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Summary
This paper proposes a sliding-mode-based adaptive boundary control law for
stabilizing a class of uncertain diffusion processes affected by a matched distur-
bance. The matched disturbance is assumed to be uniformly bounded along with
its time derivative, whereas the corresponding upper bounding constants are not
known. This motivates the use of adaptive control strategies. In addition, the
spatially-varying diffusion coefficient is also uncertain. To achieve asymptotic
stability of the plant origin in the L2-sense in the presence of the disturbance, a
discontinuous boundary feedback law is proposed where the gain of the discon-
tinuous control term is adjusted according to a gradient-based adaptation law.
A constructive Lyapunov analysis supports the stability properties of the con-
sidered closed-loop system, yielding sufficient convergence conditions in terms
of suitable inequalities involving the controllers’ tuning parameters. Simulation
results are presented to corroborate the theoretical findings.
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1 INTRODUCTION

Many industrial processes are governed by partial differential equations (PDEs). Particularly, various classes of diffusion
PDEs have been derived to characterize the dynamics of relevant engineering processes such as distillation processes,1
tubular reactors,2,3 Lithium-ion batteries,4 and many others.

The majority of engineering processes modeled by PDEs can be controlled through manipulable signals acting at the
boundary of the spatial domain. The most popular and powerful approach presently available in the literature to deal
with the boundary control of PDEs is the so-called backstepping.5–8

In its original formulation, the backstepping approach requires the plant model to be perfectly known. However,
physical system models are often affected by uncertainties, including both parametric uncertainty, that is, the imperfect
knowledge of the model parameters, as well as the possible presence of exogenous disturbance signals.

To cope with parametric uncertainties, the backstepping method has been correspondingly revisited and adaptive
backstepping boundary controllers have been developed for various classes of parabolic and non-parabolic PDEs with
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unknown parameters. An overview of the early results in the area of adaptive backstepping can be found in Reference 9,
whereas more recent related contributions are, for example, References 10–13. In this recent literature not only uncer-
tain destabilizing system parameters (such as the diffusion and reaction coefficients) are successfully managed but, in
addition, an uncertain boundary input delay is also taken into account.

The rejection of exogenous matched disturbances with an uncertain shape goes beyond the capabilities of the
backstepping method. In contrast, it can be achieved by resorting to discontinuous boundary control laws designed
according to the sliding-mode paradigm (see e.g., References 14–17). Presently, the discontinuous control synthesis in the
infinite-dimensional setting is well documented3,18–20 and it is generally shown to retain the main robustness features as
those possessed by its finite-dimensional counterparts. To asymptotically stabilize open-loop unstable reaction-diffusion
processes while also asymptotically rejecting a uniformly bounded matched disturbance (with an upper bound known
in advance), backstepping can profitably be combined with the sliding mode control approach as done, for example, in
Reference 21.

Conventional sliding-mode-based controllers are generally insensitive to matched disturbances provided that these
exogenous signals and/or their time derivatives are uniformly bounded and provided that the corresponding bounding
constants are known in advance in such a way that the gain parameters of the discontinuous controller can be tuned
accordingly.

In the present paper, we aim to provide the asymptotic rejection of a matched boundary disturbance with an unknown
upper bound, which demands adaptive sliding-mode boundary control techniques. In References 22–24 similar distur-
bance rejection problems were addressed by sliding mode control techniques in the finite-dimensional setting where an
ODE models the process to be controlled. In the above references, two distinct types of adaptation mechanisms were con-
sidered. In References 22,23 the authors suggest a gradient-based and monodirectional adaptation law where the adaptive
control gain can only increase over time until it asymptotically converges to a constant value. This method provides the
asymptotic rejection of the bounded disturbance. In Reference 24 the adaptation method is bidirectional in that the adap-
tive gain can both increase and decrease over time, which is an advantage in implementation as it demands less control
effort and may reduce the chattering phenomenon. This approach, however, can only provide a finite, although arbitrarily
large, level of disturbance attenuation.

In Reference 25 a sliding mode-based adaptive boundary control design was investigated for a class of
distributed-parameter systems (governed by flexible string or Euler-Bernoulli beam PDEs, as opposed to the diffusion
PDE considered in the present work) subject to an exogenous disturbance whose magnitude is uniformly bounded by an
unknown constant. In Reference 26 the more complicated scenario of a coupled PDE/ODE system modeling the vibra-
tions occurring in a spacecraft was tackled within the same methodological framework. Both papers25,26 considered the
previously mentioned bidirectional adaptation method, yielding, as in the finite-dimensional setting of Reference 24, an
arbitrarily large level of disturbance attenuation in that the norm of the closed-loop trajectories is only guaranteed to
reach a vicinity of zero.

