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We study the buckling of a clamped beam immersed in a creeping flow within a rectangular
channel. Via a combination of precision experiments, simulations, and theoretical modeling, we
show how the instability depends on a pressure feedback mechanism and rationalize it in terms of
dimensionless parameters. As the beam can bend until touching the wall above a critical flow rate,
we finally demonstrate how the system can be used as a tunable passive flow selector, effectively
redirecting the flow within a designed hydraulic circuit.

The efficient redistribution and control of flow is essen-
tial in many biological and engineered structures, from
our cardiovascular system to plants and soft robots [1–3].
For instance, plants majestically control and distribute
the fluid flow within their lymphatic systems, without
the need of any cerebral tissue and external actuation
[2]. Inspired by the biological world, microfluidic devices
have been engineered with passive valves to enhance a
variety of functions, ranging from cell manipulation to
mixing and reacting devices [4], giving rise to the field
of soft hydraulics, where the compliance of valves and
channels is exploited to achieve new functionalities [5–
9]. Research efforts on passive control strategies have for
example led to the design of fluidic diodes [5] and flow
regulators [6, 10]. These applications have benefited from
classical studies within the field of fluid-structure inter-
actions [11, 12], but have also called for a better under-
standing of the behavior of flexible structures in fluidic
channels, motivating studies on fixed [13, 14] and moving
[15–17] fibers, and on flexible sheets [18, 19]. Within the
field of soft hydraulics, the buckling of a clamped elastic
fiber in a fluidic channel promises to be a good candidate
to design tunable passive flow selectors, which would en-
rich the current ensemble of passive valves and the un-
derstanding of instabilities of flexible elements within mi-
crofluidic devices.

In this Letter, we combine precision experiments with
fluid-structure simulations and theoretical developments
to reveal how Stokes flows induce beam buckling in flu-
idic channels. Our experiments demonstrate that, above
a critical fluid load, the beam undergoes a buckling in-
stability, thus bending to one side of the channel and be-
having as a passive flow selector (Fig. 1). As the problem
naturally involves several geometric and material param-
eters pertaining to the beam, the channel, and the fluid,
we carry out a dimensional analysis that untangles the
physics of the problem and allows for a systematic explo-
ration of the parameter space. In parallel, we perform
two-dimensional (2D) and three-dimensional (3D) simu-
lations of elastic beams immersed in a Stokes flow, and
develop a theoretical model to rationalize our findings.

We finally demonstrate that our results can inform the
design of a tunable passive flow selector via a combina-
tion of experiments and 3D simulations, and that the
geometry of the selector can be tailored to finely tune
the flow rates at the outlets.

In our experiments, we fabricated thin elastomeric
beams of two different materials: silicone-based
vinylpolysiloxane (VPS) 32 (Zhermack) and PET (My-
lar®, DuPont Teijin Films). For the former, we coated
a smooth acrylic plate with the polymeric mixture and
used a thin-film applicator (Futt, KTQ-II) to obtain lay-
ers with predefined and homogeneous thicknesses h ∈

[0.25, 0.6] mm. We then cut beams with height b = 3 mm
and length l ∈ [7, 30] mm. For PET beams, we used
Mylar sheets with thicknesses h ∈ [0.05, 0.25] mm and
cut beams with height b ∈ [1, 5.89] mm and length
l ∈ [6.9, 40] mm. By performing self-buckling tests [20],
we measured the Young’s modulus for the two mate-
rials, resulting in E = 1.1 ± 0.1 MPa for VPS and
E = 5.1± 0.1 GPa for PET (See Supplemental Material
for further detail [21]). A clamp holder secures the beam
within a 3D printed channel with width wc ∈ [5, 30] mm
and height bc = 6.5 mm, as depicted in Fig. 1 (a), where
a flow rate Q ∈ [0.1, 100] mL/min of silicone oil (dy-
namic viscosity µ = 1 ± 0.1 Pa s) is driven by a syringe
pump (Harvard Apparatus PHD Ultra 70-3007). A sci-
entific camera (Basler Ace acA4096-40uc) is positioned
above the channel to record the beam deformation, ex-
tracted via a custom MATLAB image processing code.
Within this range of parameters in our experiments, the
maximum Reynolds based on the hydraulic diameter of
the channel was 0.58, so that fluid inertia was negligible
[21]. In a typical experiment, we impose a flow rate Q,
achieved after a short preset ramp, and perform subse-
quent runs at increasing values of Q while recording the
beam deformation. In each experiment, the tip displace-
ment of the beam increases monotonically to a steady and
constant value, following a short transient [21]. Above a
critical flow rate, which depends on the geometrical and
material parameters of the system, the beam deforms
from the initial straight shape in Fig. 1 (c, top) to the
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FIG. 1. (a) Schematic of the clamped beam inside a narrow channel. The Poiseuille flow is represented in the detailed sketch
in the top left corner. (b) Experimental measurements. Tip displacement wt/l rescaled with the first observed value versus
the critical Cauchy number normalized with the inferred threshold value CY /Ccr

