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Abstract: In the aging process, skin morphology might be affected by wrinkle formation due to the
loss of elasticity and resilience of connective tissues linked to the cleavage of elastin by the enzymatic
activity of elastase. Little information is available about the structural requirements to efficiently
inhibit elastase 1 (EC 3.4.21.36) expressed in skin keratinocytes. In this study, a structure-based
approach led to the identification to the pharmacophoric hypotheses that described the main struc-
tural requirements for binding to porcine pancreatic elastase as a valuable tool for the development
of skin therapeutic agents due to its similarity with human elastase 1. The obtained models were
subsequently refined through the application of computational alanine-scanning mutagenesis to
evaluate the effect of single residues on the binding affinity and protein stability; in turn, molec-
ular dynamic simulations were carried out; these procedures led to a simplified model bearing
few essential features, enabling a reliable collection of chemical features for their interactions with
elastase. Then, a virtual screening campaign on the in-house library of synthetic compounds led
to the identification of a nonpeptide-based inhibitor (IC50 = 60.4 µM) belonging to the class of
N-substituted-1H-benzimidazol-2-yl]thio]acetamides, which might be further exploited to obtain
more efficient ligands of elastase for therapeutic applications.

Keywords: elastase; virtual screening; computational studies; N-substituted-1H-benzimidazol-2-
yl]thio]acetamides

1. Introduction

The skin plays the crucial role of acting as an effective barrier against the external
environment in the human body. The skin is composed of different layers regulating distinct
functions; in particular, the middle layer contains the connective tissue bearing an embedded
fibroblast called dermis. It generates most of the skin properties through the so-called dermal
extracellular matrix (dECM) that is rich in collagens, growth factors, elastic fibers, proteo-
and glycosamino-glycans, and glycoproteins. Collagen and elastic fibers confer elasticity
and resilience to the skin. Intrinsic and extrinsic factors generate skin aging processes
through several physio-pathological pathways that induce specific structural and functional
changes in the components of dECM, such as elastin (ELN) and collagen [1]. There is
evidence that the main extrinsic factors might comprise the formation of reactive oxygen
species (ROS) and peroxide species as secondary effect of excessive UV exposure. These
radical species can affect the morphology of the skin, thus leading to wrinkle formation
through a photo-aging process that can determine the sun-induced elastosis with loss of
elasticity and resilience of connective tissue related to the proteolytic cleavage of ELN fibers
suppressing the synthesis of dECM components [2–4]. Therefore, bioactive compounds
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with anti-elastase properties could delay skin aging processes and prevent sun-elastosis
and, generally, skin aging [5]. The proteolytic activity of proteases is involved in various
physiological and pathological processes [6], such as DNA replication, cell proliferation
and death, and tissue remodeling, as well as cancer, neurodegeneration, and aging [7].
The degradation of collagen is regulated by Matrix metalloproteinases (MMPs) that are
zinc-containing endopeptidases. Specifically, MMP-1 is considered responsible for collagen
fragmentation during skin aging. On the other hand, the ELN structure and organization
are regulated by the enzymatic activity of elastases that are serine proteases acting as
endopeptidases; the elastases belong to the chymotrypsin family; eight genes encode for
the elastase or elastase-like enzymes, four of which are classified as chymotrypsin-like.
In humans, there are six elastase genes which encode elastase 1, 2, 2A, 2B, 3A and 3B.
The Human Neutrophil Elastase (EC 3.4.21.37, HNE, elastase 2) plays an important role
in the immune response towards bacterial infections, as well as tissue remodeling and
inflammation [8,9]. Unlike other elastases, elastase 1 (EC 3.4.21.36) is expressed in skin
keratinocytes [10].

