
Nuclear Materials and Energy 34 (2023) 101401

Available online 26 February 2023
2352-1791/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Physics Informed Neural Networks towards the real-time calculation of heat
fluxes at W7-X

E. Aymerich a, F. Pisano a, B. Cannas a, G. Sias a, A. Fanni a, Y. Gao b, D. Böckenhoff b,
M. Jakubowski b, the W7-X Teamc

a Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
b Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald, Germany
c See Sunn Pedersen et al 2022 (https://doi.org/10.1088/1741-4326/ac2cf5) for the W7-X Team

A B S T R A C T

Wendelstein 7-X, the world largest superconducting advanced stellarator, aims to demonstrate high-performance steady-state experiments lasting up to 30 min. To
this purpose, high heat flux (HHF) divertors capable of withstanding steady-state heat fluxes up to 10 MW/m2 are being installed on the machine, in preparation for
the next experimental campaign (OP2.1). The real-time heat flux estimation is pivotal for controlling the divertor heat loads during the experiments. Currently, the
THEODOR (Thermal Energy Onto DivertOR) code computes the heat flux offline by numerically solving the heat equation, but the computation time does not allow
the application of this approach to the real-time operation of the device. In this work, a new approach based on Physics Informed Neural Networks (PINNs) is
proposed for solving the heat equation and estimating the heat fluxes on the divertor tiles in real time. PINN models are Neural Networks that learn Partial Dif-
ferential Equations (PDEs) by minimizing the PDE loss. The inputs of a PINN are the independent variables of the PDE, e.g., spatiotemporal coordinates, while the loss
of the model is designed to make the neural network satisfy the PDE and related initial and boundary conditions. Hence, the model can be trained without any
experimental data. Only the initial and boundary conditions of the PDE are necessary for constructing the model. First intermediate results are discussed considering
a normalized tile and starting from a constant thermal diffusivity.

1. Introduction

Monitoring and limiting the heat flux on the divertor tiles in real-
time is a key objective for the high-performance fusion operation. For
this reason, several diagnostics are needed to monitor the state of the
device during the experiments. In this regard, one of the fundamental
issues for magnetic fusion devices is to ensure the integrity of the PFCs
during high-performance operation. At W7–X, infrared (IR) cameras
monitor the plasma facing components (PFCs) by measuring their sur-
face temperature [1,2]. Typically, the heat flux is localized on specific
high load regions of the divertor called strike lines. Since localized high
heat flux values can damage the PFCs, a lot of effort is devoted to the
estimation and control of the heat flux on the divertor tiles. Regarding
the estimation, starting from the measured temperature at the target
surface, the internal temperature distribution can be computed by
solving the transient heat conduction equation. Several heat flux
reconstruction codes have been developed following this approach, such
as TACO [3], NANTHELOT [4] and THEODOR [5,6], which is currently
employed at W7–X. THEODOR is a 2D numerical Finite Difference
Method code and at W7-X is currently only employed for offline data
analysis. However, for heat load control purposes [7], fast computation
schemes for the real-time heat flux estimation are required. In this work
a Physics Informed Neural Network (PINN) model is proposed to speed
up the heat-flux computation towards the real-time implementation.

PINNs have several advantages with respect to the other numerical PDE
solvers: they can be used to regress nonlinear PDE operators; they are
mesh-free and can handle irregular domains; they are able to exploit the
parallel computing capabilities of Graphical Processing Units (GPUs)
[8]–[10]. The PINN is essentially a traditional Neural Network (NN),
where a part of the loss function constrains the network to respect a
physic law, in the form of an Ordinary or Partial Differential Equation.
This fact makes the architecture of the PINN quite flexible, since many
traditional NN architectures can be exploited such as Feed-Forward NNs,
Convolutional NNs, Recurrent NNs, etc. Among them, the Feed-Forward
NN is often used due to its simplicity, however, more complex archi-
tectures such as the Recurrent NNs (e.g., Long Short Term Memory NNs)
and Convolutional NNs are also used in the literature. In nuclear fusion,
a first example of application of a PINN is reported in [11], where a
PINN is trained to reconstruct the 2D plasma equilibrium model. More
recent applications of PINNs include the resolution of the
Grad-Shafranov equation from magnetic signals [12] and learning
reduced order turbulent models [13,14]. In the present paper, a
Feed-Forward NN architecture is proposed to reconstruct the tempera-
ture distribution in the bulk and the heat-flux on the surface of a typical
divertor profile. The model is developed using the DeepXDE library [15]
and extending some of its functionalities. The paper is organized as
follows: section 2 details the heat flux computation problem; section 3
reports the heat flux PINN architecture, whereas section 4 describes the