Y to highlight the linear regime of the tip
displacement, as denoted by the red solid line, for several wc/l according to the color bar. (c) Snapshots of straight and buckled
beams (left: experiments; right: simulations). Color bars denote the dimensionless velocity Ū and p̄ in simulations.

bent configuration represented in Fig. 1 (c, bottom).

By means of dimensional analysis, we introduce the
Cauchy number CY = µUmaxl

2/EÎ, where Umax is the
maximum velocity as given by the 3D Poiseuille flow at
the inlet, and Î = h3/12 is the moment of inertia per
unit height of the beam [21]. The dimensionless number
CY represents the ratio between the fluid (∼ µUmax/l)
and elastic stresses (∼ EÎ/l3), thereby combining some
geometrical parameters of the system with the material
parameters of the beam and the fluid [22]. By assuming
wc ≃ wc − h = w∗

c , we can further reduce the number
of parameters at play. Therefore, a critical flow rate
corresponds to a critical Cauchy number Ccr

Y , beyond
which the beam diverges from the initial straight shape,
which depends only on the remaining geometrical param-
eters w∗

c/l and b/bc. To quantitatively define the critical
Cauchy number Ccr

Y , we analyze the steady-state (max-
imum) tip displacement wt/l of the beam as a function
of CY , as shown in Fig. 1 (b). The tip displacement,
rescaled by the first observable value, presents a linear
growth with the Cauchy number, rescaled by the criti-
cal one Ccr

Y (as determined from the experimental data),
then followed by a sudden superlinear regime, similarly
to the Euler buckling of thin beams with small imperfec-
tions [23]. As a protocol, we define the critical Cauchy
number Ccr

Y as the lowest Cauchy number correspond-
ing to a relative variation of wt/l of 5% from the linear
trend [21].

To improve our initial understanding of the experimen-
tal results, we perform 2D and 3D fluid-structure simula-
tions by solving the dimensionless Stokes equations cou-
pled with the balance equations of Hookean solids un-
dergoing small strains but large displacements, enforcing
stress continuity at the fluid-solid interface [21]. Fig. 2 (a)
shows the critical Cauchy number as a function of w∗

c/l
and b/bc as obtained from simulations and experiments.
The slope of the red solid line denotes the cubic scal-
ing Ccr

Y ∼ (w∗
c/l)

3 observed for b/bc → 1 and w∗
c/l < 1,

that is a high-confinement regime, as rationalized later.
Experiments and 3D simulations are in good agreement
over a wide range of parameters, with 2D simulations
replicating the behavior of the system for high confine-
ment ratios.
To rationalize our experimental and numerical results,

we first develop a 2D theoretical model. We assume
a parabolic Poiseuille flow profile inside the channel,
including the gaps between the beam and the walls
(Fig. 1 (a)), meaning that the pressure p does not vary
along the cross-stream direction, denoted by y, when
the beam is straight. This can also be seen from our
2D simulations depicted in Fig. 1 (c), where the flow
rate Q splits into two flow rates Q/2 within the two gaps,
above and below the beam. Within each gap H, the
streamwise-invariant Poiseuille flow is characterized by a
pressure gradient G = −∂p/∂x = 6µQ/H3, where x is
the streamwise coordinate such that x = 0 at the free tip
of the beam (Fig. 1 (a)). At the onset of buckling, the
beam deflects with a vertical displacement w(x) ≪ w∗

c ,
such that the gap of the upper (+) and lower (-) parts
becomes H(x) = w∗

c/2 ∓ w(x). Therefore, upon inte-
gration from the common pressure value at the leading
edge of the beam (x = 0), the pressure field becomes

p±(x) ≃ −6µQx/ (w∗
c/2∓ w(x))

