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Abstract
Design of bioelectrochemical systems (BESs) needs to
consider complex biological, physicochemical, and electro-
chemical phenomena, as well as aspects related to mass,
charge and momentum transfer. Experimental optimisation of
such complex systems will be too expensive in terms of time
and cost, so that a model-based approach is a necessary route
in BES design. In this work, the relevance of modelling in the
literature on BESs is quantitatively assessed, and the main
pros and cons of the different models of BES are identified.
Among the different models, computational bioelectrochemical
models (CBMs) are the most promising, the main potential and
drawbacks of CBMs are then discussed, and the issues open
for future research are indicated.
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Introduction
Bioelectrochemical systems (BESs) are emerging tech-
nologies that utilise electrochemically active microor-
ganisms either to transform chemical energy in
wastewater to electrical energy, through multiple
microbialeelectrochemical reactions in microbial fuel
cells (MFCs), or to convert organic matter into
www.sciencedirect.com
hydrogen or a wide range of chemicals (such as methane,
acetate, hydrogen peroxide, ethanol, and formic acid)
with a reduced environmental impact by means of mi-
crobial electrolysis cells (MECs).

Phenomena taking place in BES are complex and cover a
wide range of biological, physicochemical and electro-
chemical processes. A large number of factors could then
influence the BES [1e4], including the substrate
composition and concentration, the electron donors or
acceptors availability, the bacteria strains and their
electron transfer mechanisms (mediated by natural or
artificial mediators or directly by membrane cyto-
chromes) [5], the pH of anolyte and catholyte and the
operating temperature. These complex processes result
in a nonlinear relationship between the different vari-

ables involved, and correctly understanding the mech-
anisms that govern the performance of BESs with only
experimental methods is very difficult [6e9].

The design aspects (anode, cathode, separator materials
and geometries) and the operative mode (batch, fed-
batch, or continuous) also play a fundamental role.
Because of that, a significant number of studies have
been conducted to optimise the design and perfor-
mances of BES [10e12].

To design BES systems, a model-based approach is
therefore essential as it allows reducing the expensive
and time-consuming steps involved in experimental
investigations as well as identifying the technology
bottlenecks and improving the process performances
[7,13]. Despite the potential, the number of studies on
BES modelling is limited compared with the experi-
mental studies, and mostly addressed to MFCs rather
than other BES systems [9,14e16]. Moreover, different
modelling approaches have been proposed, with
different applications and purposes. The analysis of the

existing literature may allow one to take stock of the
results achieved, and in particular bibliometric and
social network analysis may be combined to investigate
on the specific topic. Maps based on network data allow
the construction of a network based on the relationships
among countries, journals, organisations, authors, and
keywords related to the investigated topic. The
VOSviewer software has been used to perform the
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analysis of the data in which specific maps were used to
represent the network of the relationships among key-
words related to the investigated topic and subtopics.

This work reviews the main characteristics of the
different approaches used in BES modelling. The
quantitative relevance of modelling in the literature was
assessed first with a metadata analysis; the relevant pros

and cons of the different models proposed are
summarised and then briefly discussed, with focus on
the key input parameters and equations, and the po-
tential use of modelling to drive the technology towards
plant-scale. The computational modelling as the most
promising tool for design, optimisation and scale-up is
then critically discussed.
Analysis and discussion of data
Data from bibliographic analysis with SCOPUS have been
elaborated with the VOSviewer software
(VOSviewer-version 1.6.19 https://www.vosviewer.com/),
an effective tool [17] to cluster publications and obtain a
comprehensive overview of the results. Records included
data of publication year, author, institution, source jour-
nal, keywords, title, and abstract.

The first step is to identify the keywords that are rele-
vant to the research question, and should be specific and
relevant to the topic of interest. The choice of these
terms in the query makes it possible to identify the main
research areas in the field.

Using the Scopus function “TITLE-ABS-KEY”, the
query Q1 was performed, with no time limit, and the
search was updated on November 6, 2023; of note: the
same search would probably yield slightly different re-

sults if performed on a different date.