Elastases target the hydrophobic protein ELN, which contains many repeated motifs
of several alanine or valine aminoacidic residues punctuated by proline residues. It is
well-known that serine proteases are classified based on their substrate specificity related
to the kind of residue found at the S1 subsite as one of the distinct recognition sites for
the polypeptide substrate [11]. The active site cleft of elastase comprises a catalytic triad
(Ser, His, and Asp) combined with an oxyanion hole in which the backbone of Gly and Ser
residues forms a positive-charged pocket activating the cleavage of the peptide bond. The
S1 site hosting the corresponding P1 site of polypeptide substrate is a sub-pocket adjacent
catalytic cleft; for elastase-like proteases, there are small hydrophobic residues at S1 such
as Ala or Val. S1 is formed by residues 189–192, 214–216, and 224–228 [11]; the pocket
specificity is generally related to the residues at positions 189, 216 and 226 [11]. Notably,
the interaction between serine protease and polypeptide substrate is extended beyond the
S1 site, involving additional binding pockets that influence the efficiency of the hydrolytic
pathway [11].

Many efforts have been made to understand the binding mode of elastase inhibitors
targeting the various isoforms in humans and other organisms; distinct structural infor-
mation was collected through the analysis of the binding recognition in the similar target
protein porcine pancreatic elastase (PPE) that was used as s cheaper enzyme for the pre-
liminary biochemical assay. PPE has a high degree of sequence identity with pancreatic
elastases from other species. The primary structure of PPE displays only 40% homology to
that of Human Leukocyte Elastase (HLE); however, the tertiary structures of PPE and HLE
are very similar in the active site area [12–14].

In more detail, PPE [13,15] comprises a single polypeptide chain of 240 amino acids [13,16]
linked with four disulfide bridges. PPE is complexed with Ca2+ that is located in the so-
called “Calcium binding site” near to catalytic cleft, and it is necessary for PPE stability. The
polypeptide chain starts with Val16 and terminates with Asn245; this has been based on
bovine chymotrypsinogen A numbering [17]; however, in the most consistent nomenclature,
the canonical catalytic triad is composed by Ser203 (195), His60 (57) and Asp108 (102). PPE
consists of four subsites S1, S2, S3, and S4 [10], which bind the acyl group side of the
substrate, whereas the subsites S1′ and S2′ bind the leaving group during the catalytic cycle;
a detailed description in the subsite composition of PPE was reported in the literature by
Bode and coworkers [12].

The most popular and potent elastase inhibitors contain a peptide chemical scaffold
mimicking the endogenous substrate, as observed for human protein elafin, that is phys-
iologically produced in several tissues and exerts a protective effect from destruction by
the up-regulated immune responses [18]. Additionally, several peptide- and nonpeptide-
based inhibitors act as irreversible inhibitors, establishing covalent interactions with crucial
residues located in the catalytic cleft. These compounds have been especially developed to
fight pathological processes related to the over-activity of HNE.
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The medicinal chemistry efforts to identify inhibitors against HNE provided a wide se-
ries of synthetic derivatives [19] as peptide and non-peptide substrate-based electrophilic ke-
tone inhibitors; these compounds belong to the series of trifluoromethyl-based compounds
such as the N-[[5-(methanesulfonyl)pyridin-2-yl]methyl]-6-methyl-5-(1-methyl-1H-pyrazol-
5-yl)-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2-dihydropyridine-3-carboxamide (AZD9668,
alvelestat, Figure 1) [20]; in addition, other non-peptide compounds possess distinct
electron-withdrawing moieties as found in the 5-amino-N-[1-[[5-(1,1-dimethylethyl)-1,3,4-
oxadiazol-2-yl]carbonyl]-2-methylpropyl]-6-oxo-2-phenyl-1(6H)-pyrimidineacetamide
(ONO 6818, also known as freselestat, Figure 1) investigated for pulmonary diseases [21,22].
Moreover, it has been developed the inhibitor (3S,3aS,6aR)-3-isopropyl-1-(methylsulfonyl)-4-
((E)-4-(piperidin-1-yl)but-2-enoyl)hexahydropyrrolo [3,2-b]pyrrol-2(1H)-one (GW311616A,
Figure 1) possessing a trans-lactam substructure for which the mechanism of action has been
elucidated through the analysis of its crystal complex with PPE (PDB 1HV7, vide infra) [23].
In March 2020, the inhibitor 2-[[2-[[4-(2,2-dimethylpropanoyloxy)phenyl]sulfonylamino]
benzoyl]amino]acetic acid (Sivelestat, Figure 1) was approved for the treatment of inflam-
matory syndromes acting as a competitive inhibitor of NE [24]. Furthermore, several
natural-based compounds containing phenolic moieties were demonstrated to inhibit
elastases [25–27].
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based molecular entities for the development of elastase inhibitors able to prevent patho-
logical conditions leading to sagging and wrinkling skin. We focused our interest on small 
molecules based on the consideration that they generally display more favorable physio-
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Figure 1. Non-peptide-based inhibitors of elastase that have reached (pre)clinical development.