Contents lists available at ScienceDirect

Nuclear Materials and Energy

journal homepage: www.elsevier.com/locate/nme

https://doi.org/10.1016/j.nme.2023.101401
Received 30 June 2022; Accepted 23 February 2023

www.sciencedirect.com/science/journal/23521791
https://www.elsevier.com/locate/nme
https://doi.org/10.1016/j.nme.2023.101401
https://doi.org/10.1016/j.nme.2023.101401
https://doi.org/10.1016/j.nme.2023.101401
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nme.2023.101401&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Nuclear Materials and Energy 34 (2023) 101401

2

testing results assuming a constant or temperature-dependent diffusion
coefficient. Finally, results and future developments are discussed in
section 5 and some conclusions are provided in section 6.

2. Heat flux calculation

To calculate the heat flux entering the divertor profile, the temper-
ature distribution inside the profile must be known. It is possible to
reconstruct the temperature distribution by solving the heat partial
differential equation

∂u
∂t

= D(u)
(

∂2u
∂x2 +

∂2u
∂y2

)

(1)

Here, D(u) is the heat diffusion coefficient, x is the direction along
the depth of the tile, y is the poloidal direction and z is the toroidal di-
rection, as depicted in the sketch of the tile of Fig. 1. Finally, u is the
heat–potential, defined as:

u(T) =
∫ T

0
k(T)dT (2)

where k(T) is the thermal conductivity coefficient and T is the
temperature.

In this formulation, the toroidal heat diffusion is neglected due to the
presence of a homogeneous distribution of the strike line in finite
toroidal range, as also reported in [16]. To solve a PDE (i.e., to make the
solution unique), initial and boundary conditions must be specified. In
this paper, the surface temperature is sampled from the infrared cameras
and acts as a boundary condition at the surface of the profile, while the
lateral edges are considered adiabatic. The initial condition can be either
assumed as a uniform constant temperature (at the beginning of the
experiment) or reconstructed from the previous frames (during the
experiment). The same conditions are assumed in the THEODOR code.

3. Heat flux PINN architecture

Physics informed models can be trained to numerically solve partial
differential equations by including physics-based criteria in the NN loss
function. The “physics informed” models exploit the possibility of
calculating the gradient of the output with respect to the input. In this
case, the model is trained using as input the spatial position and time
instant at which the solution is to be calculated, while the function to be
minimized is based on the PDE in equation (1).

Moreover, to make the solution unique, also the surface boundary
condition, the lateral boundary condition and the initial conditions are
included in the model loss. In this way it is possible to constrain the
output function of the NN to solve the differential equation without
using reference data. A sketch of the proposed model is reported in
Fig. 2. The inputs of the network are the scalar values of the time and
spatial position where the u should be computed, while the network is a
Feed-Forward NN with 10 hidden layers, each of them with 97 neurons,
and with a hyperbolic tangent (tanh) activation function. The number of
layers, the number of neurons per layer and the learning rate were
optimized with a Bayesian optimization scheme, an automatic optimi-
zation scheme where the network performance is modeled as a sample
from a Gaussian Process [17]. As previously described, the loss function
is the sum of several contributions:

L = LPDE +Lt0 + LbN + LbD (3)

where LPDE is the Mean Squared Error (MSE) on the approximation of
the PDE, Lt0 is the MSE with respect to the value of the initial condition,
LbNandLbD are the MSEs with respect to the value of each boundary
condition. In this case it is said that the network weakly satisfies the
boundary and initial conditions. In other approaches in the literature,
the boundary condition is directly enforced by cancelling the output of
the network on the boundary of the domain. The boundary condition is
then satisfied by a function that constrains the output to the values of the
boundary conditions [18,19]. In this work, the contributions to the loss
have been specified as:

LPDE =

〈(
∂û
∂t

(xi, yi, ti) − DN

(
∂2 û
∂x2 +

∂2 û
∂y

)

(xi, yi.ti)

)2〉

Lt0 =
〈
(û(xi, yi, 0) − ut0(xi, yi))

2〉

LbN =

〈(
∂û
∂y

(xi, ybN , ti) − ubN(xi, ybD, ti)

)2
〉

LbD =
〈
(û(0, yi, ti) − ubD(0, yi, ti))

2〉

(4)

where ut0 is the initial condition of the PDE, ubD the boundary con-
dition on the surface of the tile, expressed as the value of the function at
the edge of the tile (or Dirichlet condition), and ubN is the adiabatic

Fig. 1. Sketch of the divertor tile. × is the direction along the depth of the tile,
y is the direction along the length of the tile (poloidal direction) and z is the
toroidal direction. Dashed lines segment a profile, the computation domain of
the PDE.

Fig. 2. Scheme of a Physics Informed NN: the inputs are the scalar values of the time and spatial position where solution of the PDE should be computed. The
network output can be automatically derived with respect to the inputs using automatic differentiation, enabling the satisfaction of the PDE. The other components of
the loss are the boundary and initial conditions of the PDE. Adapted from [15]

E. Aymerich et al.

Nuclear Materials and Energy 34 (2023) 101401

3

condition at the lateral edges. Each of the losses is a MSE, hence it is
normalized by the number of points. The derivative at the lateral
boundary (ubN) should be zero (Neumann boundary condition), since the
edges of the tile are adiabatic.

The network is trained by randomly sampling 10,000 points in the
computational domain, and then the same linear density of points is
maintained over all the edges at the boundary. The average sampling
steps in × and y (dx, dy) must be equal, while the average sampling step
in t is related to the average sampling step in space through DN: dt =
dx2/DN. The training points are resampled randomly every 10,000 it-
erations, while the same number of validation points are sampled uni-
formly on the computational domain. The network is trained using the
Adam optimizer, and the training is stopped if the loss on the training set
does not improve for 10,000 iterations. The model with the minimum
validation loss is saved.

4. Results

In the following sub-section, the results of two simulations of the
heat diffusion in the divertor tile are discussed. For both examples, the
computational domain is consistent with the typical tile profile size,
with (xmax, ymax) = (28 mm, 560 mm) sides, and PDE evolution time up
to tend = 0.1 s. The network spatial inputs are rescaled by dividing them
with respect to ymax, and the time is divided by tend. Finally, the diffusion
coefficient D is then rescaled accordingly. The computational domain for
the NN becomes:

⎧
⎨

⎩

xN ∈ [0, 0.05]
yN ∈ [0, 1]
tN ∈ [0, 1]

,DN = D⋅
tend

ymax
2

where DN is the dimensionless diffusion coefficient for the normal-
ized equation and (xN, yN, tN) the normalized inputs to the PINN. In the
first example, the PINN learns the equation with a constant D =

70⋅10− 6mm2/s, while in the second one material properties are intro-
duced and D(T) depends on the temperature (hence on the heat potential
u). In both examples the initial and boundary conditions are fixed.

4.1. Diffusion with constant D

The initial condition of this example is a profile with a uniform heat
potential of 0, while the top boundary condition (in the normalized
domain) is a gaussian heat potential on the upper surface (x = 0), with
amplitude 1, centered in 0.5 and with a standard deviation of 0.1. The
amplitude of the gaussian is normalized between 0 and 1, but a simple
rescaling of the output would allow to adapt the range to the real case.
Fig. 3a compares the heat flux estimated with the PINN model to the
ones computed with a 2D version of THEODOR, with a relative error
below 2% on the heat flux values.

