classes. For this reason, the first metric considered is the difference between
the number of classes (which correspond to the devices) and the number of clusters
(or groups calculated by the algorithms), hereafter referred to as error. We called
this quantity delta in Pintor and Atzori (2022b). This value is simple to calculate
but does not consider how well the algorithm aggregates samples of the same class
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in the same cluster and separates samples of different classes.

Moreover, this metric is useful when considering a single scenario, so we cal-
culated its average to evaluate the performance in all scenarios. Therefore, we
considered the following metrics:

• The average error (AE) is the average of the absolute of the delta of all the
scenarios listed in Table 4.3. Since scenarios might have positive and negative
deltas, taking the average of absolute values provides a measure of central
tendency that is not affected by the sign of the numbers, focusing on the
magnitude of variations rather than the direction.

• The confidence interval (CI) is an estimated range of values within which the
value of a parameter is likely to fall. It provides a measure of the uncertainty
or variability associated with estimating population characteristics based on a
sample of data. A common way to express a confidence interval is by ”estimate
± margin of error.”

• The v-measure (VM) is a harmonic average of completeness and homogeneity
(Rosenberg and Hirschberg, 2007). The difference between these two concepts
is that while homogeneity measures how the clusters are composed of samples
from a single class, completeness measures how samples of the same class are
assigned to the same cluster.

• The noisy points (NPs) are the outlier values automatically discarded by the
clustering algorithm. Yet, cutting the noise lowers the size of the dataset.

• The silhouette coefficient (SC) gives information about the similarity be-
tween the elements of the cluster and the separability between the clusters
(Rousseeuw, 1987): this coefficient is optimal when it is close to 1, signals
overlapping clusters when it is near 0, and indicates that samples of the dif-
ferent classes are assigned to the same cluster when it is negative.

• The rand index (RI) measures the similarity between the clusters and classes.
It considers couples of samples and counts the ones that match the predicted
and true labels (Valles Coral et al., 2022). The adjusted version of the RI
extends the range of values from −1 to 1 to account for random cluster as-
signments and has an expectation equal to zero.

Table 6.1 summarizes these metrics and their acronyms that are used in the following
tables. Moreover, calibrating the algorithm parameters implies that the difference
between the number of devices and clusters is close to zero and that the v-measure
value is sufficiently close to one. Incrementing eps usually reduces the number
of clusters because the distance between them is reduced, and some neighbouring
clusters can be merged. On the contrary, incrementing min samples means that
small clusters are discarded.
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Acronym Description Range of values
ms min sample parameter greater than 2
AE average error greater than 0
CI confidence interval greater than 0
VM v-measure between 0 and 1
NP noise points greater than 0
SC silhouette coefficient between -1 and 1
RI random index between 0 and 1

Table 6.1: Acronyms used in the tables of results

6.2 Results

Since some values of the IEs depend on the hardware and others on the user’s
settings, we aimed to demonstrate that a subset of the IEs might help discriminate
messages from different devices, even though the source MAC address is randomised.
For this reason, we selected features that are constant for the same device but vary
considering different devices. Features like these are well-performing for unsuper-
vised clustering algorithms that can be used in real-world scenarios. Based on the
IE importance described earlier in Chapter 5, we now confirm the hypothesis that
a set of IEs represents a fingerprint for probe requests, allowing for clustering them
according to the same source. In this section, four types of experiments are pre-
sented: the first one shows the results obtained with the best-performing features
using individual PRs as samples, the second uses the features extracted at the level
of the burst, the third separates some of the IEs into their component fields, which
are then considered as features, and the fourth performs the clustering by using the
logarithm of the previously considered features. These are better detailed at the
end of the following subsections with tables showing the following metrics: absolute
error (AE), confidence interval (CI), v-measure (VM), noise points (NPs), silhouette
coefficient (SC), and random index (RI). In the tables of the following subsections,
the column ”clusters” indicates how many clusters were counted on average, consid-
ering an average number of devices equal to 16.67. The eps value is not displayed
in OPTICS tables because it varies to adapt to the density of samples.

6.2.1 Individual Probe Requests

The first analysis used the clustering algorithms with many sets of features by
modifying the min samples and eps parameters, as shown in Table 6.2. Each
subtable is related to the two clustering algorithms considered, DBSCAN and
OPTICS. The column ”clusters” indicates how many clusters were counted on
average, considering an average number of devices equal to 16.67. The column
AE (absolute error) is the average absolute difference between the number of real
devices and clusters the algorithm counts in all sets. The column CI (confidence
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eps ms clusters AE CI VM NP SC RI features
0.001 10 16.08 1.25 0.58 +/- 0.89 0.96 3.17 0.87 0.98 45, 127, 221
0.01 10 16.50 1.67 0.17 +/- 1.05 0.96 5.42 0.88 0.98 1, 45, 50, 107, 127,

191, 221, 255
0.001 10 16.08 1.25 0.58 +/- 0.89 0.96 3.17 0.87 0.98 45, 50, 107, 127,

221
0.01 10 16.50 1.67 0.17 +/- 1.05 0.96 5.42 0.87 0.98 45, 127, 221, 255
0.01 6 16.08 1.42 0.58 +/- 0.92 0.97 0.17 0.88 0.98 1, 45, 127, 221
0.01 6 15.58 1.25 1.08 +/- 0.85 0.96 0.17 0.87 0.98 45, 127, 191, 221
0.001 10 13.58 3.08 3.08 +/- 0.89 0.94 0.00 0.82 0.97 45, 127
0.001 2 15.67 1.33 1.00 +/- 0.93 0.93 0.17 0.57 0.94 45, 221
0.001 10 13.58 3.08 3.08 +/- 0.89 0.94 0.00 0.82 0.97 127, 221