It should be also noted that a gradient-based adaptive unit-vector controller was suggested in Reference 27 to reject
a distributed disturbance acting on the entire spatial domain of a diffusion PDE and having an unknown upper bound
to its L2-norm. However, in Reference 27 a distributed controller was involved, which is less relevant from the practical
viewpoint compared to the boundary controller under investigation in the present work.

In the present paper, the system under consideration is a diffusion process with a spatially-varying uncertain diffusion
coefficient. The manipulable control is of Neumann type and it is applied through one of the boundaries of the spatial
domain. At the same controlled boundary, a matched disturbance is affecting the system’s dynamics. The only measured
signal to be used for feedback is the state at the controlled boundary. The magnitudes of the disturbance and of its time
derivative are supposed to be uniformly bounded but the corresponding upper bounding constants are both unknown.

For this class of systems, a sliding-mode-based adaptive boundary feedback is considered. The proposed boundary
control law has two components: a proportional term with constant gain, and a discontinuous switching term having an
adaptive time-varying gain that is adjusted on-line. The adaptation algorithm is gradient-based and monodirectional as
that used in References 22,23.

The application of the gradient-based adaptation method in the framework of the boundary control of
distributed-parameter systems raises nontrivial challenges in developing the appropriate Lyapunov-based stability anal-
ysis. A constructive Lyapunov-based convergence proof is developed which yields the appropriate tuning conditions for
the controller parameters and demonstrates the global asymptotic stability of the plant origin in the L2-sense. Some terms
of the Lyapunov functions employed in the convergence analysis feature a rather unconventional form, and their finding
represents one of the major challenges overcome in the present work.
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MAYR et al. 10057

The paper is structured as follows. Section 2 describes the system under consideration and states the control problem at
hand. In Section 3 the proposed adaptive boundary controller is presented and the well-posedness and stability properties
of the closed-loop system are investigated via Lyapunov analysis. Simulation results corroborating the demonstrated prop-
erties of the closed-loop system are discussed in Section 4 and concluding remarks and perspectives for future research
activities are given in Section 5.

1.1 Notation

The notation used throughout the paper is fairly standard. H𝓁(0, 1), with 𝓁 = 0, 1, 2, … , denotes the Sobolev space of
absolutely continuous scalar functions f (𝜁) on (0, 1) with square integrable derivatives f (i)(𝜁) up to the order 𝓁 and the
H𝓁-norm

||f (⋅)||H𝓁 =

√
√
√
√∫

1

0

𝓁∑

i=0
[f (i)(𝜁)]2 d𝜁. (1)

We shall also utilize the standard notations H0(0, 1) = L2(0, 1) and

||f (⋅)||H0 = ||f (⋅)||L2 . (2)

The function sign{⋅} represents the multi-valued function sign{z} ∶ R → [−1, 1] such that

sign{z} ∈
⎧
⎪
⎨
⎪
⎩

{1} for z > 0
[−1, 1] for z = 0
{−1} for z < 0

. (3)

2 PROBLEM FORMULATION

Consider the space- and time-varying scalar field z(x, t), evolving in the space L2(0, 1), with the spatial variable x ∈ [0, 1]
and time variable t ≥ 0. Let it be governed by the perturbed boundary-value problem (BVP)

zt(x, t) = [𝜃(x)zx(x, t)]x, (4a)

zx(0, t) = −[u(t) + 𝜓(t)], (4b)

zx(1, t) = 0 (4c)

of Neumann type, where 𝜃(x) is the spatially-varying diffusion coefficient, and with initial condition

z(x, 0) = z0(x) ∈ L2(0, 1). (5)

The variable u(t) is the manipulable boundary control signal, applied through the Neumann-type boundary condition
(4b). The matched boundary disturbance𝜓(t) and its time derivative are of class L∞ and assumed to be uniformly bounded
according to the following

Assumption 1. There are unknown constants Φ and Φd such that

|𝜓(t)| ≤ Φ, (6)

|�̇�(t)| ≤ Φd. (7)

 10991239, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7504 by U

niversita D
i C

agliari, W
iley O

nline L
ibrary on [11/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10058 MAYR et al.

Since the two constants Φ and Φd involved in the inequalities (6) and (7) are supposed to be unknown, an adaptive
and robust control strategy is needed in order to achieve disturbance rejection.