3
+ p(0), where we ne-

glected the dependence of H with x while integrating
along the beam, since w(x) ≪ w∗

c . At a fixed down-
stream position, the transverse load per unit length due
to the pressure difference between the two sides of the
beam is expressed as a Taylor series for w(x)/w∗

c → 0:

qy(x)ey = −p+ (ey) + p− (ey) =

576µQx

w∗3
c

w(x)

w∗
c

ey +O(w3(x)) ≃ αxw(x)ey , (1)

where ey is the unit basis vector along y and α is defined.
This force acts along the same direction of the displace-
ment and represents a positive feedback due to beam de-
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FIG. 2. Fluid-induced buckling of clamped beams. (a) Criti-
cal Cauchy number Ccr

Y as a function of w∗
c/l for several b/bc,

as shown by the color bar, from experiments and simulations.
The red solid line denotes the cubic law from the analytical
solution under the assumption of 2D flow. (b) Critical Cauchy
number Ccr

Y as a function of the dimensionless geometric pa-
rameter Λ, with the red solid line denoting the analytical so-
lution in Eq. (5) with three-dimensional and wall shear stress
effects.

flection. This pressure imbalance can be appreciated by
the pressure iso-contours in Fig. 1 (c). Buckling insta-
bility occurs when the transversal pressure load, which
increases with the deflection of the beam, overcomes the
bending internal stresses of the beam:

EÎ
wt

l4
∼

µQl

w∗3
c

(

wt

w∗
c

)

⇒ Ccr
Y ∼

(

w∗
c

l

)3

, (2)

where we used the tip displacement wt as a representa-
tive displacement and Q ≃ (2/3)Umaxw

∗
c [21]. This the-

oretical prediction agrees with the cubic scaling found in
Fig. 2 (a) for high confinement, where we plotted it with
the prefactor 0.1637 derived via a quantitative linear sta-
bility analysis [21].
However, as w∗

c/l → 1, a progressive deviation from
the cubic trend is observed, for both 2D and 3D settings.
For 2D, the deviation from the cubic trend is due to the
decreased pressure-feedback: the compression load per
unit height, qx = 2τ , due to the wall shear stresses, τ =
GH/2 ≃ 8µUmax/w

∗
c , becomes more important as w∗

c/l
increases, since the pressure-driven feedback decreases as
qy ∝ w∗

c
−2, while wall shear stresses as qx ∝ w∗

c
−1. For

3D, this effect occurs for smaller w∗
c/l with increasing

b/bc, since channels have a more slender cross-section,

i.e., a larger w∗
c/bc (see Fig. 3 (b)). Indeed, for w∗

c/l ∼ 1,
a geometry with l ≫ b and b/bc ∼ 1 implies w∗

c ≫ bc,
i.e. a shallow channel. For the same maximum velocity,
hydrodynamic forces increase for shallower channels [10].
A second improvement can be thus obtained by modeling
the 3D effects due to the aspect ratio of the cross section
of the channel [24], which have been neglected so far.
Indeed, for b/bc ⪆ 0.5, two 3D Poiseuille profiles stand
on the sides of the beam along the y-axis (Fig. 3 (a,b)).
By taking this 3D structure into consideration, we can
calculate the 3D pressure gradient and wall shear stresses
as

G = f

(

w∗
c

bc

)

32µUmax

w∗2
c

, τ = g

(

w∗
c

bc

)

8µUmax

w∗
c

, (3)

where f(w∗
c/bc) and g(w∗

c/bc) are analytical functions of
the aspect ratio of the channel cross section (Fig. 3 (b,c)).
We proceed to obtain a quantitative prediction of the

buckling threshold by means of linear beam theory. The
Euler-Bernoulli beam equilibrium equation under the
transversal load qy, proportional to the beam displace-
ment w(x), and the constant compressive load qx reads
EÎw′′′′(x)+qx (xw

′(x))
′
− qy(x) = 0 [20, 23]. Upon non-

dimensionalization with the beam length, we obtain

w̄′′′′(x̄) + 16CY g(w
∗
c/bc)

l

w∗
c

(x̄w̄′(x̄))
′
−

− 384CY f(w
∗
c/bc)

(

l

w∗
c

)3

x̄w̄(x̄) = 0 , (4)

completed with the classical free-edge (w̄′′(0) = w̄′′′(0) =
0) and clamp boundary conditions (w̄(1) = w̄′(1) = 0),
where bars denote non-dimensional variables. A stan-
dard linear stability analysis looks for non-trivial solu-
tions of this homogeneous problem to evaluate the crit-
ical value of CY . For an imposed tip displacement wt,
a straightforward guess of the beam displacement that
satisfies boundary conditions, neglecting the distributed
nature of the pressure load, is the third-order polyno-

mial w(0)(x) = wt

2

(

2− 3
(

x
l

)

+
(

x
l

)3
)