(a) Individual probes with DBSCAN

ms clusters AE CI VM NP SC RI features
60 18.25 5.42 -1.58 +/- 3.60 0.84 252.50 0.87 0.90 45, 127, 221
80 18.33 6.17 -1.67 +/- 4.52 0.80 473.83 0.88 0.87 1, 45, 50, 107, 127, 191, 221, 255
60 18.25 5.42 -1.58 +/- 3.60 0.84 252.50 0.87 0.90 45, 50, 107, 127, 221
80 18.25 6.08 -1.58 +/- 4.45 0.80 467.92 0.87 0.87 45, 127, 221, 255
80 16.25 5.75 0.42 +/- 3.78 0.83 356.00 0.88 0.90 1, 45, 127, 221
60 18.25 5.42 -1.58 +/- 3.60 0.84 252.50 0.87 0.90 45, 127, 191, 221
10 15.17 1.83 1.50 +/- 0.98 0.96 0.17 0.77 0.98 45, 127
60 17.58 4.75 -0.92 +/- 3.12 0.81 176.08 0.57 0.89 45, 221
60 18.00 5.33 -1.33 +/- 3.52 0.83 231.50 0.82 0.89 127, 221

(b) Individual probes with OPTICS

Table 6.2: Best results using individual probe requests as samples
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interval) shows the average difference between the number of real devices and
clusters the algorithm counts and the margin of error (MOE). The column VM
(v-measure) explains how well the clusters reflect the real association between probe
requests and transmitting devices. Finally, the last column, features, indicates
which information elements were considered.

Analysing the table, we notice that the best results are obtained using DB-
SCAN with the IEs 45, 127, and 221. The best result obtained with OPTICS is the
one using only features 45 and 127. In this case, the silhouette coefficient (SC) is
lower and, thus, greater similarity between samples of different clusters compared
to other results with different sets of features. However, the number of discarded
points (NP) is the lowest for OPTICS algorithms. In most cases, the silhouette
value is close to 1, meaning that samples are well-matched to their clusters
and poorly matched to others. The random index (RI) is higher for DBSCAN,
indicating that it better reflects the real classes than OPTICS. Moreover, according
to the normalised mutual information score, classes are sufficiently independent
of one another. OPTICS automatically selected a value for eps smaller than
DBSCAN because samples are probably very sparse. Moreover, we demonstrated
that some features do not affect the clustering since, in both Tables, the best
set of features (IEs 45,127 and 221) and the set of features containing IEs 50,
107, and 191 additionally gave the same results. IE 50 contains the extended
supported rates, which are nowadays supported by all devices, so this field always
has the same content. On the contrary, IEs 107 and 191 are rare, as illustrated
in Table 5.1 and due to the feature-extraction algorithm, their value is usually
−1, indicating a missing value. Using IEs 1 and 255 worsens the result of both
clustering algorithms. Furthermore, the performance might degrade when one of
the most important features (IEs 45, 127, and 221) is not considered. This has
been proved for DBSCAN and partially for OPTICS.

In conclusion, each row of Table 6.2 contains average values of the 12 exper-
imental scenarios. Table 6.3 includes the results obtained using DBSCAN with
eps equal to 0.001 and min samples to 10. A relationship between the number
of samples and the v-measure score can be noted by analysing Table 6.3: usually,
the more samples are available, the better the classification is. This experiment
also demonstrated similar performance when devices have different settings, like
a real environment. Unfortunately, many times, more devices are aggregated in
the same cluster. The causes of this error might depend on the fact that we are
analysing high-level information that can be modified via software and depends on
the OS of the device. Devices with the same operative system might send probe
requests with the same content in the IEs, making the fingerprints of different
devices indistinguishable. Consequently, the algorithm counts fewer devices. This
issue especially affects iOS devices constantly updated to the latest version (Martin
et al., 2017), making them share similar IE signatures.
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scenario devices clusters delta VM samples NP SC RI features
0 21 18 3 0.98 24666 0 0.72 1.00 45, 127, 221
1 20 21 -1 0.97 8809 0 0.91 0.99 45, 127, 221
2 21 19 2 0.97 24647 0 0.71 1.00 45, 127, 221
3 18 18 0 0.97 8020 19 0.91 1.00 45, 127, 221
4 10 9 1 0.88 1480 0 0.84 0.88 45, 127, 221
5 10 9 1 0.91 589 0 0.76 0.90 45, 127, 221
6 16 16 0 0.97 8912 0 0.91 0.99 45, 127, 221
7 16 15 1 1.00 19860 0 0.99 1.00 45, 127, 221
8 18 15 3 0.98 6075 0 0.93 1.00 45, 127, 221
9 16 18 -2 0.96 9682 1 0.85 0.99 45, 127, 221
10 16 17 -1 0.97 5244 0 0.91 1.00 45, 127, 221
11 18 18 0 0.99 18438 18 0.98 1.00 45, 127, 221

Table 6.3: Individual probe clustering using eps equal to 0.001 and min samples to
10 in DBSCAN

6.2.2 Bursts of Frames

A similar analysis was performed by grouping probe requests through bursts, which
are regular intervals shorter than a second, in which the device keeps the same MAC
address and sends many messages. The interval between a burst and the following
one is often around a few minutes for new devices and some seconds for old devices.
We compacted groups of probe requests into bursts to calculate other features such
as the number of packets sent in a burst (which we call probes in Table 6.4), the
difference between the first intra-burst sequence number and the last one (which we
call delta seq), and the difference between the first intra-burst arrival time and the
last one (which we call delta time). These features related to bursts are described
in Section 5.1. Nevertheless, the performance of DBSCAN decreased compared to
the results obtained considering probe requests individually. This result stems from
the fact that selecting only one sample for each burst drastically reduces the amount
of input data for the classifier (only 4789 bursts were counted out of 69700 probe
requests). Surprisingly, the performance of OPTICS with the features IE 45, 127,
and 221 is broadly higher, considering bursts as samples. The absolute error while
considering probes individually with these features is 5.42, whereas it drops to 2.92
while aggregating frames into bursts. Also, the v-measure improves from 0.84 to 0.95
when switching from individual frames to bursts. Moreover, the features related to
bursts (delta time, delta seq, and probes) seem to degrade the performance in all
cases.

