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Abstract 
Volatility indices are fundamental in the study of stock markets. In this paper, 
we analyzed the classical statistical characteristics of the main volatility index 
of the European stock markets (VStoxx) and evidenced some interesting 
connections and cause-effect relationships between the Hurst exponent and 
the moments of the distribution. Our results suggest that the market volatility 
is characterized by anti-persistence and mean reversion and that the Hurst 
exponent variations seem to anticipate the variations of the other moments of 
the distribution such as skewness and kurtosis, so that the Hurst exponent 
variations can possibly signal near-term market reversals. 
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1. Introduction 

The volatility indices in recent years raised increasing interest among the various 
market players. Accurate modeling and forecasting of volatility are crucial both 
for theoretical studies and the financial markets’ investment activity. However, 
to our knowledge, no published and working paper studied the statistical features 
and linkage between the moments of the VStoxx index distribution over time 
with a fractal approach. 

In this paper, we analyzed the classical statistical characteristics of the main 
volatility index of the European stock markets (VStoxx) and evidenced some in-
teresting connections and cause-effect relationships between the Hurst exponent 
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and the moments of the distribution. 
More in detail: We analyzed the VStoxx index distribution over time for veri-

fying: 
1) The statistical and structural characteristics of the volatility indices through 

the study of the distribution of returns over time. As in other analysis papers 
(see Bagato et al., 2018), this study starts from the analysis of the basic characte-
ristics of the distribution of logarithmic returns of the European volatility index 
Vstoxx, so directly from the distribution moments, to empirically describe some 
significant evidence; 

2) The anti-persistence and mean reversion structurally present in the histor-
ical series, through the study of the behavior of the Hurst exponent. The Hurst 
exponent is a fundamental index for the analysis of the long-range dependence 
features of observable time series (Resta, 2012). We analyzed the Hurst exponent 
behavior in the historical time series of the European index of equity volatility. 
In this analysis, we verified that the Hurst exponent value of logarithmic returns 
is mainly concentrated between 0 and 0.5. This confirms the anti-persistence 
of the European volatility index Vstoxx, and its mean reversion characteristic. In 
the literature, a Hurst exponent that structurally moves between 0 and 0.5 has 
led to the definition of volatility as “rough” (see Gatheral et al., 2014). This cha-
racteristic of anti-persistence of the historical series of logarithmic returns also 
brings with it the adoption of Fractional Brownian Motion models (see Neuman 
& Rosenbaum, 2018) used in the logic of analysis and pricing when the Hurst 
exponent assumes values that are structurally different from 0.5, the typical value 
of the classic Brownian Motion; 

3) The relationships between the various moments of the distribution and the 
Hurst exponent. We have focused more on this last aspect even if our analysis is 
not exhaustive, but opens the way for further and in-depth analysis both in the 
field of risk management, but also in terms of pricing of derivative instruments 
with non-linear payoffs linked to stock volatility indices. Nevertheless, we believe 
it is an additional useful tool for portfolio managers besides classical evaluation 
metrics (i.e. P/E, P/S, Dividend Yield, etc.) to signal a potential near-term mar-
ket excess (increasing probability of cyclical market inversion point) when it is 
close to its interval extremes.  

The paper is organized as follows: Section 2 reports a literature review, Section 
3 describes the data and model, Section 4 reports its results, and Section 5 con-
cludes. 

2. Literature Review 

Although there exist different approaches aimed at volatility forecasting, histor-
ical and implied volatility models are the most exploited. Siriopoulos and Fassas 
(2019) test and document the information content of all publicly available im-
plied volatility indices regarding both the realized volatility and the returns of 
the underlying asset. Their findings suggest that implied volatility includes in-
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formation about future volatility beyond that contained in past volatility but, at 
the same time, they show that implied volatilities in commodities, bonds, and 
currencies, react differently from equities to underlying price changes. Implied 
volatility models are based on the Black-Scholes Model (BSM) the standard 
model for options pricing. Volatility is one of not deterministic inputs available 
for an immediate application in the formula, which is assumed to be constant 
over time and coupled with the assumption of normally distributed log returns. 
Iqbal (2018) reports a usual leptokurtic distribution of the log returns of spot 
prices rather than a normal distribution, so characterized by excess kurtosis and 
fat tails compared with the normal. In other terms, spot prices will expectedly 
remain unchanged more often than in the case of a normal distribution, and, at 
the same time, extreme variations are more often observed. The author also shows 
how this pricing feeds into the volatility smile. 