4.2. Diffusion with material properties

In this second example, the temperature dependency has been
implemented by using the following nonlinear interpolation for D

Fig. 3. A) - constant D case: Heat flux on the surface of a tile by THEODOR (blue line), PINN (orange line) and Error (green line) in the absolute and percentage scale,
respectively at the left and right side of the plot. Red dashed lines delimit the error range in [-2,2]% (right y-axis). b) – D(T) case: Heat flux on the surface of a tile
with THEODOR (blue line), PINN (orange line) and Error (green line) in the absolute and percentage scale, respectively at the left and right side of the plot. Red
dashed lines delimit the error range in [-3,8]% (right y-axis). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. A): pinn reconstruction of the temperature distribution in the profile at t = 0.1 s. b): THEODOR reconstruction of the temperature distribution in the profile at
t = 0.1 s c): Error computed as the absolute difference value between the two reconstructions.

E. Aymerich et al.

Nuclear Materials and Energy 34 (2023) 101401

4

D(T) = ad0 + bd0

/(

1 +
T

Td0

)2

(5)

which is the same applied in THEODOR [6,16]. This formula has
been implemented by modifying the PDE loss: the T is computed from
the heat potential u by inverting equation (2) and then D(u) is computed
and used in the LPDE. Since there is a nonlinear dependency between D
and T, the boundary condition was not normalized as in the previous
case, but it was considered as a gaussian of temperature between 25 ◦C
and 2000 ◦C. In this case, at the end of the simulation it was possible to
achieve an error smaller than 8% on the temperature and heat-flux re-
constructions. The results of the heat flux reconstruction are reported in
Fig. 3b, while the temperature reconstruction for t = 0.1 s is shown in
Fig. 4.

5. Further developments

Unfortunately, the problem addressed with the PINN is still a simple
one: the network only needs to solve one PDE, with given (fixed)
boundary and initial conditions, while this is different in real applica-
tions. In a real-time framework, the initial conditions will change, and
the model must be able to solve the PDE starting from any initial con-
dition. Hence, an improvement of the model is under development,
exploiting the possibility to enter the parameters of the PDE, such as the
boundary and initial conditions, as input to the network. This is
currently a problem under study in the physics informed machine
learning community [8]–[10,20]. A first step towards the development
of the model is the extraction or generation of a set of initial condition to
train the physics informed model, which should be representative of the
variety of the possible experimental conditions. Then a parametrized
model, such as the ones in [9,20], will be trained by sampling the initial
condition in a fixed set of points and a training procedure will be
performed.

6. Conclusions

In this work, a Physics-Informed Neural Network approach is pro-
posed to speed up the solution of the heat partial differential equation.
The PINN method is based on recent advances in the automatic differ-
entiation and machine learning and provides a very flexible model to
solve a PDE in a mesh-free domain. Moreover, the PINN can be
straightforwardly run on a GPU, hence allowing the real-time use of the
method. In the simulations shown in this work, the PINN allows to
compute the PDE solution and the heat flux computation error with
respect to THEODOR is lower than 8%. Future work on the PINN model
will focus on providing initial and boundary conditions as inputs, hence
solving a parametrized PDE and enabling the real-time evaluation of the
heat flux.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

the work reported in this paper.

Data availability

The github repository with the codes can be made available

Acknowledgments

This work has been carried out within the framework of the EURO-
fusion Consortium, funded by the European Union via the Euratom
Research and Training Programme (Grant Agreement No 101052200 —
EUROfusion). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European
Union or the European Commission. Neither the European Union nor the
European Commission can be held responsible for them.

References

[1] F. Pisano, et al., Rev. Sci. Instrum. 89 (12) (Dec. 2018), 123503, https://doi.org/
10.1063/1.5045560.

[2] M.W. Jakubowski, et al., Rev. Sci. Instrum. (2018), https://doi.org/10.1063/
1.5038634.

[3] K.F. Gan, et al., Rev. Sci. Instrum. 84 (2) (Feb. 2013), 023505, https://doi.org/
10.1063/1.4792595.

[4] C.S. Kang, et al., Rev. Sci. Instrum. 87 (8) (Aug. 2016), 083508, https://doi.org/
10.1063/1.4961030.

[5] A. Herrmann, et al., Plasma Phys. Control. Fusion 37 (1) (Jan. 1995) 17–29,
https://doi.org/10.1088/0741-3335/37/1/002.

[6] B. Sieglin, et al., Rev Sci Instrum (2015) 7.
[7] F. Pisano, et al., Learning control coil currents from heat-flux images using

convolutional neural networks at Wendelstein 7-X, Plasma Phys. Control. Fusion
(2020), https://doi.org/10.1088/1361-6587/abce19.