6.2.3 Split Features

Since we already demonstrated that, except for the three best-ranked IEs, the oth-
ers did not add valuable improvements, the following experiments extract multiple
features from these IEs. Breaking down a composite feature into its constituent
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eps ms clusters AE CI VM NP SC RI features
0.01 6 10.08 6.58 6.58 +/- 1.75 0.53 161.42 0.65 0.70 45, delta time, probes
0.01 6 11.25 5.42 5.42 +/- 1.24 0.73 62.33 0.76 0.84 45, 127, delta time
0.01 2 18.50 2.67 -1.83 +/- 1.50 0.86 11.67 0.50 0.92 45, 127, 221, delta seq
0.01 6 11.42 5.25 5.25 +/- 1.37 0.73 63.67 0.77 0.84 45, 127, 221,

delta time
0.01 6 10.00 6.83 6.67 +/- 1.89 0.53 164.75 0.79 0.70 45, 127, 221, 1, 107,

probes, delta time
0.01 6 10.08 6.75 6.58 +/- 1.89 0.52 166.25 0.78 0.70 45, 127, 221, 1, 255,

probes, delta time
0.01 6 10.00 6.83 6.67 +/- 1.89 0.53 164.75 0.78 0.70 45, 127, 221, 1,

probes, delta time
0.001 6 12.75 4.58 3.92 +/- 2.20 0.48 168.75 0.75 0.67 45, 127, 221, probes
0.001 2 14.50 2.17 2.17 +/- 1.13 0.96 1.92 0.84 0.98 45, 127, 221

(a) Burst features with DBSCAN

ms clusters AE CI VM NP SC RI features
10 14.42 8.42 2.25 +/- 5.70 0.29 333.50 0.65 0.49 45, delta time, probes
10 18.83 8.50 -2.17 +/- 6.38 0.38 280.92 0.76 0.57 45, 127, delta time
6 17.75 5.75 -1.08 +/- 4.26 0.69 57.17 0.50 0.81 45, 127, 221, delta seq
10 18.50 8.33 -1.83 +/- 6.36 0.37 285.08 0.77 0.56 45, 127, 221, delta time
10 14.42 8.42 2.25 +/- 5.70 0.29 333.92 0.79 0.49 45, 127, 221, 1, 107,

probes, delta time
10 14.42 8.42 2.25 +/- 5.70 0.28 335.75 0.78 0.48 45, 127, 221, 1, 255,

probes, delta time
6 15.42 5.08 1.25 +/- 3.54 0.51 128.25 0.75 0.69 45, 127, 221, probes
2 17.08 2.92 -0.42 +/- 1.89 0.95 2.08 0.84 0.98 45, 127, 221

(b) Burst features with OPTICS

Table 6.4: Best results using bursts of frames as samples
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parts might allow the extraction of meaningful information from individual fields
that might be lost when considering the feature as a whole. Moreover, splitting
can help capture non-linear relationships between features and the target variable
or provide better insight into which components are more critical for making pre-
dictions. Specifically, as shown in Figure 5.2, IE 221 comprises two parts: the OUI
of the vendor and the payload field. Since the vendor defines the payload format,
the OUI part, which identifies the vendor, allows for the decoding of the IE. Re-
garding IE 45, it must be considered that it comprises multiple fields. Observing
its structure, illustrated in Figure 5.1, it is possible to notice that the field bitmask
allocates more bits than the other fields. The bitmask field allocates almost a third
of the whole IE. This led to separating the bitmask from the remaining fields in
these experiments. Moreover, while the bitmask field presents only three values
(−1, 255, 510), the flags field is usually between 50 and 150 (see Figure 6.1). Device
L seems to be an exception for the bitmask field because it presents variable values
of the bitmask component. As shown in Table 6.5, DBSCAN does not improve its
performance while splitting the most important features. We can notice the same
results as the individual probe clustering (subsection 6.2.1) while using the features
IE 45 flags, 127, and 221, meaning that the component IE 45 bitmask does not af-
fect the clustering. All other cases show a degradation of performance. Regarding
OPTICS, a little improvement is given while using the features IE 45, 127, and
221 oui. Component 221 oui is more influential with this clustering method because
points of the same cluster have similar distributions, but points of different clusters
do not. The different density of points is a characteristic considered in OPTICS but
not in DBSCAN.

6.2.4 Logaritmic Conversion

Similarly to the previous experiment, only IEs 45, 127, and 221 are considered.
These features occasionally exhibit significantly large values. For instance, as shown
in Figure 6.2, for the feature IE 221, one device uses a value above 1e7, another 255,
and a third 160. The values of the last two devices are closely positioned relative
to the first one. The logarithmic transformation has been employed to mitigate this
disparity and achieve a more even distribution of values. Generally speaking, loga-
rithmic transformations can help normalise a feature distribution and avoid features
with significant variances dominating the learning process. Applying a logarith-
mic transformation might balance the impact of extreme values by making feature
variance contribute more evenly to the model learning process. It is important
to appropriately handle zero and negative values when calculating logarithms, as
their logarithms are not defined. The considered data does not contain negative
or decimal values before the process, so the only negative value to manage is −1,
which remains −1 since there is no value equal to 0.1. Zero values are managed
by converting them arbitrarily into −0.5, which is lower than the logarithm of the
minimum positive value reported for these features. However, in this case, logarithm
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eps ms clusters AE CI VM NP SC RI features
0.001 10 15.58 1.25 1.08 +/- 0.85 0.96 0.17 0.85 0.98 45 bitmask, 127, 221
0.001 10 16.08 1.25 0.58 +/- 0.89 0.96 3.17 0.87 0.98 45 flags, 127, 221
0.01 20 15.92 1.58 0.75 +/- 1.11 0.92 72.33 0.83 0.95 45 flags, 45 bitmask, 127,

221 oui, 221 fields
0.01 10 16.08 1.25 0.58 +/- 0.89 0.96 3.17 0.87 0.98 45 flags, 45 bitmask,