Most papers have focused on the predictive power of the VIX Index (or CBOE 
Volatility Index) for predicting future stock market returns. Giot (2005) proves 
that high (low) levels of the VIX correspond to positive (negative) future returns. 
Also, Chow et al. (2014) show the existence of a positive relationship between 
market returns and the VIX Index. Regarding the VIX features, Fleming et al. 
(1995) for the first time showed the persistence (long-memory behavior) of this 
index, not considered in the previous literature on the main European volatility 
indices (i.e. VStoxx and VDax). Stanescu and Tunaru (2013) focused the attention 
on the linkages between Eurostoxx50, S&P500, VSTOXX, VIX, and VSTOXX 
futures series, and showed that these linkages can be used by equity investors to 
generate alpha and protect their investments during turbulent times. Fahling et 
al. (2019) show that the best forecasting model for the one-month VDAX is a 
GARCHX(1, 1) model and an ARX(1) model for the one-year VDAX, while for 
the VSTOXX, an ARX model is the best fit under each scenario for both strate-
gies. 

3. Model and Data Description 

To conduct the empirical analysis, we use daily VStoxx close prices for the in-
terval 2000-2019 (5423 observations) transformed in log returns (5422 observa-
tions). Logarithmic transformation allows time-series stationarity and a clos-
er-to-normal distribution. Data come from Bloomberg. 

Figure 1 reports the Vstoxx log returns distribution over the considered time 
span, evidencing that the central bars and the tails of the histogram are higher 
than the normal distribution expected ones, while the side bars report a lower fre-
quency, in the typical fat-tailed leptokurtic distribution. 

Table 1 reports the descriptive statistics of the VStoxx log returns series for the 
considered time span. 

Figure 2 shows the graphical comparison among the Fisher coefficient of 
kurtosis, Fisher-Pearson coefficient of skewness, and Hurst exponent. Table 2 
reports the descriptive statistics of the same parameters data derived from VStoxx  
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Figure 1. Example of VStoxx log returns density distribution series from January 2000 to 
December 2019. Source: authors’ calculations in Eviews 10 based on Bloomberg data. 
 

 
Figure 2. Fisher coefficient of kurtosis, Fisher-Pearson coefficient of skewness, and Hurst 
exponent data derived from VStoxx log returns distribution from January 2000 to De-
cember 2019 (20 annual obs.) Source: authors’ calculations in Eviews 10 based on Bloom-
berg data. 
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Table 1. Descriptive statistics of data from January 2000 to December 2019 (5422 daily obs.) 

Statistics VStoxx Log Returns (%) 

Mean −0.005 

Median −0.331 

Maximum 47.031 

Minimum −43.472 

Std. Dev. 6.148 

Skewness 0.758 

Kurtosis 7.529 

Source: Authors’ calculations based on Bloomberg data. 
 
Table 2. Descriptive statistics of Fisher coefficient of kurtosis, Fisher-Pearson coefficient 
of skewness, and Hurst exponent from January 2000 to December 2019 (20 annual obs.) 

Statistics 
Fisher Coefficient 

of Kurtosis 

Fisher-Pearson 
Coefficient of 

Skewness 
Hurst Exponent 

Mean 2.941 0.619 0.381 

Median 2.089 0.582 0.398 

Maximum 10.599 1.730 0.492 

Minimum 0.569 −1.007 0.158 

Std. Dev. 2.560 0.524 0.088 

Skewness 1.775 −1.088 −1.036 

Kurtosis 5.544 6.416 3.596 

Source: Authors’ calculations based on Bloomberg data. 
 
log returns distribution. 

Let tFK  (Fisher coefficient of kurtosis at time t) and tFS  (Fisher-Pearson 
coefficient of skewness at time t) define as (Joanes & Gill, 1998): 
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where 2 t
m , 3 t

m , and 4 t
m  are respectively the second, the third, and the fourth 

central moment computed for the time interval t. 
The econometric model implemented develops in two sequential parts. The 

first part is based on the methodology suggested by Gonzalo and Granger (1995), 
while the second part is based on an OLS regression. 

Firstly, through a cointegration analysis, employing the Augmented Dick-
ey-Fuller test, we verify whether the short-term deviations of these two series 
converge towards the long-term equilibrium. The existence of a linear combina-
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tion between these two series, indeed, supports the presence of a long-term equi-
librium adjustment process, even if the series deviates one from the other in the 
short term. 

If the series are cointegrated1, employing a bivariate Vector Error Correction 
Model (VECM), as suggested by Engle and Granger (1987), we verify which va-
riable moves more rapidly than the other one, to evidence the role of the leader 
and follower variables.  