, which aligns with

experimental deformed shapes (Fig. 3 (d)). An approxi-
mation of the instability threshold is thus obtained by
injecting the post-buckling beam deflection w(0)(x) as

guess for w(x), i.e. solving w̄′′′′(x̄) + β̄
(

x̄w̄(0)′(x̄)
)′

−

ᾱx̄w̄(0)(x̄) = 0 with the same boundary conditions and
imposing the same free-edge displacement w(0) = wt (β̄
is defined from (4)). We obtain the compatibility condi-
tion 7ᾱ/480 + β̄/8 = 1, leading to

Ccr
Y =

1

16

w∗
c

l

(

1

8
g

(

w∗
c

bc

)

+
7

20

(

l

w∗
c

)2

f

(

w∗
c

bc

)

)−1

=:Λ ,

(5)
where we define the dimensionless geometric function Λ,
depending on the 3D geometry of the system. For
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FIG. 3. (a) Three-dimensional structure of the flow in the
channel for wc/l = 0.7. (b) Slices of the flow structure in
the yz-plane for b/bc = 0.1, 0.3, 0.7, 0.9. Color bars denote
the dimensionless velocity component in the x-direction. (c)
Functions f (left) and g (right) versus w∗

c/bc. (d) Experi-
mental deformed shapes of the beam (white) for w∗

c/l = 0.47,
b/bc = 0.46 (left), w∗

c/l = 0.14, b/bc = 0.46 (right, top),
w∗

c/l = 0.16, b/bc = 0.46 (right, bottom) overlaid with the
theoretical approximation of the post-buckling beam deflec-
tion w(0) (red dashed lines).

f = g = 1 and w∗
c/l ≪ 1, this reduces to the 2D pressure-

driven case, Ccr
Y ≃ 0.1786(w∗

c/l)
3, very close to the the-

oretical exact prefactor [21]. In Fig. 2 (b), we plot our
numerical and experimental results as a function of Λ,
showing an overall collapse of the data as predicted by
Eq. (5) (red solid line), without any fitting parameters.
The remaining deviations from theory can be attributed
to the gap between the channel and the beam along the
z axis when 1 − b/bc ≫ w∗

c/l, which weakens the 2D
pressure-driven feedback mechanism as the beam deflects
since the flow mostly escapes through the gaps along the
z axis (Fig. 3 (b)).

To demonstrate that our system can be used to de-
sign a passive flow selector, we perform experiments and
simulations in a channel where a beam is placed right
upstream of a bifurcation, as depicted in the 3D printed
channel in Fig. 4 (a). A flow rate Q above the critical
one was imposed via the syringe pump, and the flows
from the two different outlets were collected in two dif-
ferent cylindrical containers. By tracking the height of
the fluids over time, we were able to measure the flow
rates Q⋆ and Q − Q⋆ in the outlets. A simplified 2D
case is depicted in Fig. 4 (b). If the beam (in green)
deflects to one side until it touches the wall, 2D simula-

tions show that the flow is redirected to the opposite side,
with the flow at the outlet equal to the flow rate at the
inlet Q⋆ = Q. However, as experiments are inherently
three-dimensional, we expect Q⋆ ̸= Q in general, as the
fluid can move above and below the beam through its
lateral ends, since b/bc < 1. Therefore, we perform 3D
simulations with a rigid beam touching the wall, by tak-
ing advantage of the post-buckling shape derived above,
to construct a phase map of the relative flow rate Q⋆/Q
as a function of b/bc and wc/l, in the case where the beam
touches the wall. Fig. 4 (c) depicts this phase map, where
diamonds and contour lines denote 3D simulations, while
experiments are represented by circles. The map shows
that Q⋆/Q can be finely tuned by a careful selection of
the geometrical parameters b/bc and wc/l, while the 2D
case, where Q⋆ = Q, can be recovered for b/bc → 1 and
wc/l < 2.