Apart from the well-established role of elastase 2 in inflammatory processes, there is
evidence that the other elastases could offer the opportunity to develop active agents in
human diseases. Recently, we focused our interest on developing new chemical entities that
can prevent skin pathologies related to excessive melanogenesis related to skin pathologies.
In detail, we identified tyrosinase inhibitors [27–34] to ascertain the role of tyrosinase
inhibition in the development of potential dermatological agents like thiamidol.

Keeping in mind the crucial role of ELN inhibition in controlling the skin elasticity, in
this work, we developed a computational approach to identify further non-peptide-based
molecular entities for the development of elastase inhibitors able to prevent pathologi-
cal conditions leading to sagging and wrinkling skin. We focused our interest on small
molecules based on the consideration that they generally display more favorable phys-
iochemical properties and are more prone to further structural optimization. Herein, we
report a multistep and combined computational protocol enabling the development of
an optimized pharmacophore model for elastase inhibitors; the model was subsequently
applied to screen out our in-house database of compounds from the synthetic source. Then,
the outcomes of the virtual screening procedure were filtered off to further select the most
affordable compounds that were preliminarily tested against the PPE assay.
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2. Results
2.1. Pharmacophore Modeling Generation

To gain knowledge on the binding requirements to target the protein of interest, a
structure-based pharmacophore modeling of pancreatic elastase-inhibitor complexes was
conducted. Among all the available X-ray structures of PPE-inhibitor complexes, we
selected five complexes (PDB codes: 1 BMA, 1 BTU, 1 ELE, 1 HV7, 1 JIM) [23,35–38] based
on resolution and R-factor values (see experimental methods). The chemical structures of
the ligands in complexes with the PPE are reported in Figure 2.
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complexes available on PDB database (PDB codes: 1 BMA, 1 BTU, 1 ELE, 1 HV7, 1 JIM) [23,35–38].

Figure 3A–E describe the five distinct models obtained by LigandScout (version 3.12) [39],
which is a platform to build three-dimensional pharmacophore models starting from
protein/ligand complexes available in the archive PDB database. For each PDB entry,
LigandScout generated a ligand-based hypothesis that was defined by a set of chemical
features that were consistent with the aminoacidic residues surrounding each ligand bound
to PPE.

The five pharmacophore models can be described as follows.

(1) Figure 3A illustrates the pharmacophore extracted from PDB code 1 BMA for the
complex with an aminimide-based peptidomimetic inhibitor 0BB; this model consists
of five hydrophobic features (H1–H5 yellow spheres): H1 given by the interaction with
Val103; H2 corresponding to the interactions with residues Thr221, Val224, Thr236; H3
with Thr152; H4 by interaction with Val103 and Phe223; and H5 given by interaction
with Val103, Ala104, Thr182 and Phe223. Additionally, it is described the interaction
with the main chain (backbone) of Val224 created both hydrogen bond acceptor feature
(A1, red arrow) and one hydrogen bond donor feature (D1, green arrow).

(2) In Figure 3B, it is reported that the pharmacophore extracted from 1 BTU for the
complex with the (3R)-3-ethyl-N-[(4-methylphenyl)sulfonyl]-L-aspartic acid (2 BL)
is derived as an acyl−enzyme complex formed between PPE and the monocyclic
β-lactam-based inhibitor. For this second model, three hydrophobic features were
generated: specifically, H1 for the interaction with Val103; H2 given by the interaction
with four residues Ile144, Thr221, Val224 and Thr236; H6 for interaction with Trp98,
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Thr100, and Val103. The model comprises three hydrogen bond acceptor interaction
features related to Gln200 (A2), Gly201 (A3), and Val224 (A1). Finally, one hydrogen
bond donor feature for the interaction with Ser222 (D2) and one hydrophobic aromatic
feature for interaction with crucial residue His60 (Ar1) are defined.