127, 221
0.01 20 15.25 1.58 1.42 +/- 0.92 0.92 68.42 0.83 0.95 45, 127, 221 fields
0.01 20 15.50 1.50 1.17 +/- 0.99 0.92 68.42 0.83 0.95 45, 127, 221 oui,

221 fields
0.01 10 15.58 1.25 1.08 +/- 0.85 0.96 0.17 0.79 0.98 45, 127, 221 oui

(a) Split features with DBSCAN

ms clusters AE CI VM NP SC RI features
60 18.25 5.42 -1.58 +/- 3.60 0.84 240.75 0.85 0.90 45 bitmask, 127, 221
60 18.25 5.42 -1.58 +/- 3.60 0.84 252.50 0.87 0.90 45 flags, 127, 221
60 17.92 5.58 -1.25 +/- 3.73 0.82 307.50 0.83 0.90 45 flags, 45 bitmask, 127,

221 oui, 221 fields
60 18.25 5.42 -1.58 +/- 3.60 0.84 266.67 0.87 0.90 45 flags, 45 bitmask, 127, 221
60 17.92 5.58 -1.25 +/- 3.73 0.82 290.42 0.83 0.90 45, 127, 221 fields
60 17.92 5.58 -1.25 +/- 3.73 0.82 293.33 0.83 0.90 45, 127, 221 oui, 221 fields
10 16.08 1.25 0.58 +/- 0.89 0.96 0.17 0.79 0.98 45, 127, 221 oui

(b) Split features with OPTICS

Table 6.5: Best results using portions of IEs as features
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eps ms clusters AE CI VM NP SC RI clustering
0.001 10 16.08 1.25 0.58 +/- 0.89 0.96 3.17 0.87 0.98 DBSCAN
- 60 18.25 5.42 -1.58 +/- 3.60 0.84 252.67 0.87 0.90 OPTICS

Table 6.6: Best clustering results with logarithmic features.

conversion did not change the results, which are the same as the first experiment
considering the same features, as shown in Table 6.6.

6.3 Strenghts and Flaws of this Approach

This approach makes it possible to collect information on crowding and flows of
people without threatening privacy. Sniffers are usually inexpensive, but creating
a dense network of sensors is necessary to monitor an area. The presented results
achieve high accuracy, with absolute errors of 1.25 on an average number of
devices of 16.6. The experiments showed that the best results are obtained with
the DBSCAN algorithm when the clustering is performed at frame level when
considering the three features that the Gini importance analysis has shown to be
the most relevant (IE 45, IE 127, and IE 221). The optimal DBSCAN configuration
parameters are eps = 0.001 and min sample = 10. In this case, the average error
in counting the number of devices is 1.25 over an average of 16.67 devices, which
brings an average error of around 7.5%.

Burst clustering is limited by reducing the number of samples because bursts
contain 18 Probe Requests on average. These results might improve by having
longer captures, which should have more samples. The experiments where the main
features are split showed that the 45 bitmask does not influence the clustering.
At the same time, IE 221 oui is more significant with OPTICS because samples
of the same cluster have similar distributions and samples of different clusters do
not. The different density of points is perceived by OPTICS but not by DBSCAN.
Moreover, IE 221 oui drastically reduces the number of discarded samples. Finally,
the expected benefits of using logarithms are not evident.

However, additional experiments can be performed to test the robustness
and generality of the approach. For example, these methods might work differently
with fewer devices or other datasets collected in other environments. The
obtained results with an error of 7.5% are encouraging for many crowd-monitoring
applications, such as counting the number of people in a bus, counting the number
of attendants in a public event, and detecting whether the number of people in a
room exceeds a given threshold. It is important to point out that the number of
devices does not correspond to the number of people for several reasons, such as
some individuals can bring more than one device, and some may have forgotten
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Figure 6.1: Average value of the IE 45 given by the sum of the components bitmask
and flags

it. It is also important to highlight that the analysis of the features needs to be
updated, as the operating systems of the major vendors may introduce different
behaviours in the Wi-Fi management procedures, which can make the tracking
more challenging.
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(a) Values assumed by all devices

(b) Values assumed by all devices limited to 3000 to highlight that the OUI component
is preponderant and almost nullifies the other one

Figure 6.2: Average value of the IE 221 given by the sum of its components
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Chapter 7

Insight on the Physical-Level
Fingerprinting based on the
In-phase and Quadrature
Imbalance

Even though the accuracy of the clustering presented in the previous chapter reached
good performance, the easiness of replicating the same messages (and consequently
features) with different devices motivated us to investigate other aspects. Other
devices can easily assemble and re-transmit fields inside the probe requests. In
Ketkhaw and Thipchaksurar (2017), a fake AP can replicate the behaviour of a real
one, and mobile devices can also be mimicked via software. Furthermore, this chap-
ter demonstrates that the probe requests of the dataset we considered previously
can be replicated with a Raspberry Pi. Consequently, we investigated the analogi-
cal electromagnetic waves, specifically on the in-phase and quadrature (IQ) signals
(Sankhe et al., 2020). Analogical transmitted signals depend on the hardware of the
antennas (e.g., manufacturing errors and ageing), which makes them unique and
difficult to replicate, even though the antenna respects the standards for its pur-
pose. Our study is a proof of concept to explore a new application for IQ samples.
We performed experiments in a controlled environment where a single device was
transmitting each time. Making the same experiments in uncontrolled environments
will be more complicated because we cannot control when multiple devices transmit
simultaneously and how the noise affects the channel. The more devices are present
in an area, the more collisions happen. As a consequence, the accuracy of the esti-
mate diminishes while the monitored area becomes more crowded. However, if an
approximation of the number of people is sufficient, this method allows for moni-
toring without privacy violations. The anomaly we consider in this study, the IQ
imbalance, stems mostly from the non-orthogonality of the oscillator, which might
alter the phase and amplitude of the signal. In other words, different devices will
have different imperfections in the transmitted signals (Mohammadian and Tellam-



66CHAPTER 7. INSIGHTON THE PHYSICAL-LEVEL FINGERPRINTING BASEDON THE IN-PHASE ANDQUADRATURE IMBALANCE

bura, 2021). In the rest of the chapter, we introduce some insights about the Wi-Fi
standard regarding the physical layer, the information we tried to extract from the
signal (IQ imbalance) and the method we used. The last two sections summarise
the results obtained, limitations and contributions.