To provide some information about the statistical properties of European 
stocks’ volatility index time series, we estimate the Hurst Exponent using re-scaled 
range analysis (R/S), following the intuition and the structure suggested by Sang 
et al. (2001). Re-scaled range analysis approach is robust to heavy tails (Barunik 
& Kristoufek, 2010). Starting from a VStoxx log return series nRt , and posing τ 
as the time span of the entire discrete series, the cumulative sum of the differ-
ence between the return series and their mean, ( ),X n τ , is defined as: 

( ) 1 1

1, i ni n
nX n Rt Rtττ

τ= =

 
 
 

= −∑ ∑                   (3) 

where R is the difference between the maximum and minimum of ( ),X n τ , and 
S is the series standard deviation. Therefore, R and S are defined as: 

( ) ( ) ( ), min ,R X n X nτ τ τ= −  for [ ]1,n τ∈             (4) 

( )
2

1 1

1 1
n nn nS Rt Rtτ ττ

τ τ= =

 
 
 

= −∑ ∑                 (5) 

R and S are functions of τ. The R/S ratio can then be represented by the fol-
lowing empirical equation:  

( )HR c
S

τ=                                  (6) 

where c is a constant and H is the Hurst exponent. The Hurst exponent is a clas-
sical self-similarity parameter that measures the long-range dependence in a time 
series and provides a measure of long-term nonlinearity (Millen & Beard, 2003). 
Figure 3 reports its distribution in the considered time span. 

The formal specification of the model is defined by the following equations: 

10 1 1 1 1 1 1 11 1t t t t
l
t

l
t t ttH H FK ECTβ β α λ ε− − −= =

∆ = + ∆ + ∆ + +∑ ∑        (7) 

20 2 1 2 1 2 1 21 1t t t t t t tt t
l lFK H FK ECTβ β α λ ε− − −= =

∆ = + ∆ + ∆ + +∑ ∑       (8) 

where: 
• tH∆  and tFK∆  are the first differences for the Hurst exponent and the Fish-

er coefficient of the kurtosis series; 
• 10β  and 20β  are the constant terms of the Equations (7) and (8); 
• 1tH −∆  and 1tFK −∆  are the delayed first differences for the Hurst exponent and 

the Fisher coefficient of the kurtosis series; 
• l  is the number of lags; 

 

 

1If the two series are not cointegrated then the VECM cannot be implemented. 
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Figure 3. Hurst exponent distribution from January 2000 to December 2019 (20 annual 
obs.). Source: authors’ calculations in Eviews 10 based on Bloomberg data. 
 
• 1tECT −  is the Error Correction Term (ECT). It is defined as  

1 1 1t t tECT H FKα γ− − −= − − . In simple terms, it measures the deviations be-
tween the Hurst exponent and Fisher coefficient of kurtosis at the time (t − 1) 
with respect to the theoretical long-period equilibrium. γ is the cointegrating 
coefficient and α is the intercept of the cointegrating term; 

• λ1 and λ2 are the adjustment coefficients. They describe the speed of adjust-
ment back to the long-period equilibrium, that is they measure the propor-
tion of correction of the series deviations from the long-run relationship; 

• ε1t and ε2t are the error terms of Equations (7) and (8). 
For the aim of the analysis, the sign2 and statistical significance of the adjust-

ment coefficients (λ1 and λ2) determine which market contributes to the adjust-
ment process toward the long-period equilibrium, and which variable can move 
more rapidly than the other one. Hence, we should distinguish four cases: 

1) If λ1 is statistically significant and negative, then the Fisher coefficient of 
kurtosis adjusts more rapidly than the Hurst exponent. This means that the Hurst 
exponent is trying to restore the long-run equilibrium; 

2) If λ2 is statistically significant and positive, then the Hurst exponent moves 
more rapidly than the Fisher coefficient of kurtosis adjustment. This means that 
the Fisher coefficient of kurtosis adjustment is trying to restore the long-run 
equilibrium; 

3) If λ1 is statistically significant and negative and λ2 is statistically significant 
and positive then both variables contribute to the adjustment process toward the 

 

 

2We should expect the negative sign for λ1 and the positive sign for λ2 to favor the process of ad-
justment. 
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long-run equilibrium. In this case, by following Gonzalo and Granger (1995), to 
evaluate the effective contribution of each market in the adjustment process, we 
follow the concept of Market Share (MS)3. We distinguish three sub-cases: 

a) If MS ≈ 1 then the Hurst exponent is the leading variable, and the Fisher 
coefficient of kurtosis is the lagging variable; 

b) If MS ≈ 0 then the Fisher coefficient of kurtosis is the leading variable, and 
the Hurst exponent is the lagging variable; 

c) If MS ≈ 0.5 then both variables contribute in the same way; 
4) If only one of the adjustment coefficients is statistically significant and it 

presents the correct sign then only that variable contributes to the adjustment 
process toward the equilibrium. 