(3) The pharmacophore extracted from the ligand–protein complex 1 ELE is represented
in Figure 3C. In this case, the residue Val103 corresponds to the hydrophobic feature
(H1), whereas the hydrophobic feature H2 is generated by the interaction with residues
Thr221, Val224, and Thr236; Val 103 and Phe223 are responsible for the hydrophobic
feature H4; finally, Val103, Ala104 and Thr182 give (H5). The pharmacophore also
presents one hydrogen bond acceptor feature (A1) corresponding to residue Val224.
Finally, two hydrogen bond donor features are defined by interaction with Ser222 (D2)
and Val224 (D1).

(4) Figure 3D shows the pharmacophore extracted from the 1HV7 containing the trans-
lactam, GW311616A (see Figure 1); the bound represents the opened form of the
inhibitor that allows us to define one hydrophobic feature (H2) given by the interaction
with residues Thr221, Val224 and Thr236; additionally, the model consists of three
hydrogen bond acceptor features created by residues Gly201 (A3), Ser203 (A4) and
Val224 (A1).

(5) The last model was created from the complex 1 JIM (Figure 3E) for the ligand methyl(2-
acetoxy-2-(2-carboxy-4-amino-phenyl))acetate (ICU). This model is composed of two
simple hydrogen bond acceptor features generated by Gly201 (A3) and Val224 (A1).
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All the pharmacophores possessed various excluded volumes that reflected potential
steric restrictions and corresponded to areas where the ligand was not able to be localized.
The pharmacophore model construction established many crucial contacts between protein
and inhibitors. Overall, sixteen amino acid residues of PPE were involved; among them,
several residues belonged to the four sub-pockets (S1, S2, S3, and S4) as well as from crucial
catalytic triad and oxyanion hole. In particular, the selected residues were as follows: His60
(S2 and triad), Trp98, Thr100, Val103 (S2), Ala104 (S4), Ile144 (S1), Thr152, Thr182 (S4),
Gln200 (S1), Gly201 (oxyanion hole), Ser203 (triad and oxyanion hole), Thr221 (S1), Ser222,
Phe223 (S2), Val224 (S1, S3) and Thr236 (S1).

2.2. Contribution of Amino Acid Residues to Binding Free Energy

To improve the reliability of the five derived structure-based pharmacophore models,
we carried out an in silico alanine scanning mutations [40]; we investigated the role of
selected aminoacidic residues to the binding free energy for the five studied PDB structures
(1BMA, 1BTU, 1ELE, 1HV7, 1JIM) [23,35–38].

The computational alanine scanning calculated the values of the binding free energy
of the protein–ligand complex for selected amino acids before and after applying mutations
to alanine. Consequently, the difference in binding free energy allowed us to obtain a
quantitative measure of the free energy contribution of the specific residue to the binding
free energy of the protein–ligand complex [40]. By analyzing the results, it might be possible
to confirm how some mutations caused a weakening in protein–ligand interactions, as
evidenced by the positive value of predicted Stability Change (∆∆Gstability). The obtained
∆∆Gstability values generated a ranking of the contribution to the binding, distinguishing the
most significant hot spots (∆∆Gstability > 3 Kcal/mol) from the less relevant residues. This
computational study was performed by using the Alanine scanning module in Schrödinger
(Schrödinger Release 2023-2: Glide, Schrödinger, LLC, New York, NY, USA, 2021) [41],
enabling the calculation of the energy contribute of a given amino acid to the total binding
free energy for each protein–ligand complex. The analysis was conducted excluding the
residue Ala104; moreover, we excluded residues His60 and Ser203 considering that these
residues exerted an unambiguous role in catalytic activity of serine protease. The outcomes
of this study were collected in Figure 4; for each PDB structure, one or more selected key
residues were studied on the basis of previous data collected by pharmacophore hypothesis
generation (see Section 2.1).
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Notably, the mutation of residue Val224 caused a significant worsening of the binding
free energy in all examined protein–ligand complexes. Moreover, mutations of Thr236
and Thr221 showed the worsening of binding free energy in four different structures
examined. We decided to consider the amino acids with a ∆∆Gstability > 3 Kcal/mol as
relevant, paying more attention to residues Trp98, Val103, Thr221, Phe223, Val224 and
Thr236, which appeared to be the key residues in most of studied ligand complexes [42,43]
and possessed a high stability value.

