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A B S T R A C T   

Wendelstein 7-X, the world largest superconducting advanced stellarator, aims to demonstrate high-performance steady-state experiments lasting up to 30 min. To 
this purpose, high heat flux (HHF) divertors capable of withstanding steady-state heat fluxes up to 10 MW/m2 are being installed on the machine, in preparation for 
the next experimental campaign (OP2.1). The real-time heat flux estimation is pivotal for controlling the divertor heat loads during the experiments. Currently, the 
THEODOR (Thermal Energy Onto DivertOR) code computes the heat flux offline by numerically solving the heat equation, but the computation time does not allow 
the application of this approach to the real-time operation of the device. In this work, a new approach based on Physics Informed Neural Networks (PINNs) is 
proposed for solving the heat equation and estimating the heat fluxes on the divertor tiles in real time. PINN models are Neural Networks that learn Partial Dif-
ferential Equations (PDEs) by minimizing the PDE loss. The inputs of a PINN are the independent variables of the PDE, e.g., spatiotemporal coordinates, while the loss 
of the model is designed to make the neural network satisfy the PDE and related initial and boundary conditions. Hence, the model can be trained without any 
experimental data. Only the initial and boundary conditions of the PDE are necessary for constructing the model. First intermediate results are discussed considering 
a normalized tile and starting from a constant thermal diffusivity.   

1. Introduction 

Monitoring and limiting the heat flux on the divertor tiles in real- 
time is a key objective for the high-performance fusion operation. For 
this reason, several diagnostics are needed to monitor the state of the 
device during the experiments. In this regard, one of the fundamental 
issues for magnetic fusion devices is to ensure the integrity of the PFCs 
during high-performance operation. At W7–X, infrared (IR) cameras 
monitor the plasma facing components (PFCs) by measuring their sur-
face temperature [1,2]. Typically, the heat flux is localized on specific 
high load regions of the divertor called strike lines. Since localized high 
heat flux values can damage the PFCs, a lot of effort is devoted to the 
estimation and control of the heat flux on the divertor tiles. Regarding 
the estimation, starting from the measured temperature at the target 
surface, the internal temperature distribution can be computed by 
solving the transient heat conduction equation. Several heat flux 
reconstruction codes have been developed following this approach, such 
as TACO [3], NANTHELOT [4] and THEODOR [5,6], which is currently 
employed at W7–X. THEODOR is a 2D numerical Finite Difference 
Method code and at W7-X is currently only employed for offline data 
analysis. However, for heat load control purposes [7], fast computation 
schemes for the real-time heat flux estimation are required. In this work 
a Physics Informed Neural Network (PINN) model is proposed to speed 
up the heat-flux computation towards the real-time implementation. 

PINNs have several advantages with respect to the other numerical PDE 
solvers: they can be used to regress nonlinear PDE operators; they are 
mesh-free and can handle irregular domains; they are able to exploit the 
parallel computing capabilities of Graphical Processing Units (GPUs) 
[8]–[10]. The PINN is essentially a traditional Neural Network (NN), 
where a part of the loss function constrains the network to respect a 
physic law, in the form of an Ordinary or Partial Differential Equation. 
This fact makes the architecture of the PINN quite flexible, since many 
traditional NN architectures can be exploited such as Feed-Forward NNs, 
Convolutional NNs, Recurrent NNs, etc. Among them, the Feed-Forward 
NN is often used due to its simplicity, however, more complex archi-
tectures such as the Recurrent NNs (e.g., Long Short Term Memory NNs) 
and Convolutional NNs are also used in the literature. In nuclear fusion, 
a first example of application of a PINN is reported in [11], where a 
PINN is trained to reconstruct the 2D plasma equilibrium model. More 
recent applications of PINNs include the resolution of the 
Grad-Shafranov equation from magnetic signals [12] and learning 
reduced order turbulent models [13,14]. In the present paper, a 
Feed-Forward NN architecture is proposed to reconstruct the tempera-
ture distribution in the bulk and the heat-flux on the surface of a typical 
divertor profile. The model is developed using the DeepXDE library [15] 
and extending some of its functionalities. The paper is organized as 
follows: section 2 details the heat flux computation problem; section 3 
reports the heat flux PINN architecture, whereas section 4 describes the 
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testing results assuming a constant or temperature-dependent diffusion 
coefficient. Finally, results and future developments are discussed in 
section 5 and some conclusions are provided in section 6. 

2. Heat flux calculation 

To calculate the heat flux entering the divertor profile, the temper-
ature distribution inside the profile must be known. It is possible to 
reconstruct the temperature distribution by solving the heat partial 
differential equation 

∂u
∂t

= D(u)
(

∂2u
∂x2 +

∂2u
∂y2

)

(1) 

Here, D(u) is the heat diffusion coefficient, x is the direction along 
the depth of the tile, y is the poloidal direction and z is the toroidal di-
rection, as depicted in the sketch of the tile of Fig. 1. Finally, u is the 
heat–potential, defined as: 

u(T) =
∫ T

0
k(T)dT (2) 

where k(T) is the thermal conductivity coefficient and T is the 
temperature. 