The spatially-varying system’s diffusivity coefficient 𝜃(x), which is also unknown, is assumed to be of class C1 and
positive everywhere. The following assumption on lower and upper bounds to the function 𝜃(x) is thus made.

Assumption 2. There exist unknown constants 𝜃m and 𝜃M such that

0 < 𝜃m ≤ 𝜃(x) ≤ 𝜃M ∀x ∈ [0, 1]. (8)

The control goal is that of designing the boundary control signal u(t) to guarantee the asymptotic stability of the
underlying uncertain and perturbed closed-loop system. The meaning of the boundary-value problem (4a)–(5) in the
closed-loop is specified in the sequel.

3 CONTROLLER SYNTHESIS

In Reference 16 a similar control goal is attained by a control law consisting of a proportional and a discontinuous part,
where the discontinuous control component is needed to achieve robustness against disturbances. Notice that in Refer-
ence 16 it was addressed the simplified scenario where the magnitude of the matched disturbance is uniformly bounded
by an a priori known constant.

To deal with the unknown bounds for the magnitude of the matched disturbance 𝜓(t) and of its time derivative, as
specified in the Assumption 1, in the present paper an extension to this control law is made by allowing the gain of the
discontinuous part to be time-varying, that is,

u(t) = −kz(0, t) −M(t)sign{z(0, t)}. (9a)

The adaptive switching gain M(t) evolves according to the adaptation law

̇M(t) = 𝛾|z(0, t)|, (9b)

where the initial value M(0) = M0 satisfies

M0 ≥ 0. (10)

With a positive adaptation gain

𝛾 > 0 (11)

the right-hand side of (9b) is nonnegative whence it easily turns out that (9b)–(11) describe a monodirectional adapta-
tion law, that is, the gain M(t) is monotonically increasing. The growth rate of M(t) depends on the parameter 𝛾 and
the magnitude of the state at the boundary x = 0. Hence, adaptation stops when |z(0, t)| = 0. Since the control law
(9a) feeds back z(0, t), the overall dynamic controller (9a), (9b) only requires information of the state at the controlled
boundary x = 0.

There are three controller parameters to be tuned, namely the initial value M0 of the adaptive switching gain M(t),
the adaptation gain 𝛾 and the proportional gain k. It is later shown that the latter one is required to satisfy the following
inequality:

k ≥ max
{1

2
, 𝛾

}

. (12)

3.1 Well posedness of the closed loop system

The proposed control input (9a) undergoes discontinuities in the state subspace z(0, t) = 0. Similar to Reference 16,
definition 1, the meaning of the closed-loop system (4a)–(5), driven by (9a)–(12) with the multi-valued input (3), is adopted
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MAYR et al. 10059

in the weak sense beyond the discontinuity manifold z(0, t) = 0, otherwise, it is viewed in the Filippov sense. In addition
to Reference 16, the interested reader may also refer to Reference 20 for more details on weak and Filippov (sliding mode)
solutions in the PDE setting.

Since the above closed-loop system is of class C1 beyond its discontinuity manifold, it possesses a unique local
weak solution once initialized with z0(x) such that z0(0) ≠ 0,28 theorem 23.2. If a sliding mode occurs on the
discontinuity manifold z(0, t) = 0 then it is governed by the same PDE (4a) subject to the mixed-type boundary
conditions

z(0, t) = 0, zx(1, t) = 0, (13)

since the Neumann-type boundary condition (4c) remains in force. In fact, the latter boundary condition is necessary for
the sliding mode to exist in the closed-loop system in question, and it results in the boundary-value problem (4a), (13)
which is well-recognized to be well-posed.

3.2 Main result

The Lyapunov-based convergence analysis of the closed-loop system is presented in the following Theorem 1, which
represents the main result of the present paper.

Theorem 1. Consider PDE (4a) with boundary conditions (4b), (4c), initial condition (5), and let Assumptions
1 and 2be fulfilled. Let the system be controlled by the adaptive boundary control law (9a), (9b) and let the control
parameters be tuned according to (10), (11) and (12). Then, the zero solution z∗(x, t) = 0 is globally asymptotically
stable in the L2(0, 1)-sense, that is,

lim
t→∞

||z(⋅, t) − z∗(⋅, t)||L2 = 0 ∀z0(x). (14)

Proof. The structure of the proof is divided into the following four steps: (step 1) It is preliminarily shown
by Lyapunov analysis that the L2-norm ||z(⋅, t)||L2 of the potential closed-loop trajectories and the adaptive
switching gain M(t) are both uniformly bounded. (step 2) Based on the uniform boundedness, the system
is concluded to be forward complete in the sense that its solutions globally exist for all t ≥ 0. By virtue of
these results, a more elaborated Lyapunov analysis is subsequently developed (step 3) to show the uniform
boundedness of ∫ 1

0 𝜃(x)z
2
x(x, t) dx and |z(0, t)|.