2.3. Merged Pharmacophore Model

In this step of our computational protocol, the main suggestions extractable from the
alanine-scanning study were employed to further refine the five obtained pharmacophore
models (see Figure 3A–E); we especially focused our interested on five residues, Val103,
Ala 104, Thr221, Val224 and Thr236; these residues lined the sub-pockets and exerted
a fine tuning in elastase selectivity when compared to other serine proteases. Based on
this consideration and merging the five pharmacophore models, we obtained the newer
pharmacophore hypothesis that is depicted in Figure 5; this optimized hypothesis was
composed of the following features: 6 hydrophobic features (H1–H6), 2 hydrogen bond
acceptor features (A1–A2), 1 hydrogen bond donor feature (D1), 1 aromatic ring feature
(Ar1), as well as 29 excluded volumes, that were leave out in the schematic representation
displayed in Figure 5.
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residues involved in the interaction.

2.4. Molecular Dynamic Simulations

Considering that the high number of obtained features could be too strict to carry
out a preliminary virtual screening, in this step of our computational study, we decided
to further refine the model with the employment of additional calculations. We chose to
perform molecular dynamic (MD) simulations to obtain more data on the crucial contacts,
thus improving the chance to identify new promising compounds. The five PDB structures
of elastase/ligands 1 BMA, 1 BTU, 1 ELE, 1 HV7 and 1 JIM(E), which were previously
applied to create pharmacophore models (see Section 2.1), were now used to perform
molecular dynamic studies by using Desmond tool in the Schrödinger software suite
(Schrodinger 2023-2) [44,45]. By generating a root mean square deviation (RMSD) diagram
for all MD simulations (see Table S1 in the Supplementary Materials), we verified the
stability of protein–ligand complexes during the simulation. Figure 6 shows the results of
the MD studies that revealed interactions occurring more than 30% of the simulation time.
Therefore, we chose to consider relevant the following residues: Thr44, Arg64, Gln200,
Gly201, Ser 203, Val221, Ser 222, Phe223, Val224 and Arg226. Cross-referencing these data
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with the outcomes of computational alanine scanning (see Section 2.3), we can assume
that for the studied crystal complexes, the most relevant contacts might be summarized as
follows: (i) polar interactions with Val 224 and Gln200; (ii) stable hydrophobic interactions
with Phe223.
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2.5. Simplified Pharmacophore Model

The results obtained from MD and alanine scanning studies enabled us to simplify
our model. In more detail, we maintained the hydrogen bond features (A1, A2, and D1)
considering the crucial contacts with Gln200 and Val224; a further refinement was carried
out on the hydrophobic features as follows: we considered the hydrophobic interactions H2
given by Val224, as well as H4 and H5, important for the interaction with Phe223. Finally,
considering that the two hydrophobic features H4 and H5 were very close to each other,
we decided to incorporate them in one single feature increasing the tolerance. In turn, we
discharged the redundant hydrophobic feature H1 as well as the poor relevant hydrophobic
feature H3 while maintaining 29 excluded volumes. Now, the refined pharmacophoric hy-
pothesis for elastase inhibitors consisted of five features that were related to the interactions
with key residues revealed by combining the results reported in Figures 5 and 6: two hy-
drophobic features (H2, H4,5, two hydrogen bond acceptor features (A1, A2), hydrogen
bond donor feature (D1), as illustrated in Figure 7.
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2.6. Virtual Screening and Biological Assay