In this formulation, the toroidal heat diffusion is neglected due to the 
presence of a homogeneous distribution of the strike line in finite 
toroidal range, as also reported in [16]. To solve a PDE (i.e., to make the 
solution unique), initial and boundary conditions must be specified. In 
this paper, the surface temperature is sampled from the infrared cameras 
and acts as a boundary condition at the surface of the profile, while the 
lateral edges are considered adiabatic. The initial condition can be either 
assumed as a uniform constant temperature (at the beginning of the 
experiment) or reconstructed from the previous frames (during the 
experiment). The same conditions are assumed in the THEODOR code. 

3. Heat flux PINN architecture 

Physics informed models can be trained to numerically solve partial 
differential equations by including physics-based criteria in the NN loss 
function. The “physics informed” models exploit the possibility of 
calculating the gradient of the output with respect to the input. In this 
case, the model is trained using as input the spatial position and time 
instant at which the solution is to be calculated, while the function to be 
minimized is based on the PDE in equation (1). 

Moreover, to make the solution unique, also the surface boundary 
condition, the lateral boundary condition and the initial conditions are 
included in the model loss. In this way it is possible to constrain the 
output function of the NN to solve the differential equation without 
using reference data. A sketch of the proposed model is reported in 
Fig. 2. The inputs of the network are the scalar values of the time and 
spatial position where the u should be computed, while the network is a 
Feed-Forward NN with 10 hidden layers, each of them with 97 neurons, 
and with a hyperbolic tangent (tanh) activation function. The number of 
layers, the number of neurons per layer and the learning rate were 
optimized with a Bayesian optimization scheme, an automatic optimi-
zation scheme where the network performance is modeled as a sample 
from a Gaussian Process [17]. As previously described, the loss function 
is the sum of several contributions: 

L = LPDE +Lt0 + LbN + LbD (3) 

where LPDE is the Mean Squared Error (MSE) on the approximation of 
the PDE, Lt0 is the MSE with respect to the value of the initial condition, 
LbNandLbD are the MSEs with respect to the value of each boundary 
condition. In this case it is said that the network weakly satisfies the 
boundary and initial conditions. In other approaches in the literature, 
the boundary condition is directly enforced by cancelling the output of 
the network on the boundary of the domain. The boundary condition is 
then satisfied by a function that constrains the output to the values of the 
boundary conditions [18,19]. In this work, the contributions to the loss 
have been specified as: 

LPDE =

〈(
∂û
∂t

(xi, yi, ti) − DN

(
∂2 û
∂x2 +

∂2 û
∂y

)

(xi, yi.ti)

)2〉

Lt0 =
〈
(û(xi, yi, 0) − ut0(xi, yi) )

2〉

LbN =

〈(
∂û
∂y

(xi, ybN , ti) − ubN(xi, ybD, ti)

)2
〉

LbD =
〈
(û(0, yi, ti) − ubD(0, yi, ti) )

2〉

(4) 

where ut0 is the initial condition of the PDE, ubD the boundary con-
dition on the surface of the tile, expressed as the value of the function at 
the edge of the tile (or Dirichlet condition), and ubN is the adiabatic 

Fig. 1. Sketch of the divertor tile. × is the direction along the depth of the tile, 
y is the direction along the length of the tile (poloidal direction) and z is the 
toroidal direction. Dashed lines segment a profile, the computation domain of 
the PDE. 

Fig. 2. Scheme of a Physics Informed NN: the inputs are the scalar values of the time and spatial position where solution of the PDE should be computed. The 
network output can be automatically derived with respect to the inputs using automatic differentiation, enabling the satisfaction of the PDE. The other components of 
the loss are the boundary and initial conditions of the PDE. Adapted from [15] 
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condition at the lateral edges. Each of the losses is a MSE, hence it is 
normalized by the number of points. The derivative at the lateral 
boundary (ubN) should be zero (Neumann boundary condition), since the 
edges of the tile are adiabatic. 

The network is trained by randomly sampling 10,000 points in the 
computational domain, and then the same linear density of points is 
maintained over all the edges at the boundary. The average sampling 
steps in × and y (dx, dy) must be equal, while the average sampling step 
in t is related to the average sampling step in space through DN: dt =
dx2/DN. The training points are resampled randomly every 10,000 it-
erations, while the same number of validation points are sampled uni-
formly on the computational domain. The network is trained using the 
Adam optimizer, and the training is stopped if the loss on the training set 
does not improve for 10,000 iterations. The model with the minimum 
validation loss is saved. 