In summary, we have demonstrated how a clamped
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beam in a channel can undergo a buckling instability,
which can be harnessed to design a tunable passive flow
selector. We have developed a 3D theoretical model that
reveals a nontrivial pressure feedback, which governs the
high-confinement regime, and successfully combines the
relevant material and geometrical parameters of the sys-
tem. Albeit the direction of buckling in our experiments
is undetermined a priori, as it depends on imperfec-
tions [21], we anticipate that it can be encoded in the
system by seeding precise defects or designing a bilayer
beam that realizes a natural curvature due to variations
in temperature [25] or pH [26]. This system may find
application in microfluidic systems such as cell-sorting
[27], or provide a simple solution in applications where
the flow has to be redirected passively to specific appen-
dices, such as in soft robotics [3]. Lastly, we envision this
system to be employed for the indirect measurements of
elastic properties of small and soft fibers [17, 28, 29],
where standard mechanical tests fail, which we hope the
current study will motivate.
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EXPERIMENTAL DETAILS

Experimental apparatus

A schematic of the complete experimental setup is shown in Figure S1. The channel consists of several components:
the main frame is made of aluminum and covered by transparent acrylic sheets from top and bottom. A backlight
(Edmund Optics AI Side-Fired Backlight, 2”× 2”, White) is placed below the channel to help with image processing.
A scientific camera (Basler Ace acA4096-40uc USB3 with a color zoom lens 13-130 mm) is mounted at the top of the
channel and employed to record and capture the beam deformation. A family of 3D printed channels with different
widths, placed within the main aluminum frame, allows for varying the channel width. Within each 3D printed
geometry, the channel width is gradually increased from the inlet diameter to the desired width. We considered
channel widths in the range wc ∈ [0.5, 3] cm and a fixed channel height bc = 0.65 cm.

Syringe pump

Camera

Pressure sensor

Backlight

Channel

FIG. S1. Photo of the experimental apparatus comprising the syringe pump, the pressure sensor, the scientific camera with a
backlight, and the 3D printed channel hosted within the aluminum frame. A detail of a VPS beam and its clamp is depicted
in the top left corner.

Silicone oil (Sigma-Aldrich, kinematic viscosity, ν = 1000 cSt and density ρ = 970 kg m−3) is used as the working
fluid and the discharge flow, Q, is manipulated by a syringe pump (Harvard Apparatus PHD ULTRA Syringe Pump
70-3007). We employed syringes with varying capacity (ACONDE 20-150 mL plastic syringe) and all experiments
were performed with 0.1 ≤ Q ≤ 100 mL min−1. Flexible PVC tubes are used to connect the syringe and the pressure
sensor (OMEGA PXM409-170HGUSBH) to the channel. The Reynolds number (ReDh

= DhUmax/ν), based on the
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FIG. S2. Dependence of Umax/U
2D
max on the aspect ratio wc/bc.

hydraulic diameter Dh = 2bcwc/(bc +wc) [1] and the fully developed maximum flow velocity Umax, ranges from 10−4

to 0.58. To evaluate the maximum flow velocity in the fully developed region, we used the 3D analytical solution of
a Poiseuille flow through channels of rectangular cross-section [2] :

u(z∗, y∗) =
G

2µ
z∗(bc − z∗)− 4Gb2c

µπ3

∞
∑

n=1

1

(2n− 1)3
sinh(αny

∗) + sinh[αn(wc − y∗)]

sinh(αnwc)
sin(αnz

∗), αn =
(2n− 1)π

bc
, (S1)

Q =
Gb3cwc

12µ
− 16Gb4c

π5µ

∞
∑

n=1

1

(2n− 1)5
cosh(αnwc)− 1

sinh(αnwc)
, (S2)

where u(z∗, y∗) represents the velocity as a function of the coordinates z∗ and y∗ that run along the height and the
width of the channel (y∗ = y + wc/2, z

∗ = z + bc/2), respectively, and Q represents the discharge flow rate. The
constant pressure gradient is denoted as G = −dp/dx, while µ = ρν is the dynamic viscosity. Combining Eq. (S1)
with Eq. (S2), we can express the maximum velocity as a function of the flow rate and employ it to determine the
corresponding Cauchy number CY = µUmaxl

2/(EÎ), where Î = I/b = h3/12 is the second moment of inertia per unit
width of the beam and l is the length of the beam, and Umax = u(bc/2, wc/2) reads:

Umax =
Gb2c
8µ



1− 32

π3

∞
∑

n=1

1

(2n− 1)3

sin
(

(2n−1)π
2

)

cosh
(

(2n−1)π
2 (wc/bc)

)



 . (S3)

Note that term
Gb2

c

8µ is the maximum velocity U2D
max in the 2D case, i.e. as wc/bc → ∞. The dependence of Umax/U

2D
max

on the aspect ratio wc/bc is reported in Figure S2. For constant values of G, bc and µ, the maximum velocity within
the channel increases as the transversal length wc increases, until it saturates to the 2D value at wc/bc ∼ 5. In
tighter channels, the maximum velocity decreases for the same pressure gradient G. Therefore, to maintain the same
maximum velocity as wc/bc increases, the pressure gradient must also increase.