Based on the optimized 3D pharmacophore model displayed in Figure 7, we subse-
quently screened our in-house library of compounds named CHIME23, that consists of a
large collection of small molecules bearing distinct heterocyclic scaffolds. Among them,
the most populated chemical classes were quinolines, isoquinolines, imidazoles, triazoles,
benzimidazoles, thiazoles, thiadiazoles, and 2,3-benzodiazepines. These compounds were
synthesized in the medicinal chemistry laboratory by Laura De Luca, Rosaria Gitto, and
their coworkers at the University of Messina during the last few decades. In more detail,
CHIME23 collects small molecules that have been proved to be active ligands targeting
various pathological pathways in human pathologies (antivirals, neuroprotective, anti-
convulsants, and anticancers). Despite the large chemical space of compounds from the
CHIME23 collection, the virtual screening query furnished hits belonging to the only class
of N-substituted-1H-benzimidazol-2-yl]thio]acetamides that we have previously devel-
oped as anti-HIV-1 non-nucleoside reverse transcriptase inhibitors [46]. In particular, seven
compounds 1–7 proved to possess the best pharmacophore fit scores and matched the
identified chemical features, as detailed in Figure 8.

Considering that the selected compounds 1–7 might assume a very similar positioning
in the active site of PPE, the selection criteria to perform the subsequent focused in vitro
study included the evaluation of few structural variations: (i) the role of substituent on
benzene-fused ring of the benzimidazole fragment; (ii) the presence of a single or a pair of
substituents on aniline moiety; (iii) the impact on inhibitory effects of the nature of the link-
ing group of 3,5-dimethylphenyl substituent. Moreover, we chose to exclude compounds 1, 4
and 6 to avoid the non-specific esterase activity of PPE toward the ester moiety located at the
para position of aniline moiety. Therefore, we selected the N-(2-chloro-4-methylphenyl)-2-[[1-
[(3,5-dimethylphenyl)methyl]-1H-benzimidazol-2-yl]thio]acetamide (2), 2-[[6-chloro-1-[(3,5-
dimethylphenyl)methyl]-1H-benzimidazol-2-yl]thio]-N-(2-nitrophenyl)acetamide (3), and
N-(2-chloro-4-sulfamoylphenyl)-2-[[1-(3,5-dimethylbenzenesulfonyl)-1H-1,3-benzodiazol-2-
yl]sulfanyl]acetamide (7) to carry out the experimental testing of elastase inhibition. None
of the selected compounds possessed PAINS alerts as determined by SwissADME plat-
form (www.swissadme.ch, accession date 12 May 2024). The preliminary biochemical
assay was performed by using PPE, the substrate N-succ-(Ala)3-nitroanilide (SANA)
and the standard compound oleanolic acid (IC50 = 25.7 ± 1.38 µM [47]). Unfortunately,
compounds 3 and 7 failed to display ≥30% of the inhibitory threshold at fixed doses
of 50 µM. On the other hand, compound 2 demonstrated a promising inhibitory effect
toward PPE (IC50 = 60.4 ± 1.98 µM), suggesting that the N-substituted-1H-benzimidazol-2-
yl]thio]acetamide chemotype could be further exploited to develop new chemical entities
targeting elastase.

www.swissadme.ch
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2.7. Molecular Docking

As revealed by several structural experiments, the active site of elastase is composed
of distinct areas, including the crucial regions of the catalytic site/oxyanion hole that are
surrounded by two sets of sub-pockets (S1–S4 and S1′–S3′), that anchor the substrate and
subsequently generate the release of the leaving fragment. Therefore, the active site is an
extended area enabling the accommodation of peptide- and non-peptide-based inhibitors.
To gain information on the possible binding conformation of the most active compound
2 and its interaction mode with PPE, a flexible docking study was performed using the
protein extracted from the structure of the complex elastase/0QN (PDB code 1ELE), using
the program GOLD (v2024) [48]. The best docking conformation of inhibitor 2 bound to
PPE is illustrated in Figure 9A–B.