The log returns of spot prices usually show a leptokurtic distribution rather 
than a normal distribution (Iqbal, 2018), meaning that it exhibits excess kurtosis 
and more weight in the tails compared with the normal distribution. The evolu-
tion of the excess of kurtosis variations (which represent a stylized feature of the 
volatility distribution), therefore, should be evaluated as the main determinant 
of the other fundamental aspect of the volatility distribution, the skewness pro-
gression. In this way, we can roughly estimate the “gamma effect”4 of the excess 
of kurtosis on the distribution skewness.  

Thus, the following OLS regression allows verifying if the kurtosis variations 
can be an explanatory variable for the skewness variations: 

t t tFS c FKβ ε∆ = + ∆ +                      (9) 

where: 
• tFS∆  is the first difference of the log variation of the Fisher-Pearson coeffi-

cient of skewness at time t; 
• tFK∆  is the first difference of the log variation of the Fisher coefficient of 

kurtosis at time t; 
• c is the constant term; 
• β  is the regressor’s coefficient; 
• tε  is the error term. 

The above OLS regression is run on annual values so that we have 16 annual 
observations (after adjustment5) for regression (9). The number of observations 
matters for inference, particularly in presence of non-normal distributed resi-
duals. Jenkins and Quintana-Ascencio (2020) investigate the process to identify 
a minimum N (number of observations) needed for a study. Authors recom-
mend a minimum N = 8 for a tight data pattern (i.e. very low variance) and a 
minimum N ≈ 25 to match a model to the data pattern with high variance. Their 
findings support our OLS model performance. 

 

 

3The formula suggested by Gonzalo and Granger (1995) is the following: 2

2 1

MS λ
λ λ

=
−

. 

4This expression is just an analogy with the options instruments terminology. “Gamma”, indeed, is 
the rate of change in an option’s delta per 1-point move in the underlying asset’s price. 
5The Fisher-Pearson coefficient of skewness is negative in 2017. 
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4. Results 

All preliminary and complementary tests on time series and further statistical 
tests validating the acceptance of OLS assumptions are not reported here. These 
latter tests, confirm the presence of heteroskedasticity, no serial correlation, and 
non-normal distributed residuals. To limit the problem of heteroskedasticity, we 
calculate robust estimates by using the Huber-White procedure. To deal with 
non-normal distributed residuals, we follow Jenkins and Quintana-Ascencio (2020). 

As suggested by Liew (2004), we use Akaike’s Information Criterion (AIC) as 
lag length selection criteria in determining the autoregressive lag length. The au-
thor shows its superiority over the other criteria under study in the case of a small 
sample (60 observations and below). 

4.1. VECM: Hurst Exponent and Fisher Coefficient of Kurtosis 

Firstly, we tested for the cointegration between the two series through the Aug-
mented Dickey-Fuller test, reported in Table 3. 

Results show that the two series are cointegrated. Therefore, we can perform 
the VECM to assess which market contributes to the adjustment process toward 
the long-term equilibrium. Akaike’s information criterion suggests three lags as 
the optimal lag length structure. The VECM estimation outputs are reported in 
the following Table 4(a) and Table 4(b). 

Table 4(a) and Table 4(b) show that only λ1 is statistically significant and 
negative while λ2 is positive but not statistically significant. This means that the 
Fisher coefficient of kurtosis adjusts more rapidly than the Hurst exponent. This 
latter moves toward a restoration of the long-run equilibrium relationship, prov-
ing that the Hurst exponent is a proxy measure of the degree of volatility mean 
reversion. 

4.2. OLS Regression 

Table 5 reports the augmented Dickey-Fuller test. 
The augmented Dickey-Fuller tests show that the series is stationary. Table 6 

shows the estimated coefficients for Equation (9). 
The estimated determination coefficient R2 for the considered time span is 

0.78 for Equation (9). The relationship between the Fisher-Pearson coefficient of 
skewness elasticity (dependent variable) and the Fisher coefficient of kurtosis 
elasticity (independent variable) is positive, as expected, reporting a coefficient 
of about 0.98. This means that an increase/decrease of 1 percent of the regressor  
 
Table 3. Augmented Dickey-Fuller test: period 2000-20 (20 annual obs.). 