Finally, owing to the above boundedness results, we further develop (in step 4) the Lyapunov analysis
eventually enabling the application of Barbalat’s Lemma29 to demonstrate the global asymptotic closed-loop
stability in the L2(0, 1)-sense.

Step 1. Uniform boundedness of ||z(⋅, t)||L2 and M(t)
For the closed-loop system in question, consider the Lyapunov function candidate

V(t) = V1(t) + V2(t), (15)

where

V1(t) =
1
2∫

1

0
z2(x, t) dx = 1

2
||z(⋅, t)||2L2

(16)

and

V2(t) =
𝜃(0)
2𝛾

(M(t) − Φ)2. (17)

Strictly speaking V1(t) is a functional but for simplicity it is referred to as a function. Furthermore, V1(z(⋅, t)) =
V1(t) is written for this and, analogously, for other functions.
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10060 MAYR et al.

According to (4a), and performing integration by parts, the time derivative of V1(t) along potential weak
solutions of the closed-loop system beyond the discontinuity manifold z(0, t) = 0 is manipulated as

̇V 1(t) = ∫
1

0
z(x, t)zt(x, t) dx = ∫

1

0
z(x, t)[𝜃(x)zx(x, t)]x dx = 𝜃(x)zx(x, t)z(x, t)|10−

∫
1

0
𝜃(x)z2

x(x, t) dx = 𝜃(1)zx(1, t)z(1, t) − 𝜃(0)zx(0, t)z(0, t) − ∫
1

0
𝜃(x)z2

x(x, t) dx.
(18)

By substituting the boundary conditions (4b), (4c) and the control law (9a) into the right-hand side of (18) one
ends up with

̇V 1(t) = −𝜃(0)kz2(0, t) − 𝜃(0)M(t)|z(0, t)| + 𝜃(0)𝜓(t)z(0, t) − ∫
1

0
𝜃(x)z2

x(x, t) dx. (19)

The time derivative of V2(t) is obtained by virtue of (9b), this yields

̇V2(t) = 𝜃(0)M(t)|z(0, t)| − 𝜃(0)Φ|z(0, t)|. (20)

Combining (19) and (20), performing further manipulations and taking advantage of (6) yields

̇V(t) = ̇V 1(t) + ̇V 2(t) = −𝜃(0)kz2(0, t) + 𝜃(0)𝜓(t)z(0, t) − 𝜃(0)Φ|z(0, t)|−

∫
1

0
𝜃(x)z2

x(x, t) dx ≤ −𝜃(0)kz2(0, t) − 𝜃(0)[Φ − |𝜓(t)|]|z(0, t)| − ∫
1

0
𝜃(x)z2

x(x, t) dx ≤ 0.
(21)

Similar manipulations of the Lyapunov derivative along the potential sliding modes, governed by (4a),
(13), result in ̇V(t) ≤ 0 as well. Indeed, specifying the right-hand side of (18) according to (13) yields

̇V 1(t) = 𝜃(1)zx(1, t)z(1, t) − 𝜃(0)zx(0, t)z(0, t) − ∫
1

0
𝜃(x)z2

x(x, t) dx = −∫
1

0
𝜃(x)z2

x(x, t) dx (22)

whereas in light of (13) the right-hand side of (20) becomes identically zero. Thus, along the potential sliding
modes, governed by (4a), (13) the Lyapunov derivative ̇V(t) becomes

̇V(t) = −∫
1

0
𝜃(x)z2

x(x, t) dx ≤ 0. (23)

Inequalities (21) and (23) imply that along potential weak solutions of the closed-loop system relation
̇V(t) ≤ 0 holds both beyond and along the discontinuity manifold z(0, t) = 0. Hence, V(t) is nonincreasing,

which means that

0 ≤ V(t) ≤ V(0) ∀t ≥ 0. (24)

From (24) and (15)–(17), and taking into account that

V1(t) ≤ V(t) ≤ V(0), (25)

V2(t) ≤ V(t) ≤ V(0), (26)

one straightforwardly derives the following uniform upper bounds for ||z(⋅, t)||L2 and M(t)

||z(⋅, t)||L2 ≤
√

2V(0), (27)

M(t) ≤ Γ ∶= Φ +
√

2𝛾
𝜃(0)

V(0). (28)
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MAYR et al. 10061

Step 2. Forward completeness of the closed-loop system The closed-loop trajectories are uniformly bounded
in the state space L2(0, 1) ×R because of the a priori estimate (24) of the Lyapunov function candidate
(15)–(17). Hence, along with the Lyapunov function candidate, an arbitrary local solution of the closed-loop
system admits an a priori estimate in the state space L2(0, 1) ×R, too. Thus, such a solution is continuously
extendible to the right for all t ≥ 0 because otherwise, its norm would escape to infinity in finite time which
is impossible due to (24).