Beam fabrication and characterization

We consider two different materials to fabricate the beams: VPS-32 (vinyl-polysiloxane, Zhermack) and PET
(Mylar®, DuPont Teijin Films). VPS beams are prepared by mixing the bulk and curing agents at 1:1 mass ratio
in a centrifugal mixer (Thinky Mixer ARE-250CE), at 1200 rpm for 20 seconds [3]. The resulting fluid is poured on
acrylic plates where an adjustable thin film coating applicator (Futt, KTQ-II) is used to achieve a specific thickness.
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Curing takes approximately 20 min at room temperature. Mylar beams are instead prepared by cutting the desired
shape out of 75 µm, 100 µm and 250 µm thin sheets. All beams have a ratio b/l < 0.12 so that they are well within
the beam regime and far from the plate behavior. The densities for both materials are determined by measuring the
mass of plate-like samples of known geometry with a precision scale (Kern, ABS220-4N). We found ρ = 1160 kg/m3

for VPS and ρ = 1416 kg/m3 for Mylar.
The Young’s modulus, E, for both materials is determined by the self-buckling test [4]. A beam with specified

thickness h and width b is clamped vertically and its length is increased (by pushing it through the clamp) until
buckling is observed. Then, the Young’s modulus is estimated via the formula lmax = (7.8373EÎ/ρgh)1/3 [4]. By
repeating the self-buckling experiment for different beam geometries, we found that E = 1.1±0.1 MPa for VPS and
that E = 5.1±0.1 GPa for Mylar.

Experimental procedure

In each experimental run, the beam is secured to a 3D-printed detachable holder using VPS, allowing easy fixation
within the channel. The beam length is adjusted so that its tip is positioned within the fully developed region of the
fluid flow. This is ensured by computing the entrance length for a specific channel and flow rate as documented in [5].
At the beginning of each experiment, the channel is fully filled with silicone oil. We minimize the presence of

bubbles by flushing the channel at a low discharge flow rate that does not induce buckling. When the channel is ready
and the camera recording, the syringe pump is started and the flow rate is increased from 0 to the desired value via a
15 s ramp to achieve the desired steady-state flow rate while minimizing inertial effects so that, if the experiments are
run with a longer ramp, no changes in the critical Cauchy number are observed. The steady-state flow rate is then
imposed and the deformation of the beam is recorded. Each video is then processed via a custom MATLAB script to
extract the deformed shape of the beam over time, for different experimental parameters.

Two typical experiments are summarized in Figures S3 and S4. For example, Figure S3 shows an experiment
characterized by wc/l = 0.13, h/l = 0.0066 and b/bc = 0.46. Snapshots at three different flow rates are depicted in
Figure S3 (a), while the dimensionless tip displacement (wt/l) is represented in Figure S3 (b). Additionally, Figure
S3 (c) depicts the maximum dimensionless tip displacement (wtmax/l) as a function of the Cauchy number. The
vertical black line represents the buckling threshold discussed in the main text, denoting the end of the linear regime.
As stated in the main, we define the critical Cauchy number Ccr

Y as the lowest Cauchy number corresponding to a
relative variation of the maximum value of wt/l of 5% from the linear trend. More specifically, the linear trend is
determined by performing a linear regression of the experimental values, starting with the first two (the two lowest
values of CY ). Then, if the next data point does not deviate by more than 5% with respect to the linear regression,
the data point is added to perform a new linear regression with three data points. This procedure continues until the
next experimental value deviates by more than 5% with respect to the value predicted by the linear regression for the
same experimental value of CY , which is then identified as the critical Cauchy number Ccr

Y ; note that increasing the
threshold up to 50% causes variations in the Cauchy number less than the marker size employed in the plots.
Similarly, Figure S4 shows another experiment characterized by wc/l = 0.47, h/l = 0.0035 and b/bc = 0.46.

The estimation of the critical buckling Cauchy number is therefore affected by uncertainties in the experimental
procedure and in the material and geometrical parameters. Consequently, for each experimental run, we propagate
the uncertainties following the definition of the Cauchy number CY = 12µUmaxl

2/Eh3, and determine error bars that
result to be smaller than the symbol size in Figure 2 of the main text. Specifically, the Young’s modulus is affected
by an uncertainty in our measurement as outlined above, the geometrical parameters such as length and thickness
are affected by the resolution of our camera as they are determined via image processing (∆h/h ≃ 3%, ∆l/l ≃ 3%).
Finally, the uncertainty in the viscosity is determined from the viscosity-temperature plot in the technical spreadsheet
given by the producer (∆µ/µ ≃ 5%).