Augmented Dickey-Fuller Test Residuals 

Period 2000-20 

Prob.* 0.0056 

Source: Authors’ calculations based on Bloomberg data. 
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Table 4. (a) Results of VECM estimation: dependent variable ΔH 2000-20 (20 annual 
obs.); (b) Results of VECM estimation: dependent variable ΔFK 2000-20 (20 annual obs.). 

(a) 

Variable Coefficient Std. Error Prob. 

β10 0.025 0.022 0.300 
β11 1.144 0.882 0.231 

β12 0.633 0.582 0.309 

β13 0.124 0.261 0.646 

α11 −0.089 0.041 0.060 
α12 −0.052 0.028 0.107 
α13 −0.012 0.015 0.430 

λ1 −2.685* 1.216 0.058 

Note: *** signals parameter significance at 1%, ** signals parameter significance at 5%, 
and * signals parameter significance at 10%. Source: Authors’ calculations in Eviews 10 
based on Bloomberg data. 

(b) 

Variable Coefficient Std. Error Prob. 

β20 0.070 0.705 0.923 
β21 −3.355 20.287 0.873 
β22 4.119 14.911 0.789 

β23 0.727 4.974 0.887 

α21 −0.459 1.034 0.669 

α22 −0.359 0.765 0.651 
α23 −0.274 0.391 0.503 
λ2 9.620 29.542 0.753 

Note: *** signals parameter significance at 1%, ** signals parameter significance at 5%, 
and * signals parameter significance at 10%. Source: Authors’ calculations in Eviews 10 
based on Bloomberg data. 
 
Table 5. Augmented dickey-fuller test: period 2000-20 (20 annual obs.) 

Augmented Dickey-Fuller Test Residuals 

Period 2000-20 

Prob.* 0.0000 

Source: Authors’ calculations based on Bloomberg data. 
 
Table 6. OLS regression: dependent variable ΔFS during period 2000-20 (16 annual obs.)6. 

Variable Coefficient Std. Error Prob. 

c 0.010 0.305 0.9755 

β 0.983*** 0.199 0.0002 

Note: *** signals parameter significance at 1%, ** signals parameter significance at 5%, 
and * signals parameter significance at 10%. Source: Authors’ calculations in Eviews 10 
based on Bloomberg data. 

 

 

6The Fisher-Pearson coefficient of skewness is negative in 2017. 
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Figure 4. Eurostoxx 50 and Hurst Exponent: historical chart since 
the 2000s Source: authors’ calculations in Eviews 10 based on 
Bloomberg data.    

 
corresponds to an increase/decrease of approximately 98 basis points of the dis-
tribution skewness elasticity. This last result would enhance the underlying idea 
that, by making different hypotheses on the Hurst exponent within its habitat, it 
could further improve the simulation scenarios for the optimization of the vola-
tility option pricing procedure. More, these dynamics further confirm how the 
Hurst exponent information can be used to evaluate potential near-term market 
excess in combination with the classical equity metrics (such as P/E, P/S, Divi-
dend Yield, etc.).  

5. Economic Discussion and Conclusions 

From an empirical point of view, this paper suggests some interesting effects re-
garding the anti-persistence and mean-reversion characteristics of the historical 
price series of the volatility indices. This also suggests the existence of relation-
ships between the variables relating to persistence and the moments of the dis-
tribution of the historical series of the VStoxx index, and more specifically the 
links between the trend of anti-persistence and kurtosis on the one hand and the 
excess of kurtosis and skewness elasticity on the other hand. In short, our results 
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suggest that the Hurst Exponent can have an active role in signaling potential 
near-term market inversion points (see Figure 4). 

More detailed results can possibly be obtained by making a hypothesis on the 
Hurst Exponent within its “habitat” for the option pricing procedure, and by 
developing the analysis on a rolling window, to have a more focused calibration 
of the time shift between the signals obtained from the Hurst exponent and the 
market trend inversion.  

As it is possible to observe from Figure 4, high values of the Hurst exponent 
anticipated some important inversion points in the early 2000s, mid-2000s, and 
the local major top in 2017. Of course, it does not mean it represents the Holy 
Grail for anticipating major market tops, but it can be useful to exploit informa-
tion from implied volatility structure and put it together with the classical fun-
damental and technical metrics to have further confirmation about the market 
trend progression.  

The theoretical and empirical structure of this work does not have the ambi-
tion to be exhaustive but rather opens the door to various insights and themes of 
investigation in various directions. The evidence of the structural anti-persistence 
of the historical series of the returns of the VStoxx (as the main European vola-
tility index) and the links between the Hurst exponent and the moments of dis-
tribution (in particular, skewness and kurtosis) leaves room for further study 
and fields of investigation. 
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