Q1: (TITLE-ABS-KEY (modelling OR modeling OR
model) AND (TITLE-ABS-KEY (“microbial fuel cell”
OR “microbial fuel cells”) OR TITLE-ABS-KEY (“mi-
crobial electrolysis cell” OR “microbial electrolysis
cells”) OR TITLE-ABS-KEY (“bio-
electrochemical systems”)))

The record was then imported on VOSviewer and
subjected to a first analysis: 3462 records have been
identified. The map has been created based on biblio-

graphic data obtained from Scopus as data source: the
co-occurrence analysis has been performed, in which the
relatedness of items is determined based on the number
of documents in which they occur together. Moreover,
author keywords have been selected as unit of analysis
based on the full counting method. Figure 1 shows a
visual representation of the results, where the size of the
nodes varies with the occurrence (ocr) and then the
relevance of the keywords; the links between nodes
indicate a relatedness, the thickness of the arcs depends
Current Opinion in Electrochemistry 2024, 44:101460
on the number of documents the keywords occurred
together in. In particular, only 44 keywords occur
together at least 10 times. Colours give an indication of
the age of the papers, and a score is attributed to the
items, evaluated as the average year of publication
(APY) of the papers that report the related keywords.
The average publication year of the documents repre-
sents custom score attributes in which a keyword or a

term occurs, or the average publication year of the
documents published by a source, an author, an organi-
sation, or a country.

From the node’s size, MFCs (ocr = 667) and modelling
(ocr = 151) have the highest relevance, with a APY of
about 2017; the nodes bioelectrochemical systems
(ocr = 128) and MECs (ocr = 90) are representative of
articles with a more recent APY, 2018.6 and 2019.5,
respectively. These results highlight that the microbial
electrochemical technology is of great interest for the

scientific community, with growing attention towards
microbial electrolysis as a sustainable system for green
hydrogen production [18]. The node modelling is
strongly related to MFCs, confirming that the number of
papers on modelling of MFCs is currently considerably
higher than that of MEC.

Figure 1 also shows smaller nodes related to the appli-
cation to BES optimisation of the new trends in nu-
merical studies, including machine learning
(APY = 2021.5, ocr = 19) and artificial intelligence

(APY = 2021.9, ocr = 11): as it could be expected, the
APY of the relevant papers is high.

Data in Figure 1 provide a snapshot of the research on
modelling BESs: a wider interest can be seen in
modelling MFCs than MECs, while in the recent years
the interest is shifting towards microbial electrolysis.
Hydrogen-related topics including the so-called bio-
hydrogen, are the subject of many recent works, which
reflects the general trend of the research on electro-
chemical technologies. Optimisation and machine
learning are subjects that have aroused a lot of interest

in the newest research, with less attention paid to
fundamental topics of microbial electrochemistry
including biofilm growth and internal resistance.

Anyway, different approaches have been used in
modelling of BES, based either on physical chemical and
biological equations or statistical analysis of data. Sta-
tistical models can overcome the need of a complete and
exhaustive rationalisation of the involved phenomena,
although giving satisfying-to-excellent outcomes in
terms of simulation of the results. Despite this, most of

the data-driven models might fail in the prediction
without a sufficiently large experimental data pool [19].
The design of bioelectrochemical reactors requires the
definition of physical features. Consequently, an
approach centred on identifying the relevant
www.sciencedirect.com
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Figure 1

Co-occurrence analysis: Visual map of keywords in papers on modelling of bioelectrochemical systems. Colours in the map are based on the average
year of publication of the papers; size of the nodes refers to the relevance of the keyword.
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phenomena and expressing them through equations
might be more indicated. A wide range of models can be
identified including equivalent circuits (EC) models
[20e22] and complex multidimensional models, with
the relevant pros and cons. An in-depth analysis of all
these models is out of the scope of this work, and can be

found in Refs. [9,23e25]: a summary is shown
in Table 1.

Bioelectrochemical and equivalent circuits models use
electrochemical impedance spectroscopy [22,26], linear
sweep or cyclic voltammetry [24,27] to quantify the
internal resistance and the internal capacitance related
to anode, cathode, and other components of the cell;
however, it lacks predictive capacity as with qualitative
descriptions only short-term trends can be predicted.
Kinetic and 1-D balance-based models also present the

same limits.
www.sciencedirect.com
Computational bioelectrochemical modelling (CBM)
requires the numerical solution of complex, non-linear
sets of partial differential equations. The numerical
solution of CBM is usually obtained with finite volumes
or finite differences methods and requires a consider-
able number of parameters to be available. However,

computational modelling is the state of the art in design
for many applications including fluid transfer and
chemical reactors, and so it is expected to become for
bioelectrochemical systems, where balancing the accu-
racy of the assumptions and complexity of the solution
will be paramount.

Many authors have defined the following steps to build a
computational model before solving and validating: i)
defining the geometry (domains of integration), ii)
choice of the physics (set of equations), and iii) defining

and optimising the meshes [14]. The main challenge
Current Opinion in Electrochemistry 2024, 44:101460
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Table 1

Breakdown of the main modelling approaches proposed for bioelectrochemical systems.