7.1 Wi-Fi Physical Layer

Probe requests use the same format as any other Wi-Fi message for the physical-layer
protocol data unit (PPDU). Figure 7.2 shows that a PPDU contains a preamble, a
header, a physical layer service data unit (PSDU), tail bits, and pad bits. The
preamble and the header are patterns the receiver uses to interpret the received
signal, learn the channel state information (CSI), and demodulate the data trans-
mitted through orthogonal frequency-division multiplexing (OFDM). The physical-
layer preamble (SYNC) is typically fixed: it is composed of 10 repetitions of the
short training sequence (STS), a guard interval (GI), and two repetitions of the long
training sequence (LTS). STS has a duration of 0.8µs, LTS 3.2µs, and GI 1.6µs.
Summarising, the total duration of the preamble is 16µs. Chapter 17.3 of IEEE
(2021) provides more details about the Wi-Fi physical level.

7.2 IQ Imbalance

Transceivers for general-purpose devices are often affected by radio-frequency im-
pairments, which introduce interference and slightly degrade performance. The
impairments considered in this chapter are due to the in-phase and quadrature (IQ)
imbalance. Ideally, IQ modulators and demodulators should provide two orthogonal
channels for the signal: one branch for the I component and one for the Q compo-
nent. The imbalance stems from the non-orthogonality of these two components.
IQ imbalance is often due to the manufacturing or ageing of the device, so it is
difficult to evaluate and correct it. This mismatch might depend on the frequency
(frequency-selective) or be constant over the signal bandwidth (frequency-flat) (Mo-
hammadian and Tellambura, 2021). The exploitation of IQ signals is mainly focused
on security applications related to radio frequency fingerprinting (RFF). According
to this approach, Wi-Fi devices can be characterised by minute imperfections in their
hardware and the consequent anomalies in the signals they modulate and transmit.
These defects are unique and slowly vary with the usage of the device. Therefore, it
is difficult to reproduce the same behaviour of a device, allowing for the extraction
of features for identification. These imperfections produce several errors: quanti-
sation errors, carrier frequency offsets, non-linear distortions, phase noise and IQ
imbalance (Tang et al., 2021). The approach described by Suski II et al. (2008)
calculates features extracted from the preamble waveform (phase and amplitude)
of IQ signals generated by Wi-Fi devices. They reached an identification accuracy
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Figure 7.1: Demodulator with amplitude and phase mismatches in the IQ signal
Adapted from (Mohammadian and Tellambura, 2021)

Figure 7.2: PPDU format and preamble structure.

of 80% with three devices. Other approaches exploit convolutional neural networks
(CNNs), which are supervised ML methods with high accuracy for image processing.
RFF features are converted into images (e.g., differential constellation trace figures)
and used as input for these algorithms. These methods granted an accuracy of over
99% in controlled environments with ZigBee (Peng et al., 2020) and Wi-Fi (Sankhe
et al., 2019) protocols. Zhou et al. (2022) proposed an incremental learning (IL)
method to update the identification model, discard old data from the training set,
and reduce the training time while reaching an accuracy of over 96%.
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7.3 Radio Frequency Fingerprinting for Monitor-

ing Crowds

We aim to demonstrate that it is possible to cluster IQ signals produced by the
same source because each transmitter has its imbalance, which constitutes its fin-
gerprint. To support this claim, we performed reproducible experiments in insulated
environments with a transmitter that sends probe requests according to the experi-
ment schedule. Moreover, controlling the transmitter allows us to explore diversity
in different domains: i) space domain (the transmitter and the receiver are placed
in different positions), ii) time domain (experiments are automated and conducted
sequentially, so we can replicate some of them to study the temporal diversity too),
and iii) frequency domain (transmissions are performed in all the Wi-Fi channels
available in Europe). Studying the diversity of the same device is important to un-
derstand its behaviour in different conditions and properly address the clustering of
signals from different sources. The main difficulty with this approach lies in applying
a method based on a supervised system trained to recognise well-defined classes to a
use case where neither the number of classes is known nor a training set is available.
Another fundamental problem is the reception bandwidth of the software define ra-
dio (SDR), which, on the one hand, must comply with the Shannon-Hartley theorem
and be at least twice the frequency of the signal, and on the other hand, is limited
by the available memory and the sampling rate supported by the SDR. Since each
Wi-Fi channel at 2.4GHz has a bandwidth of 22MHz, we needed a high-performant
SDR that supported up to 44MHz as sampling frequency. Yet, the captures could
last only a few seconds because the high sampling rate made the capture files grow
fast.

7.4 Experimental Setting

This section describes the hardware we used for the experiments, the architecture,
and how we set and performed the experiments inside the anechoic chamber.

7.4.1 Hardware

The Hardware we used for the experiments is:

• A software-defined radio (model USRP X310) designed by Ettus Research and
National Instruments collected the IQ samples of the messages transmitted
during the experiments.

• Tree Wi-Fi dongle interfaces, respectively produced by Lifetron, Edimax, and
Shenzhen, have been used for transmitting and collecting probe requests. Two
different antennas were used in turn to transmit and receive probe requests.
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The transmitting antenna was connected to the laptop controlling the experi-
ment and the receiving to the Raspberry Pi.

• A Raspberry Pi 3 (model B+) recorded the probe requests with Wireshark to
verify that they were replicas of the dataset probe requests. One of the Wi-Fi
dongles was connected to this device and used as a receiving antenna because
the embedded one does not support the monitor mode.

• A laptop with Ubuntu OS was used to control all the experiments. It was
connected to most devices through a switch and RJ45 cables. The adapter
of the small form-factor pluggable (SFP) cable to manage the SDR was not
supported, so an additional laptop with this interface was connected to the
network to forward the GnuRadio commands to the SDR. The two computers
are called PC1 and PC2 in the rest of the chapter.