Step 3. Uniform boundedness of ∫ 1
0 𝜃(x)z

2
x(x, t) dx and |z(0, t)|

The new Lyapunov candidate function

W(t) =
7∑

i=1
Vi(t) (29)

is introduced with

V3(t) =
1
2∫

1

0
𝜃(x)z2

x(x, t) dx, (30)

V4(t) = 𝜃(0)M(t)|z(0, t)|, (31)

V5(t) = 𝜃(0)Φ|z(0, t)| − 𝜃(0)𝜓(t)z(0, t), (32)

V6(t) = 𝜃(0)
Φd

𝛾

(Γ −M(t)), (33)

V7(t) =
𝜃(0)

2

(
√

k|z(0, t)| − 1
√

k
Φ

)2

. (34)

The non-negativeness of V5(t) derives from the inequality

|𝜃(0)𝜓z(0, t)| ≤ 𝜃(0)Φ|z(0, t)|, (35)

whereas the non-negativeness of V6(t) is due to the previously proven relation (28), namely the existence of
the uniform upper bound Γ for the adaptive gain M(t).

The time derivatives of the newly introduced functions (30)–(34) along the closed-loop system’s solutions
are now calculated, starting with ̇V 3(t) for which integration by parts is applied. This yields

̇V3(t) = ∫
1

0
𝜃(x)zx(x, t)zxt(x, t) dx

= zt(x, t)𝜃(x)zx(x, t)
|
|
|

1

0
− ∫

1

0
zt(x, t)[𝜃(x)zx(x, t)]x

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

zt(x,t)

dx.
(36)

Substituting the boundary conditions (4b), (4c) and the boundary control law (9a) into (36) gives

̇V 3(t) = −𝜃(0)kz(0, t)zt(0, t) − 𝜃(0)M(t)zt(0, t)sign{z(0, t)}+
𝜃(0)zt(0, t)𝜓(t) − ||zt(⋅, t)||2L2

.

(37)

Evaluating the time derivatives of the remaining functions V4(t) to V7(t) yields

̇V 4(t) = 𝜃(0) ̇M(t)|z(0, t)| + 𝜃(0)M(t)
d
dt
|z(0, t)| =

= 𝜃(0)𝛾z2(0, t) + 𝜃(0)M(t)zt(0, t)sign{z(0, t)},
(38)

̇V 5(t) = 𝜃(0)Φzt(0, t)sign{z(0, t)} − 𝜃(0)�̇�(t)z(0, t) − 𝜃(0)𝜓(t)zt(0, t), (39)
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10062 MAYR et al.

̇V 6(t) = −𝜃(0)Φd|z(0, t)|, (40)

̇V 7(t) = 𝜃(0)kzt(0, t)z(0, t) − 𝜃(0)Φzt(0, t)sign{z(0, t)}. (41)

Combining (21) and (37)–(41), and reordering, leads to

̇W(t) =
7∑

i=1

̇V i(t) = −∫
1

0
𝜃(x)z2

x(x, t) dx − ||zt(⋅, t)||2L2
+

+ (𝛾 − k)𝜃(0)z2(0, t) + (𝜓(t) − �̇�(t))𝜃(0)z(0, t) − (Φ + Φd)𝜃(0)|z(0, t)|.