Type of model Equations Output Parameters Parametrisation Pros Cons

bioelectrochemical
models

Current-overpotential
equations

Polarisation curves
Power curves (MFCs)

Overpotentials
(activation and mass
transfer) internal
resistance

Calculated from
polarisation experiments

Simplicity, low time
spending for
experiments; useful for
fast characterisation of
existing systems

Oversimplification of
phenomena, scarcely
useful for design

Equivalent circuits State-space equations Phase/frequency plots,
including Bode and
Nyquist plots; circuit
parameters

Circuit parameters Calculated from
electrochemical
impedance
spectroscopy (EIS)

Simplicity, low time
spending for
experiments; useful for
fast characterisation of
existing systems

Oversimplification of
phenomena,
assumption of linear
system as prerequisite
scarcely useful for
design

Kinetic models Kinetic equations Trends with time Kinetic parameters Fitting of experimental
trends with time; single
measures (e.g.
conductivity)

Simplicity; useful for lab
data interpretation and
preliminary design of
batch systems

Assumption of fully
mixed systems;
Scarcely useful for
design and scale-up

1D balance-based
models

Balance equations
(charge, energy, mass);
kinetics

1D profiles as a function
of length and time

Transport and kinetic
parameters;
conductivities; flow
velocity

Experimental data;
single measures (e.g.
conductivity)

Low complexity; useful
for data interpretation
and for preliminary
design under ideal flow
conditions

Limited to 1D
geometries; high
number of parameters
required;
oversimplification of
complex geometries and
systems under non-ideal
flow conditions

Computational
bioelectrochemical
models

Balance equations
(charge, energy, mass);
flow equations; kinetics

2D and 3D profiles as a
function of length and
time

Transport and kinetic
parameters;
conductivities; flow
parameters

Experimental data;
single measures (e.g.
conductivity)

Useful for design under
nonideal conditions;
effective in identifying
local malfunctions,
including starvation
zones; monitoring of
hard to measure
parameters

High number of
parameters required,
high complexity; high
computational spending
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facing CBM is finding a compromise between accurate
representation of the system and computational cost
and time. CMB may be used to solve complex problems,
considering spatial and temporal parameters in multi-
dimensional systems, and providing numerical descrip-
tion of these hard-to-measure aspects [23,28e30]. CBM
numerically simulate several phenomena including bio-
film growth, microbial distribution on the electrode,

electrode reactions, coexistence of different bacteria,
and ion transport through the membrane [27,31e33].

Clearly, this leads to high complexity in building and
solving the models, as many parameters, complex ge-
ometries, and a variety of phenomena need to be iden-
tified, with an increase in computational costs including
computational time and memory storage requirements
[34]. Several assumptions have been proposed to reduce
the computational cost while maintaining acceptable
reliability and accuracy discarding phenomena or pa-

rameters of low influence:

- Biofilm as a conductive porous solid with a fixed
thickness [14].

- Single population of bacteria in the biofilm or neglect
bacteria in the bulk [35].

- Simplification of the substrate (single electron donor)
[36].

- Substrate evenly distributed in anolyte (equal con-
centration of reactants in the bulk, the biofilm surface
and inside the bacteria) [37,38].
These assumptions facilitate the modelling process,
however, some of them may not be adequate; as an
example, steady approximation cannot interpret the
biofilm growth, where a nucleation-growth mechanism
is more effective, single population of bacteria may not

represent complex consortia, and concentration gradi-
ents cannot be neglected when the anode present
porous structures or under flow conditions with low
velocities [6].

Parametrisation of CBM would require a complete
characterisation of phenomena related to bio-
electrochemical processes, many experimental data and/
or online analyses to account for variations in time and
space, which would ultimately be impractical with BES
operations [39]. Strategies to minimise the experi-

mental data have been proposed such as design of ex-
periments (DOE) [40].

Experiments allow determining key parameters of the
model, but also its validation. In this case, the error
between experimental and simulated values can provide
information on phenomena that may be underestimated
or inadequately considered. Several parameters were
proposed to measure the error of prediction but the
most used are the mean square errors (MSE), the root
www.sciencedirect.com
mean square error (RMSE), and the coefficient of
determination (R2) [41]. RMSE value below 20% is
generally accepted, although a threshold may vary due to
diversity of BES systems and cases [37].