7.4.2 Architecture

In order to identify the source of each message correctly, we insulated the transmit-
ter (Wi-Fi dongle connected to PC1) and the receiving antennas (SDR and Wi-Fi
dongle connected to the Raspberry Pi) by placing them inside an anechoic chamber.
Figure 7.3 shows the wiring of the devices and Table 7.1 lists their roles and IP ad-
dresses. The legend shows that solid lines represent RJ45 Ethernet cables, dashed
lines illustrate small form-factor pluggable (SFP) cables, and dotted lines represent
USB extension cables. PC1 is directly connected to the Wi-Fi interface inside the
anechoic chamber, which performs the transmission. Probe requests generated by
the Operative System are blocked by setting the Wi-Fi interface in monitor mode.
The probe request selected for the experiment is built and sent via Scapy framework
for Python language. Additionally, this Wi-Fi interface has no IP address because it
is not connected to any network. Furthermore, the switch has the role of connecting
multiple devices to PC1 so they can receive secure shell (SSH) commands and per-
form their tasks as soon as the PC1 demands: the Raspberry Pi runs a script to start
the Wi-Fi sniffing, and PC2 runs another script to start the SDR data collection.
The data collected are Wireshark captures (collected and stored in the Raspberry
Pi), IQ samples (collected by the SDR and stored in PC2), and reports about the
experiments (stored in PC1). All files generated during a single experiment have
similar names to simplify the analysis and comparison.

7.4.3 Collection of IQ data

We collected IQ signals through SDRs tuned on the carrier frequency of the Wi-Fi
channel where our transmitter was set. Moreover, we automatised the experiments
by creating files to set the Wi-Fi channel used, the gain of the SDR receiver, the
waiting time between two consecutive probe requests, the number and the content of

https://www.wireshark.org/
https://www.gnuradio.org/
https://scapy.net/
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Figure 7.3: Architecture of the experimental setting

Device Role IP address
PC1 Controls the experiments 192.168.10.3
PC2 Gets commands from PC1 192.168.10.14

Forwards commands to SDR 192.168.40.1
Pi Collects probe requests 192.168.10.15
SDR Collects IQ signals 192.168.40.2

Table 7.1: Roles of the devices involved in the experiments

the messages to transmit, and the sampling rate. PC1 runs the main Python script
with the input parameters for the experiments. This script starts three parallel
subprocesses through the fork command:

• The first subprocess builds a probe request and sends it through the connected
Wi-Fi interface inside the anechoic chamber multiple times. We set 200 rep-
etitions in most of the experiments because it was challenging to synchronise
all the devices.

• The second subprocess connects PC1 to the Raspberry Pi via SSH and starts
the collection of probe requests (sniffing) on that device with Wireshark. Hav-
ing the Wireshark captures lets us verify if the probe requests were effectively
sent and other unwanted Wi-Fi messages were transmitted.

• The third subprocess allows PC1 to start the script to control the SDR from
PC2 via SSH. The SDR then collects IQ samples and transmits them through
the SPF cable to store them in PC2.

The transmitting window is larger than the receiving one. In other words, the
transmitting antenna sends probe requests before the two receivers (Raspberry and
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SDR) are active and ends after they finish. In this way, we granted the collection
of at least a complete probe request. This artifice was necessary to simplify the
architecture because i) the SDR starts to collect data after some checks, which
take seconds, and ii) the SDR collects thousands of complex samples every second,
leading to buffer filling and storage consumption. To use SDRs to count people
outside the controlled environment, it is necessary to apply filters directly to the
SDR to discard the samples collected when no signal is transmitted.

7.5 Equivariant Adaptive Separation via Inde-

pendence

The RFF methods described in the literature are designed to identify known devices
securely with supervised algorithms. However, since the features of these algorithms
grant the identification of the source, we want to demonstrate that they can also
be valuable for developing new techniques for device counting and tracking. Our
study collected some features by exploiting the equivariant adaptive separation via
independence (EASI). This approach uses a step-sized algorithm to optimise the
orthogonality between sources. Thus, applying an EASI algorithm to IQ signals
should overcome the non-orthogonality of these two axes and reconstruct the ideal
signal. Briefly, the adaptive estimation of the source signal is given by:

y(n) = W(n)x(n) (7.1)

Where x is a 1D array of length 2 containing the IQ samples and W is a 2x2
separating matrix initialised as an identity matrix. The discrete-time notation n is
used in all the equations. Moreover, bold lowercase letters indicate arrays, whereas
bold capital letters indicate matrixes.

W(n+ 1) = (I− µ(n)H(y(n)))W(n) (7.2)

The separating matrix W is updated in every iteration until it reaches convergence.
In equation (7.2), µ is the step size, I is a 2x2 identity matrix, and H is a simplified
matrix-valued adaptation function. The full definition can be found in Valkama
et al. (2001) and Hesse et al. (2008).

H(y) = yyH − I (7.3)

The separation expressed in the equations above is performed by eliminating the
nonlinear cross-correlation between the I and Q signals. Indeed, the estimated
signal y evaluates the ideal signal before the transmission. On the other hand,
the W matrix is related to the IQ imbalance and contains information about it. In
this perspective, our first set of features comprises the elements in the diagonal of
the W matrix after it reaches convergence.
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7.6 Results

After collecting data from some experiments, we tried to calculate the module
of the complex numbers collected as IQ samples. Our approach firstly uses a
threshold slightly higher than the noise (0.0025) to group samples of the same
probe request and discard the ones collected when no signal was transmitted for
over 1000 consecutive samples. The threshold and the number of guard samples
between probes depend on the context and must be experimentally calculated.
Secondly, a new threshold equal to a percentage (10%) of the max value of the
module of the IQ samples of each probe request is used to find the first sample
over it. Figures 7.4 and 7.5 show the module of the IQ samples collected in one of
the experiments in the anechoic chamber. The red line is a threshold to discard
the noise. Given the structure of the Wi-Fi preamble, described in section 7.1,
once the first sample is identified, it is simple to extract the preamble because its
duration is fixed (16µs). We then identified the ten STS symbols and the two LTS
symbols, as shown in Figures 7.6 and 7.7. The dots in the graph correspond to the
samples and are interpolated with a blue line. The localisation of the preamble
starting time is called transient detection and is essential to separate signal samples
from the background noise (Suski II et al., 2008). The transient detection can be
evaluated using features based on the phase and the amplitude of the collected signal.