[8] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Nat. Rev.
Phys. vol. 3, no. 6, Art. no. 6 (Jun. 2021), https://doi.org/10.1038/s42254-021-
00314-5.

[9] S. Wang, H. Wang, and P. Perdikaris, Sci. Adv., vol. 7, no. 40, p. eabi8605, doi:
10.1126/sciadv.abi8605.

[10] L. Lu, P. Jin, G.E. Karniadakis, Nat. Mach. Intell. 3 (3) (Mar. 2021) 218–229,
https://doi.org/10.1038/s42256-021-00302-5.

[11] B.P. van Milligen, V. Tribaldos, J.A. Jiménez, Phys. Rev. Lett. 75 (20) (Nov. 1995)
3594–3597, https://doi.org/10.1103/PhysRevLett.75.3594.

[12] S. Joung, et al., Nucl. Fusion 60 (1) (Jan. 2020), 016034, https://doi.org/10.1088/
1741-4326/ab555f.

[13] A. Mathews, M. Francisquez, J.W. Hughes, D.R. Hatch, B. Zhu, B.N. Rogers, Phys.
Rev. E 104 (2) (Aug. 2021), 025205, https://doi.org/10.1103/
PhysRevE.104.025205.

[14] A. Mathews, N. Mandell, M. Francisquez, J.W. Hughes, A. Hakim, Phys. Plasmas 28
(11) (Nov. 2021), 112301, https://doi.org/10.1063/5.0066064.

[15] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, SIAM Rev. 63 (1) (Jan. 2021) 208–228,
https://doi.org/10.1137/19M1274067.

[16] Y. Gao, et al., Nucl. Fusion 59 (6) (Jun. 2019), 066007, https://doi.org/10.1088/
1741-4326/ab0f49.

[17] J. Snoek, H. Larochelle, and R. P. Adams, in Advances in Neural Information
Processing Systems, 2012, vol. 25. Accessed: May 16, 2022. [Online]. Available:
https://proceedings.neurips.cc/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html.

[18] K.S. McFall, J.R. Mahan, IEEE Trans. Neural Netw. 20 (8) (Aug. 2009) 1221–1233,
https://doi.org/10.1109/TNN.2009.2020735.

[19] I.E. Lagaris, A. Likas, D.G. Papageorgiou, IEEE Trans. Neural Netw. (2000), https://
doi.org/10.1109/72.870037.

[20] Y. Nakamura, S. Shiratori, H. Nagano, K., Shimano, presented at the 7th World
Congress on Mechanical, Chemical, and Material, Engineering (Aug. 2021),
https://doi.org/10.11159/htff21.113.

E. Aymerich et al.

https://doi.org/10.1063/1.5045560
https://doi.org/10.1063/1.5045560
https://doi.org/10.1063/1.5038634
https://doi.org/10.1063/1.5038634
https://doi.org/10.1063/1.4792595
https://doi.org/10.1063/1.4792595
https://doi.org/10.1063/1.4961030
https://doi.org/10.1063/1.4961030
https://doi.org/10.1088/0741-3335/37/1/002
http://refhub.elsevier.com/S2352-1791(23)00040-6/h0030
https://doi.org/10.1088/1361-6587/abce19
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1103/PhysRevLett.75.3594
https://doi.org/10.1088/1741-4326/ab555f
https://doi.org/10.1088/1741-4326/ab555f
https://doi.org/10.1103/PhysRevE.104.025205
https://doi.org/10.1103/PhysRevE.104.025205
https://doi.org/10.1063/5.0066064
https://doi.org/10.1137/19M1274067
https://doi.org/10.1088/1741-4326/ab0f49
https://doi.org/10.1088/1741-4326/ab0f49
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
https://doi.org/10.11159/htff21.113

	Physics Informed Neural Networks towards the real-time calculation of heat fluxes at W7-X
	1 Introduction
	2 Heat flux calculation
	3 Heat flux PINN architecture
	4 Results
	4.1 Diffusion with constant D
	4.2 Diffusion with material properties

	5 Further developments
	6 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