Compound 2 exhibited hydrophobic interactions with different residues of the binding
site; in particular, 2 projected its aniline fragment toward the cavity composed of residues
Val103, Ala104, Trp179 and Thr182 from the S4 sub-pocket. In addition, the -NH group
established the hydrogen bonding interaction with the residue Val224, in coherence with
the pharmacophore model and alanine scanning analysis. Finally, the dimethyl-benzyl
tail and the benzimidazole moiety of compound 2 gave interactions with crucial residues
His60, Gln200, Thr221, Phe223, Val224 and Thr236, belonging to the S1-S2-S3 subsites. The
favorable positioning of inhibitor 2 into the active site might account for its ability to reduce
the PPE activity in our preliminary in vitro assay (cfr previous section). Notably, the docking
results were consistent with the pharmacophore information. Based on this evidence, we
considered that the robustness of our docking protocol that might be applied to further
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identify newer compounds as analog compounds inspired by 2, as well as new chemical
entities through screening campaigns from different databases of available compounds.
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Figure 9. (A) Plausible binding mode of compound 2 (green stick) in the cavity of elastase protein
structure (gray). The hydrogen bond is represented as yellow dashes. This figure was prepared
using the program PyMOL (https://www.pymol.org accessed on 14 August 2024, The PyMOL
Molecular Graphics System, Version 3.0 Schrödinger, LLC., New York, NY, USA). (B) Schematic 2D
representation of the interactions between compound 2 and PPE, the interactions were generated
by Maestro.

3. Materials and Methods
3.1. Molecular Modeling Studies
3.1.1. Protein Preparation

To select the PDB complexes useful to create the pharmacophore model, a com-
prehensive study was conducted on different structures available on the RCSB PDB
(https://www.rcsb.org, accessed on 30 January 2024). The resolution and R-factor were
examined for each protein structure, specifically, a resolution less than 2.5 Å and R-factor
less than 0.2. As a result, five structures of PPE in the complex with different inhibitors,
deposited on RSCB PDB (PDB codes: 1 BMA, 1 BTU, 1 ELE, 1 HV7, 1 JIM), were chosen
(Table 1) applying the similar binding mode exhibited for all five inhibitors towards the
five studied binary complexes as selection criteria.

Table 1. Resolution and R-factor values for the five selected PDBs.

PDB Entry Resolution R-Factor

1 BMA 1.80 Å 0.192
1 BTU 1.60 Å 0.192
1 ELE 2.00 Å 0.171
1 HV7 1.70 Å 0.150
1 JIM 2.31 Å 0.153

Water and cofactors were deleted from each structure by Maestro. Subsequently, we
renumbered residues (Val16-Asn255) via VegaZZ [49] (only for PDB: 1 BTU, 1 JIM) to obtain
the same amino acid sequence numbering in each structure. The protein of 1 BTU was used
as reference to align the other structures using PyMOL. Finally, the protein structures were
prepared by means of the Protein Preparation Wizard (Schrodinger 2023-2) using the default
settings, with the exception of missing chains that were added using the program Prime.

https://www.pymol.org
https://www.rcsb.org
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3.1.2. Pharmacophore Model Generation

The pharmacophore model was generated using LigandScout. A model was built
for each of the five PPE structures in complex with different inhibitors. Each model was
submitted to post-alanine scanning refinement, and only those features defined as a hotspot
via alanine-scanning study were maintained. Subsequently, a merged model was obtained
and subjected to additional post-molecular-dynamic refinement. The resulting refined
model was subjected to a validation process. A set of 15 co-crystallized ligands to the
PPE protein available on the RCSB PDB were selected as the validation set (PDB codes:
1B0E, 1E36, 1ELD, 1ELF, 1FZZ, 1INC, 1MMJ, 1QGF, 2V35, 3HGP, 4YM9, 6QEN, 7EST, 8EST
and 9EST).

Virtual screening was performed with the following settings:

• Scoring function: Pharmacophore fit;
• Screening mode: Match all query features;
• Retrieval mode: Obtain best matching conformation;
• Omitted features: 1.

Out of the 15 ligands of the validation set, 11 ligands fitted the model (see Supplementary
Materials, Table S2) [16,37,50–58], so this model was considered predictive.