Sensitivity analysis can be very useful to determine the
parameters that most affect the numerical solution and to
assess the validity of the assumptions [42,43]. More

sensitive parameters must take priority and should be
adjusted to fit the experimental data under specific
conditions [37]. Sensitivity analysis can also assist in
parameter tuning for accelerated model construction.
The sensitivity analysis frequently applied in BES is one-
factor-at-a-time method (OFAT); however, this method
has intrinsic drawbacks because it cannot evaluate com-
bined effects of different parameters. Setting the pa-
rameters out of the appropriate range may result in the
hiding of crucial and sensitive values, leading to the un-
derestimation of their significance [44]. More efficient

and accurate techniques were also proposed such as the
multi-task Lasso adopted to identify the most influent
parameters in a serially connected five-module MFC
[45]. Sensitivity analysis was anyway used to make suit-
able assumptions with the minimal impact on accuracy,
precision, and computational cost, and to help under-
stand the working mechanisms and interrelations among
immeasurable factors in MFCs [46].

The definition of the domains of integration starts from
the complex geometries used in BES, with porous

structures and irregular shapes. The porous electrodes
are present in all BES designs as carbon felt, carbon
cloth and carbon brush, which are usually represented as
continuous media, with 2D or 3D domains used,
depending on the geometry of the cell and on the
approximation accepted. Carbon brush was represented
with a rectangular domain of integration in 2D model-
ling [47], while a helix-shaped domain was used in a 3D
model [6]. Rectangular domains were also used in
modelling filter press-like cells with carbon felt elec-
trodes under steady state or transient conditions [39],
where the same material was modelled in 3D where the

anode was a packed bed of small rectangular blocks [48].
Continuous media are generally used to represent liquid
electrolytes [49] but were also used for soils and ceramic
separators in MFCs modelling [50]. Usually, ion ex-
change membranes used in BESs are modelled consid-
ering diffusion and migration according to the
NernstePlanck Equation. The main limitations
involve the occurrence of a pH gradient between anode
and cathode compartment, and an increase in the ohmic
resistance with low electrolyte concentrations [7].

The use of a mesh analysis strategy, together with
suitable assumptions and boundary conditions, can help
to realise more complex geometries by defining the node
density as a function of the complexity of the phe-
nomena taking place in each node. In porous anode and
Current Opinion in Electrochemistry 2024, 44:101460
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cathode finer grids than in the bulk of reactor or chan-
nels are used [14,51], solving the model with lower
computational cost than using a high number of fine
grids all around the geometry. Finer meshes used in the
biofilm region reduced the grids from 248,386 to 68,324
with an 8-fold reduction in computational time and an
error of only 1.02% [14].
Conclusions and future perspectives
As BES systems are characterised by complexity and
multidisciplinary nature, computational modelling has
an advantage over other types of models, since CBMs are
built with a multiphysics approach that considers elec-

trochemistry, bioelectrochemistry, transport phenom-
ena, fluid dynamics, and mass transfer in space and time.
The interaction of different phenomena can be quan-
tified, evaluating the simultaneous effect of several pa-
rameters at the same time. The use of CBMs is then
paramount in design and scale-up of BESs. The solution
of the model with domains of integration that reproduce
the geometries of the system under study makes it
possible to appropriately analyse the evolution of pa-
rameters that are difficult to determine experimentally
or even to visualise.

However, these advantages may be balanced by the high
computational times and the number of parameters to
be available. There are several ways to solve or reduce
these problems:

- Simplify the models by physical assumptions, pro-
vided that these are accurate to maintain the validity
of the model.

- Simplify the geometry as in the classical carbon brush
anode.

- Optimise the meshes to reduce the number of grids.

- Use of more advanced computing systems, such as
multicore processor [52], as computing is a field with
very rapid development and equipment is advancing
very significantly with affordable cost reductions.
Moreover, there are still open issues that require
more investigation:

- Simulation of the biofilm in its complexity. This is the
most critical aspect and the one that tends to be
simplified the most in BES models.

- Modelling the cathode reactions. In most BES system
models, the focus is on the modelling of the anode;
although several consider the cathode phenomena,
including biofilm formation, they are still few and far
between and require more attention.

- Combining different models (equivalent circuits or
statistical models) with CBM models can exploit the
advantages of both, while reducing computational
time and increasing the accuracy of CBM models [9].
Current Opinion in Electrochemistry 2024, 44:101460
Based on the analysis of the literature and the potentials
of the different models, we can conclude that compu-
tational modelling is the most promising approach to
design and scale-up BESs. Moreover, computational
modelling is widely used to design chemical and bio-
logical reactors, and it has several strengths when
compared to other numerical techniques, including the
use of physically based equations. We therefore expect

CBMs will become the state of the art in designing BESs
within a few years.
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