4. Results 

In the following sub-section, the results of two simulations of the 
heat diffusion in the divertor tile are discussed. For both examples, the 
computational domain is consistent with the typical tile profile size, 
with (xmax, ymax) = (28 mm, 560 mm) sides, and PDE evolution time up 
to tend = 0.1 s. The network spatial inputs are rescaled by dividing them 
with respect to ymax, and the time is divided by tend. Finally, the diffusion 
coefficient D is then rescaled accordingly. The computational domain for 
the NN becomes: 

⎧
⎨

⎩

xN ∈ [0, 0.05]
yN ∈ [0, 1]
tN ∈ [0, 1]

,DN = D⋅
tend

ymax
2 

where DN is the dimensionless diffusion coefficient for the normal-
ized equation and (xN, yN, tN) the normalized inputs to the PINN. In the 
first example, the PINN learns the equation with a constant D =

70⋅10− 6mm2/s, while in the second one material properties are intro-
duced and D(T) depends on the temperature (hence on the heat potential 
u). In both examples the initial and boundary conditions are fixed. 

4.1. Diffusion with constant D 

The initial condition of this example is a profile with a uniform heat 
potential of 0, while the top boundary condition (in the normalized 
domain) is a gaussian heat potential on the upper surface (x = 0), with 
amplitude 1, centered in 0.5 and with a standard deviation of 0.1. The 
amplitude of the gaussian is normalized between 0 and 1, but a simple 
rescaling of the output would allow to adapt the range to the real case. 
Fig. 3a compares the heat flux estimated with the PINN model to the 
ones computed with a 2D version of THEODOR, with a relative error 
below 2% on the heat flux values. 

4.2. Diffusion with material properties 

In this second example, the temperature dependency has been 
implemented by using the following nonlinear interpolation for D 

Fig. 3. A) - constant D case: Heat flux on the surface of a tile by THEODOR (blue line), PINN (orange line) and Error (green line) in the absolute and percentage scale, 
respectively at the left and right side of the plot. Red dashed lines delimit the error range in [-2,2]% (right y-axis). b) – D(T) case: Heat flux on the surface of a tile 
with THEODOR (blue line), PINN (orange line) and Error (green line) in the absolute and percentage scale, respectively at the left and right side of the plot. Red 
dashed lines delimit the error range in [-3,8]% (right y-axis). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. A): pinn reconstruction of the temperature distribution in the profile at t = 0.1 s. b): THEODOR reconstruction of the temperature distribution in the profile at 
t = 0.1 s c): Error computed as the absolute difference value between the two reconstructions. 
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D(T) = ad0 + bd0

/(

1 +
T

Td0

)2

(5) 

which is the same applied in THEODOR [6,16]. This formula has 
been implemented by modifying the PDE loss: the T is computed from 
the heat potential u by inverting equation (2) and then D(u) is computed 
and used in the LPDE. Since there is a nonlinear dependency between D 
and T, the boundary condition was not normalized as in the previous 
case, but it was considered as a gaussian of temperature between 25 ◦C 
and 2000 ◦C. In this case, at the end of the simulation it was possible to 
achieve an error smaller than 8% on the temperature and heat-flux re-
constructions. The results of the heat flux reconstruction are reported in 
Fig. 3b, while the temperature reconstruction for t = 0.1 s is shown in 
Fig. 4. 

5. Further developments 

Unfortunately, the problem addressed with the PINN is still a simple 
one: the network only needs to solve one PDE, with given (fixed) 
boundary and initial conditions, while this is different in real applica-
tions. In a real-time framework, the initial conditions will change, and 
the model must be able to solve the PDE starting from any initial con-
dition. Hence, an improvement of the model is under development, 
exploiting the possibility to enter the parameters of the PDE, such as the 
boundary and initial conditions, as input to the network. This is 
currently a problem under study in the physics informed machine 
learning community [8]–[10,20]. A first step towards the development 
of the model is the extraction or generation of a set of initial condition to 
train the physics informed model, which should be representative of the 
variety of the possible experimental conditions. Then a parametrized 
model, such as the ones in [9,20], will be trained by sampling the initial 
condition in a fixed set of points and a training procedure will be 
performed. 

6. Conclusions 

In this work, a Physics-Informed Neural Network approach is pro-
posed to speed up the solution of the heat partial differential equation. 
The PINN method is based on recent advances in the automatic differ-
entiation and machine learning and provides a very flexible model to 
solve a PDE in a mesh-free domain. Moreover, the PINN can be 
straightforwardly run on a GPU, hence allowing the real-time use of the 
method. In the simulations shown in this work, the PINN allows to 
compute the PDE solution and the heat flux computation error with 
respect to THEODOR is lower than 8%. Future work on the PINN model 
will focus on providing initial and boundary conditions as inputs, hence 
solving a parametrized PDE and enabling the real-time evaluation of the 
heat flux. 
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