After identifying the preamble, we applied the EASI method, described in
Section 7.5, to orthogonalise the two IQ components. Our hypothesis was to use
the values of the compensation matrix obtained after the algorithm convergence
as features to discriminate antennas. The process began by calculating the first
iteration with equation 7.1 by initialising the matrix W as a 2x2 identity matrix
and using the first sample of the preamble. The value obtained is the first
approximation of the compensation array y that can be multiplied by the original
IQ samples to obtain a corrected sample. The process continues by updating the
matrix W with equations 7.2 e 7.3 and repeating the procedure until convergence
of W is achieved. However, in most experiments, the values of this matrix did not
stabilise, as shown in Figures 7.8. The same antenna (Edimax) displayed various
behaviours while compensating for the IQ imbalance for the same probe request.
The results obtained with the antenna Lifetron were similar. Furthermore, we
reported different behaviour for probe requests emitted by the same antenna and
similar behaviour for different antennas.

7.7 Limitation and Contributions of this Work

Although this trial did not report any publication-worthy results, it was useful in
identifying probable causes and other issues related to using IQ signals for tracking
devices. Since we found different behaviours for the same interface sending the
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same probe request, the problem could lie in the code or the data collected. The
algorithm for calculating the compensation matrix, initially written in Python, was
rewritten in Julia language to compensate for any issues in the code and libraries.
Yet, changing the programming language did not change the results. Another
possibility inherent in the computerised calculation might be due to null samples, so
an offset was added to all the samples to avoid zero crossing. The offset stabilised
the values of W, meaning they are no longer infinite. However, they still do not
converge to a constant value.

Another assumption is that the transmitting-antenna hardware used is of low
quality and produces random noise that varies the behaviour of the interface,
making it impossible to be constant. Moreover, another reason for this perturbation
is surely associated with the variation in the reception power of the radio. Since
the received signals do not all have the same power, it might disturb the algorithm.
Moreover, the algorithm that we used is blind, and if it converges does not guarantee
the uniqueness of the solution. Other approaches consider other features based on
graphical representations of the IQ signals (Jian et al., 2020). Probably, it would
have been necessary to build a pre-processing stage which guarantees a correction
of the power bias. Since we are dealing with well-defined signals (preambles), it
would surely have been more appropriate to build a method that knows these pilots
to deduce an estimate. These issues might also be due to the bandwidth of the
SDR because the device might reduce the sampling frequency to avoid crashing.
A last but not least problem is the high memory requirement to store the IQ
samples. Essentially, a solution can be the application of filters directly in the SDR
to discard under-threshold values at the source.
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Figure 7.4: Module of the IQ samples collected in one of the experiments
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Figure 7.5: Zoom of the module of the IQ samples in a single probe request

Figure 7.6: Module and phase of the ten symbols of the STS (0.8µs each)
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Figure 7.7: Module and phase of the two symbols of the LTS (3.2µs each)

(a) W is converging with a low noise level (b) W components are going to zero

(c) W is converging with a high noise level (d) W components are not converging

Figure 7.8: Subgraphs showing the four components of the W matrix T



Chapter 8

Discussion and Conclusions

Monitoring the flow of people in a smart city can provide valuable data for urban
planning, public safety, transportation optimisation, and various other purposes.
The main strengths of the methods to count the number of people and track crowds
based on the analysis of Wi-Fi management messages are the cost-effectiveness of
sensors and the protection of privacy. Knowing how people move within a city al-
lows the optimisation of resources like public transportation to meet actual demand.
Moreover, real-time data on traffic flow can be used to manage and alleviate con-
gestion, reducing commuting times and emissions. However, data collected with
the proposed approach may not represent the entire population, leading to biased
decisions if not properly accounted for. For example, people who do not have a
smartphone would be invisible to the system, or people with several Wi-Fi devices
would be considered as a group of people. Another difficulty is related to the test-
ing of these systems, as it is difficult to verify the source of each message without
using artifices such as merging packet captures, which were known to originate from
the same source as we have proposed in Chapter 4. Building a dataset of individ-
ual tracks takes time and should be updated at least as frequently as the average
smartphone lifespan, i.e., every few years. In particular, since the Wi-Fi standard
is continuously evolving, modern devices support additional IEs compared to older
ones to identify new features. This chapter summarises the contributions, limita-
tions, future directions, and concluding remarks.

8.1 Summary of Contributions

This work focuses on enhancing the accuracy of clustering systems to discriminate
probe requests originating from the same source device to count the number of
mobile devices (and then estimate the number of people) under the coverage of a
sniffing device. Our contributions can be summarised as follows:

• We created and published a dataset with real ground truth to test methods to
count and track people based on analysing Wi-Fi probe requests;
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• We presented new methods to extract, represent, and analyse the major avail-
able features of the PRs that can be used to fingerprint the Wi-Fi devices
when both single frames and bursts of frames are considered;

• We performed an extensive investigation about the importance of the features
to identify those that are the more significant when applying a clustering
algorithm to aggregate the frames generated by the same device;

• We compared the performance of two clustering algorithms by considering the
following indexes: the content of the IEs, the average delta time between a
probe and the following one of the same burst, the difference between the first
and last sequence number of the burst, and the number of probes per burst.