(42)

The sign-indefinite term (𝜓(t) − �̇�(t))𝜃(0)z(0, t) in the right-hand side of (42) can be estimated as

|(𝜓(t) − �̇�(t))𝜃(0)z(0, t)| ≤ (Φ + Φd)𝜃(0)|z(0, t)| (43)

by virtue of (6) and (7). Thus, by virtue of (43) and (11) one can further manipulate the right-hand side of (42)
to get

̇W(t) ≤ 0. (44)

The latter inequality implies that W(t) is nonincreasing, which means that

0 ≤ W(t) ≤ W(0) ∀t ≥ 0. (45)

From (45), and taking into account that

V3(t) ≤ W(t) ≤ W(0), (46)

V7(t) ≤ W(t) ≤ W(0), (47)

one can derive uniform upper bounds for ∫ 1
0 𝜃(x)z

2
x dx and |z(0, t)|, given by

∫
1

0
𝜃(x)z2

x(x, t) dx ≤ 2W(0), (48)

|z(0, t)| ≤ Z ∶= 1
k
Φ +

√
2

k𝜃(0)
W(0). (49)

Step 4. Asymptotic state stability
We are now in a position to exploit, after some preliminary manipulations, Barbalat’s Lemma in order to

show global asymptotic stability in the L2(0, 1)-sense. It follows from (21) that

̇V(t) ≤ −∫
1

0
𝜃(x)z2

x(x, t) dx − 𝜃(0)kz2(0, t). (50)

By virtue of Assumption 2, the right-hand side of (50) can be further manipulated as follows

̇V(t) ≤ −∫
1

0
𝜃mz2

x(x, t) dx − 𝜃mkz2(0, t) = −𝜃m||zx(⋅, t)||2L2
− 𝜃mkz2(0, t). (51)

Using the Poincaré inequality (see, e.g., Reference 5)

||z(⋅, t)||2L2
≤ 2z2(0, t) + 4||zx(⋅, t)||2L2

(52)

 10991239, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7504 by U

niversita D
i C

agliari, W
iley O

nline L
ibrary on [11/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MAYR et al. 10063

and rearranging it to

||zx(⋅, t)||2L2
≥ 1

4
||z(⋅, t)||2L2

− 1
2

z2(0, t) (53)

one further manipulates the right-hand side of (51) as follows

̇V(t) ≤ −𝜃m

4
||z(⋅, t)||2L2

+ 𝜃m

2
z2(0, t) − 𝜃mkz2(0, t)

= −𝜃m

2
V1(t) − 𝜃m

(

k − 1
2

)

z2(0, t).
(54)

By virtue of (12) one obtains that

̇V(t) ≤ −𝜃m

2
V1(t). (55)

Integrating both sides of (55) from t = 0 to infinity yields

lim
t→∞

{V(0) − V(t)} ≥ 𝜃m

2 ∫
∞

0
V1(t) d𝜏. (56)

By virtue of (24) it follows that

lim
t→∞

{V(0) − V(t)} ∈ [0,V(0)] (57)

which, considered together with (56), shows that the integral term in the right-hand side of (56) exists. To
apply Barbalat’s Lemma to derive that V1(t) asymptotically converges to zero, it remains to show that V1(t) is
uniformly continuous. The differentiability of V1(t) and uniform boundedness of ̇V 1(t) are sufficient for this.
The expression of ̇V 1(t) was previously derived in (19).

By virtue of (8), (28), (48), and (49) it can be concluded that all terms appearing in the right-hand side of
(19) are uniformly bounded, and so ̇V 1(t) turns out to be uniformly bounded as well. This implies, according
to Barbalat’s Lemma, that

lim
t→∞

V1(t) = lim
t→∞

1
2
||z(⋅, t)||2L2

= 0 (58)

which concludes the proof. ▪

Remark 1. It can be verified that if the homogeneous Neumann boundary condition (4c) is replaced by the
Dirichlet boundary condition z(1, t) = 0 then the same control law (9a), (9b) can still be adopted yielding the
same convergence properties stated in Theorem 1, with the only difference that the less restrictive parameter
condition k ≥ 𝛾 applies instead of (12).

Remark 2. The discontinuity manifold z(0, t) = 0 of the closed-loop dynamics can be considered as the sliding
surface of the control system under investigation. Although the sliding surface is usually reached in finite time
when the conventional (i.e., non-adaptive) sliding mode control is applied in the finite-dimensional setting,
this is generally not the case when adaptive sliding mode control is employed. As a matter of fact, in References
22–24, as well as in the infinite-dimensional setting of References 25,26, the underlying sliding surface is only
guaranteed to be reached asymptotically. It should be stressed that the asymptotic result established in (14)
only involves the L2-norm of the state and does not necessarily imply that z(0, t) approaches zero. Establishing
a pointwise convergence result would require additional and more involved stability analysis carried out in
the Sobolev space H1(0, 1) rather than in the space L2(0, 1).
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10064 MAYR et al.