3.1.3. Molecular Dynamics

For the five protein–ligand complexes, molecular dynamics were carried out using
Desmond tool in the Schrödinger software suite (Schrodinger 2023-2). The orthorhombic
simulation box (size 10A × 10A × 10A) was prepared with the TIP3P water model. To
make the total charge of the system neutral, Na+ and Cl− ions were added, maintaining a
salt concentration of 0.15M. By selecting the OPLS4 force field, the protein–ligand complex
was prepared for molecular dynamic simulation. The simulation of each protein structure
has been set to the NPT option to maintain a fixed number of particles, temperature, and
pressure parameters. Temperature and pressure were set to 300 K and 1 atm, respectively.
A total of five molecular dynamics simulations were performed for a time of 500 ns for
each simulation. The results of the MD simulation were analyzed using the Simulation
Interaction Diagram tool implemented in the Desmond package.

3.1.4. Molecular Docking

To validate the molecular docking protocol, several studies were performed on various
proteins. The best results were obtained through the use of flexible docking of GOLD using
the crystal structure of PPE (PDB code 1 ELE). We chose 1ELE to carry out our molecular
docking experiments considering the best RMSD value (0.5310 Å) calculated on the best
docking pose of the inhibitor and its co-crystallized pose, when compared to the values
obtained restoring the other four inhibitors for each corresponding PDB structure. The
superimposition of the experimental and restored pose of inhibitor 0QN is described in
Figure S1 of Supplementary Materials.

In this case, amino acids were rendered flexible within 6 Å of the centroid of coordi-
nates x: −12.2628, y: 20.1692, z: 37.7359 obtained from the 5 co-crystallized ligands used
for the generation of the pharmacophore model (1 BMA, 1 BTU, 1 ELE, 1 HV7, 1 JIM). The
residues made flexible include the following: His60, Val103, Gln200, Ser203, Ser222, Phe223
and Val224. All ligands were subjected to 100 runs and a 10 Å box was evaluated. The
“Allow early termination” option was unchecked and the CHEMPLP function was used.
All ligands were previously prepared using the LigPrep tool implemented in Maestro,
generating the possible ionization states at pH 7.0 ± 2.0 using Epik (Schrödinger Release
2024-3: Epik, Schrödinger, LLC, New York, NY, USA, 2024) [59]. The (best) pose was
examined for the study of interactions with the target using Maestro (Schrödinger Release
2024-3: Maestro, Schrödinger, LLC, New York, NY, USA, 2024).
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3.2. Elastase Inhibition Assay

Elastase inhibition was determined by using the substrate N-succ-(Ala)-3-nitroanilide
(SANA), as previously described [47]. The assay was performed in 0.1 M Tris-HCl buffer
(pH 8.0). PPE (3.3 µg/mL) was incubated with or without the compound for 20 min, and
after incubation, the substrate (1.6 mM) was added. The release of p-nitroaniline during
cleavage of the substrate SANA by the enzyme activity was monitored at 410 nm. The
control was performed with DMSO, while oleanolic acid, tested in the same experimental
conditions, was used as a positive control. All chemical reagents were obtained as pure
commercial products from Sigma Chemical Co (St. Louis, MO, USA) and used without
further purification.

4. Conclusions

In this study, we report our structure-based drug discovery efforts for identifying new
chemical entities that inhibit PPE. The large surface of the active site of elastase is composed
of several sub-pockets combined with the catalytic area of this class of serine protease,
possessing hydrolytic activity for the peptide-based substrate. To better understand the
binding mode of active inhibitor from synthetic source, we performed a multistep compu-
tational protocol that afforded a simple and optimized pharmacophore model highlighting
the most relevant residues for binding recognition. We combined distinct computational
tools to select the model that filter off promising chemotypes from a collection of small
compounds from the synthetic source.

The best outcomes of this study consisted of the description of the best chemical
features for elastase inhibition as well as the identification of a new candidate for further
structural optimization and structural–activity relationship analysis. This method might
allow the exploitation of additional molecular interactions with unexplored sub-pockets
of elastase. The combination of our pharmacophore model and docking procedure could
be furnished as a useful protocol to perform further virtual screening campaigns towards
external three-dimensional collections of compounds from synthetic and natural sources to
discover new elastase inhibitors.
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