8.2 Limitations and Future Directions

Despite the good results achieved, the analysis shows that some IEs always assume
the same values and are no longer discriminating. Some examples are IEs 1 and 50,
which contain the rates available according to the standard and are now supported
by almost all devices. Over time, other network requirements may also be supported
by all devices and thus become non-discriminatory features. For this reason, it is
essential to have up-to-date databases to adapt these methods to the future evolution
of the standard. Furthermore, some of the newer devices considered in the dataset
use IEs not present in the others. In particular, IE 255 encodes additional secondary
elements not yet defined in the current standard. Other algorithms for grouping
frames according to the source can also be experimented with in future works. A
possible approach is to use dynamic programming that could rely on a cost function
that evaluates the goodness of each different combination of sequences of frames
generated by different sources in the captured trace. Complexity may be an issue
in this case, so the solution may not scale very well with the number of captured
frames. Genetic algorithms can be applied to reduce complexity to find sub-optimal
solutions for the sake of computational time.

8.3 Concluding Remarks

This thesis provides a methodology for modelling a dataset with labelled manage-
ment messages and procedures for identifying new feature sets to obtain more ac-
curate results. Yet, new directions can be explored, especially for developing new
techniques to facilitate testing with real ground truth, because creating a dataset
still requires time and must be frequently updated. We believe that this work pro-
vides useful tools and guidelines with the hope that this will improve, in the future,
the state of research in this field and the accuracy of methods for people counting
and crowd monitoring based on the analysis of Wi-Fi management messages.
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Abbreviation Meaning
AP access point
BLE bluetooth low energy
CDR call data records
CNN convolutional neural network
CSI channel state information
EASI equivariant adaptive separation via independence
FM frequency modulation
GDPR general data protection regulation
ID identifier
IE information element
IEEE institute of electrical and electronics engineers
IL incremental learning
IQ in-phase and quadrature
lidar light detection and ranging
MAC media access control
ML machine learning
MNOs mobile network operators
NIC network interface controller
NN neural network
OD origin-destination
OFDM orthogonal frequency-division multiplexing
OS operative system
OUI organisational unique identifier
PC personal computer
PCAP packet capture
PNL preferred network list
POI points of interest
PR probe request
radar radio detection and ranging
RFF radio frequency fingerprinting
SDR software define radio
SFP small form-factor pluggable
SSH secure shell
WLAN wireless local area network

Table A.1: General abbreviations used in this thesis
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Abbreviation Meaning
AE absolute error
AMI adjusted mutual information
CI confidence interval
MI mutual information
MOE margin of error
NMI normalised mutual information
NP noisy points
RI rand index
SC silhouette coefficient
VM v-measure

Table A.2: Abbreviations of the metrics used in this thesis

Abbreviation Meaning
DBSCAN density-based spatial clustering of applications with noise
OPTICS ordering points to identify the clustering structure
RF random forest

Table A.3: Machine Learning algorithms used in this thesis

A-MSDU aggregate MAC service data unit
ASEL antenna selection
BSS basic service set
DSSS direct sequence spread spectrum
ESS extended service set
GI guard interval
HT high transmission
LTS long training sequence
MCS modulation coding scheme
MPDU MAC protocol data unit
PPDU physical-layer protocol data unit
PSDU physical layer service data unit
RSSI received signal strength indicator
SSID service set identifier
STBC space-time block coding
STS short training sequence
VHT very high throughput
WPS Wi-Fi protected setup

Table A.4: Abbreviations of Wi-Fi components



84 APPENDIX A. TABLES OF ABBREVIATIONS



Bibliography

S. M. Abubakar, Z. Sufyanu, A. Miyim, V. Arputharaj, and S. Kumar. Comparisons
of filter, wrapper and embedded-based feature selection techniques for consistency
of software metrics analysis. SLU Journal of Science and Technology, Vol4:188–
204, 07 2022. doi: 10.56471/slujst.v4i.238.
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A. Dagelić, T. Perković, and M. Čagalj. Location privacy and changes in wifi probe
request based connection protocols usage through years. In 2019 4th International
Conference on Smart and Sustainable Technologies (SpliTech), pages 1–5, 2019.
doi: 10.23919/SpliTech.2019.8783167.

G. Delzanno, L. Caputo, D. D’Agostino, D. Grosso, A. Mustajab, L. Bixio, and
M. Rulli. Automatic passenger counting on the edge via unsupervised clustering.
Sensors, 23:5210, 05 2023. doi: 10.3390/s23115210.

J.-F. Determe, S. Azzagnuni, U. Singh, F. Horlin, and P. De Doncker. Monitoring
large crowds with wifi: A privacy-preserving approach. IEEE Systems Journal,
16(2):2148–2159, 2022. doi: 10.1109/JSYST.2021.3139756.

A. Di Luzio, A. Mei, and J. Stefa. Mind your probes: De-anonymization of large
crowds through smartphone wifi probe requests. In IEEE INFOCOM 2016 -
The 35th Annual IEEE International Conference on Computer Communications,
pages 1–9, 2016. doi: 10.1109/INFOCOM.2016.7524459.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96,
page 226–231. AAAI Press, 1996.

General Data Protection Regulation (GDPR). European Union, 2018. URL https:

//gdpr.eu/article-4-definitions/.

http://essay.utwente.nl/91744/
https://gdpr.eu/article-4-definitions/
https://gdpr.eu/article-4-definitions/


BIBLIOGRAPHY 87

E. Fenske, D. Brown, J. Martin, T. Mayberry, P. Ryan, and E. Rye. Three years
later: A study of MAC address randomization in mobile devices and when it
succeeds. Proceedings on Privacy Enhancing Technologies, 2021(3):164–181, Apr.
2021. doi: 10.2478/popets-2021-0042.

E. Ferrara, M. Uras, and R. Cossu. Probe requests of 24 devices in a semianechoic
chamber, 2020. URL https://zenodo.org/record/3928500.

Y. Furuya, H. ASAHINA, M. YOSHIDA, and I. SASASE. Indoor crowd estimation
scheme using the number of wi-fi probe requests under mac address randomization.
IEICE Transactions on Information and Systems, E104.D(9):1420–1426, 2021.
doi: 10.1587/transinf.2020EDP7228.
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