4 SIMULATION RESULTS

The properties of the proposed control scheme are investigated by numerical simulations. The diffusivity function is
chosen to be linearly increasing from x = 0 to x = 1, that is,

𝜃(x) = 0.05 + 0.1x. (59)

The matched disturbance 𝜓(t) is selected as a sinusoidal signal that is activated at t = 2, that is,

𝜓(t) =

{
0 for 0 ≤ t < 2
20 sin(𝜋(t − 2)) for t ≥ 2

. (60)

Note that Assumptions 1 and 2 are fulfilled. The initial condition is set to

z0(x) = 0.2(1 − cos(𝜋x)), (61)

which is compatible to the boundary conditions (4b), (4c).
In order to numerically solve the closed-loop Boundary-Value Problem, the semi-discretization approach is followed

where the spatial domain x ∈ [0, 1] is partitioned into n = 100 uniformly spaced solution nodes. The resulting 100th-order
finite-dimensional system is then discretized by the forward Euler method with a step size of Ts = 10−5.

A preliminary simulation (TEST 1) is carried out where just the proportional part of the control law (9a) is utilized, that
is, M(t) = 0∀t ≥ 0, with a proportional gain of k = 40. The time evolution of ||z(⋅, t)||L2 in TEST 1 is depicted in Figure 1,
where it can be seen that the disturbance (60) causes a steady state deviation from zero as well as permanent oscillations.
This demonstrates the need for the sliding mode control component in the control law to achieve disturbance rejection.

In the next TEST 2, the controller is implemented in its complete form, that is, also including the discontinuous com-
ponent neglected in the previous simulation. The adaptation gain 𝛾 is selected in accordance with (11) and (12) as 𝛾 = 40,
whereas the initial value for the adaptive switching gain is chosen as M(0) = 0. Figure 2 depicts the spatiotemporal profile
of z(x, t) whereas Figure 3 shows the corresponding L2-norm time evolution, that asymptotically vanishes revealing that
the control goal is achieved. The sinusoidal disturbance acting at x = 0 from t = 2 on is suppressed by the sliding-mode
base boundary control signal acting at the same spatial location.

The time evolution of the adaptive gain M(t) is displayed in the upper plot of Figure 4 alongside the magnitude of the
disturbance (60). At t ≥ 2 the matched disturbance (60) becomes non-zero, yielding an increase of the adaptive gain M(t)
to compensate for its effect. As expected, the adaptive gain M(t) eventually settles to a constant value. Additionally the
boundary control signal u(t), composed of a proportional and a discontinuous part, is displayed in the bottom plot of the
same Figure 4. Finally, Figure 5 displays the boundary state z(0, t). It is interesting to observe that during the convergence
transient the switching frequency of the discontinuous control component fluctuates, being very large in the time intervals
when the adaptive gain M(t) is dominating the magnitude of the disturbance |𝜓(t)| and, as a result, the boundary state
z(0, t) is constrained to evolve into a small vicinity of zero. As shown in Figure 5, the convergence process of approaching
the discontinuity manifold z(0, t) = 0 takes place asymptotically (see also the Remark 2).

F I G U R E 1 Time evolution of ||z(⋅, t)||L2
in the TEST 1.
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MAYR et al. 10065

F I G U R E 2 Spatiotemporal profile of z(x, t) in the TEST 2.

F I G U R E 3 The state norm ||z(⋅, t)||L2
in the TEST 2.

F I G U R E 4 Top plot: The adaptive gain M(t) and the disturbance magnitude |𝜓(t)| in TEST 2. Bottom plot: the boundary control u(t) in
TEST 2.
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10066 MAYR et al.

F I G U R E 5 The boundary state z(0, t) in TEST 2.

5 CONCLUSIONS

A sliding-mode-based adaptive boundary control law has been proposed for stabilizing a class of uncertain diffusion
processes while simultaneously rejecting a matched disturbance uniformly bounded along with its time derivative. The
corresponding upper bounding constants are not known in advance, motivating the use of an adaptive control scheme.
The proposed controller features an intuitive structure and requires a measurement of the state at the boundary only.
Despite its straightforward structure, a rather unconventional Lyapunov function had to be devised to prove the stability
properties of the closed-loop system.

Simulation studies were carried out to demonstrate the closed-loop performance. They revealed that M0 = 0 is a
practical choice for the initial value of the adaptive switching gain and led to no over-estimation ofΦ in those experiments.

There are multiple possible directions for future research activities. It would be of interest to extend the problem
to the more general scenario where multiple collocated actuators and matched disturbances, possibly acting inside the
spatial domain instead of just at one of its boundaries, are present. Another interesting problem is to assess the effect
of unmatched disturbances as it was done in Reference 16 in the non-adaptive case. The experimental validation of the
proposed technique using laboratory prototypes, and its performance comparison with the non-adaptive version of the
algorithm, also represent attractive and interesting topics to address. Lastly, future research will also investigate the poten-
tial use in the present scenario of bidirectional adaptation algorithms similar to those used in References 25,26 which also
allow a potential transient decrease of the adaptive switching gain.
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7. Krstić M, Smyshlyaev A. Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and

sensor delays. Syst Control Lett. 2004;57:750-758.
8. Smyshlyaev A, Krstic M. Backstepping boundary control for PDEs with non-constant diffusivity and reactivity. Proceedings of the 2005,

American Control Conference. 2005 7:4557-4562.
9. Smyshlyaev A, Krstic M. Adaptive Control of Parabolic PDEs. Princeton University Press; 2010.

10. Guo W, Zhou W-C, Krstic M. Adaptive error feedback regulation problem for 1D wave equation. Int J Robust Nonlinear Control.
2018;28:1-21.

11. Wang S, Qi J, Diagne M. Adaptive boundary control of reaction-diffusion PDEs with unknown input delay. Automatica.
2021;134:1575-1591.

12. Wang S. Delay-adaptive predictor feedback control of reaction–advection–diffusion PDEs with a delayed distributed input. IEEE Trans.
Automat Contr. 2022;67:3762-3769.

13. Guo R. Output-feedback boundary adaptive fault-tolerant control for scalar hyperbolic partial differential equation systems with actuator
faults. Int J Adapt Contr Signal Proc. 2022;36:2716-2731.

14. Cheng M. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica.
2023;47:381-387.

15. Pisano A, Orlov Y. Boundary second-order sliding-mode control of an uncertain heat process with unbounded matched perturbation.
Automatica. 2012;48(8):1768-1775.

16. Pisano A, Orlov Y. On the ISS properties of a class of parabolic DPS’ with discontinuous control using sampled-in-space sensing and
actuation. Automatica. 2017;81:447-454.

17. Bao C. Sliding mode boundary control for exponential stabilization of linear parabolic distributed parameter systems subject to external
disturbance. Int. J. Robust Nonlinear Control. 2023;33:9364-9390.

18. Orlov Y, Utkin V. Sliding-mode control in infinite-dimensional systems. Automatica. 1987;23:753-757.
19. Orlov Y. Discontinuous unity feedback control of uncertain infinite-dimensional systems. IEEE Trans Automat Contr. 2000;45:834-843.
20. Orlov Y. Nonsmooth Lyapunov Analysis in Finite and Infinite Dimensions. Communications and Control Engineering Series. Springer;

2022.
21. Pisano A, Orlov Y, Pilloni A, Usai E. Combined backstepping/second-order sliding-mode boundary stabilization of an unstable

reaction–diffusion process. IEEE Control Syst Lett. 2020;4(2):391-396.
22. Plestan F. New methodologies for adaptive sliding mode control. Int J Control. 2010;83:1907-1919.
23. Chang Y. Adaptive sliding-mode control for plants with mismatched perturbations to achieve asymptotical stability. Int J Robust Nonlinear

Control. 2007;17:880-8496.
24. Roy S, Baldi S, Fridman LM. On adaptive sliding mode control without a priori bounded uncertainty. Automatica. 2020;111:108650.
25. Han Z. Fault-tolerant control for flexible structures with partial output constraint. IEEE Trans Automat Contr. 2024; 69:2668-2675.
26. Liu Z. Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Sci China Inf Sci. 2021;64:1-16.
27. Pisano A. Adaptive unit-vector control of an uncertain heat diffusion process. J Franklin Inst. 2014;351(4):2062-2075.
28. Krasnoselskii MA. Integral Operators in Spaces of Summable Functions. Noordhoff; 1976.
29. Khalil HK. Nonlinear Systems. 3rd ed. Prentice-Hall; 2002.

How to cite this article: Mayr P, Orlov Y, Pisano A, Koch S, Reichhartinger M. Adaptive sliding mode boundary
control of a perturbed diffusion process. Int J Robust Nonlinear Control. 2024;34(15):10055-10067. doi:
10.1002/rnc.7504

 10991239, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7504 by U

niversita D
i C

agliari, W
iley O

nline L
ibrary on [11/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	coverpage-iris-unica.pdf (p.1)
	Intl J Robust   Nonlinear - 2024 - Mayr - Adaptive sliding mode boundary control of a perturbed diffusion process.pdf (p.2-14)