NUMERICAL DETAILS

Numerical simulations are set up in COMSOL Multiphysics (v6.1) within the Fluid-Solid interaction package, for
both 2D and 3D settings, where the dimensionless equations are solved. A time-dependent solver is employed to solve
for the beam deformation and identify the buckling threshold, as outlined in the main text. In this time-dependent
setting, the threshold is identified as the value of CY for which an exponential growth of the tip displacement with
time is observed [6]. A convergence study is performed for both 2D and 3D simulations: the models are considered
at convergence if further mesh refinement corresponds to a relative variation of the critical Cauchy number smaller
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a)
Q = 10 mL min−1 Q = 25 mL min−1 Q = 40 mL min−1

b) c)

FIG. S3. Beam with h/l = 0.0066 in a channel with wc/l = 0.13 and b/bc = 0.46. (a) Snapshot of the beam deformation at
Q = 10, Q = 25, and Q = 40 mL min−1, respectively. (b) Dimensionless tip displacement wt/l versus time, for different flow
rates, and (c) maximum dimensionless tip displacement wtmax/l versus Cauchy number as well as flow rate. The maximum tip
displacement would start to saturate for larger flow rates.

a)
Q = 10 mL min−1 Q = 22 mL min−1 Q = 35 mL min−1

b) c)

FIG. S4. Beam with h/l = 0.0035 in a channel with wc/l = 0.47 and b/bc = 0.46. (a) Snapshot of the beam deformation at
Q = 10, Q = 22, and Q = 35 mL min−1, respectively. (b) Dimensionless tip displacement wt/l versus time, for different flow
rates, and (c) maximum dimensionless tip displacement wtmax/l versus Cauchy number as well as flow rate.

than 1%. Furthermore, the model with the converged refinement is validated against experimental results in the cases
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corresponding to wc/l = 1.6, b/bc = 0.46 and wc/l = 0.6, b/bc = 0.8, with an agreement in terms of buckling threshold
within 1%.

a) b)

no slip
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in
le
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y
x

z

FIG. S5. (a) 2D domain depicting the different boundary conditions. (b) 3D domain (not to scale) with the symmetry plane
in grey and the different boundary conditions.

Figure S5 (a) shows the 2D geometry of the beam (green) immersed in a rectangular channel. The vertical edge
on the left is the inlet, where a parabolic velocity profile is given as a boundary condition. The right vertical edge
is the outlet, where the pressure is set to 0. All other edges are assigned a no-slip boundary condition and Stokes
equations are solved within the channel. The beam is modeled as a Hookean solid undergoing small strains but large
displacement gradients. The vertical right edge of the beam is the clamp, where the displacement vector is set to zero.
Figure S5 (b) shows the 3D geometry (not to scale) where the boundary conditions are applied similarly to the 2D

case. The only difference in this case is the introduction of a symmetry plane to reduce the computational cost by
taking advantage of the symmetry with respect to the xy-plane.
For both 2D and 3D simulations, a parametric study is performed to identify the minimum length of the numerical

channel (L ≃ 10l), above which results become invariant upon further changes in the length.

BUCKLING INSTABILITY DUE TO TRANSVERSAL PRESSURE LOADS

Pressure load due to small deflections

We consider the steady flow of a viscous fluid of viscosity µ occurring in the three-dimensional rectangular channel
of width H = (wc − h)/2 between the straight beam and the upper and lower walls of the channel and height bc.
As shown in Figure S5, we introduce the reference frame (x, y, z) aligned with the beam (from the free-edge to the
clamp), the width and the height of the channel, respectively, with the origin located at the centroid of the free section
of the beam. The steady Navier-Stokes equations governing the motion, rendered non-dimensional with the length of
the beam, the inlet maximum velocity and the characteristic pressure µUmax/l, read

∇ · ū = 0 , Reū∇ū = −∇p̄+∇2
ū , (S4)

where Re = Umaxl/ν is the Reynolds number, and p̄ and ū are the non-dimensional pressure and velocity field,
respectively. This equation is coupled with the no-slip conditions at y = ±H/2 and z = ±bc/2. As observed
in Figure 1 of the main text, when the beam is long enough, the pressure does not vary appreciably along the y
direction. This result can be derived from the lubrication approximation here employed. Under the assumption
H, bc ≪ l, gradients along the y, z directions are much larger than those along the x direction, i.e. ∂x ≪ ∂y, ∂z [7].
The following multiple scale expansion is thus employed:

∂x̄ = ε∂X , ∂ȳ = ∂Y , ∂z̄ = ∂Z , ε = D∗

h/l ≪ 1 , (S5)

where D∗

h = wcbc/(bc + wc/2) is the hydraulic diameter to account for the rectangular section of each gap between
the walls and the beam, neglecting its small thickness. The continuity equation reads

ε∂X ūx + ∂Y ūy+∂Z ūz = 0 → ūy, ūz ∼ εūx , (S6)

thus implying that the y- and z-components of the velocity field are of order ε when compared to the x-component.
We now expand the velocity field

p̄ = p̄(0) +O(ε) , ūx = ū(0)
x +O(ε) , ūy = εū(1)

y +O(ε2) , ūz = εū(1)
z +O(ε2) , (S7)

so that the asymptotic expansion of the Navier-Stokes equations become

εRe
(

ū(0)
x ∂X ū(0)

x + ū(0)
y ∂Y ū

(0)
x + ū(0)

z ∂Z ū
(0)
x +O(ε)

)

= −ε∂X p̄(0) +O(ε) +
(

ε2∂2
X + ∂2

Y + ∂2
Z

)

(

ū(0)
x +O(ε)

)

, (S8)
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FIG. S6. Values of εRe versus w∗

c/l, for all experiments. The red line corresponds to εRe = 1, which is the limit beyond which
the asymptotic expansion theoretically breaks down.

O(ε2) = −∂Y p̄
(0) +O(ε) + ε

(

ε2∂2
X + ∂2

Y + ∂2
Z

)

(

ū(1)
y +O(ε)

)

,

O(ε2) = −∂Z p̄
(0) +O(ε) + ε

(

ε2∂2
X + ∂2

Y + ∂2
Z

)

(

ū(1)
z +O(ε)

)

.

The convective term on the LHS of the x-component of the Navier-Stokes equations is negligible as long as εRe ≪ 1.
We thus define the limit value below which this convective term can be safely neglected as Rec = 1/ε. Within our
experiments, the value of εRe remains at least one order of magnitude smaller than unity, as shown in Figure S6, thus
ensuring that the convective terms are negligible within this framework and that the Poiseuille flow approximation
presented in the following can be safely employed.
We now focus on a two-dimensional flow (i.e., ∂Z = 0), and we employ the classical assumption of a Poiseuille flow

driven by a constant pressure gradient ε∂X p̄(0) = O(1). The flow equations become:

ε∂X p̄(0) +O(ε) =
(

ε2∂2
X + ∂2

Y

)

(

ū(0)
x +O(ε)

)

, ∂Y p̄
(0) +O(ε) = ε

(

ε2∂2
X + ∂2

Y

)

(

ū(1)
y +O(ε)

)

. (S9)

At leading order, the Navier-Stokes equations simplify to

ε∂X p̄(0) = ∂2
Y ū

(0)
x , ∂Y p̄

(0) = 0 , (S10)

i.e., the pressure p(x) does not vary along the y direction, at leading order. Upon definition of the constant pres-
sure gradient ∂xp := −G and integration along the y direction with no-slip conditions at y = ±H/2, reverting to
dimensional, physical, variables, and dropping leading order notation for the sake of simplicity, one obtains

p(x) = p(x = 0)−Gx , ux(y) =
GH2

8µ

(

1− (2y/H)2
)

. (S11)

The constant pressure gradient G that ensures a constant flow rate Q/2 at each section for a streamwise-invariant
flow (half of the total one, equally divided between upper and lower sides of the beam) reads

G =
6µQ

H3
, (S12)

which shows a very good agreement with the spatial distribution of G in two-dimensional numerical simulations when
H = (wc − h)/2 = w∗

c/2, as depicted in Figure S7 (a).
When dealing with very small deflections of the beam along the y-direction w(x) ≪ l, i.e. H = w∗

c/2± w(x), this
framework is still assumed valid, i.e.

G =
6µQ

(w∗

c/2± w(x))3
, p(x) = p(x = 0)−Gx , (S13)
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a)

x

y

b)

FIG. S7. Results of two-dimensional simulations below the buckling threshold. (a) Spatial distribution of G/
(

6µQ
(w∗

c
/2)3

)

, which

exhibits a constant unitary value in the regions above and below the beam. (b) Variation with x of the rescaled wall shear
stress τ/(12µQ/w∗2

c ) along a horizontal line lying on the upper surface of the beam. Except for two peaks at the beam tips,
the value is constant and equal to one along the beam (purple line).

where the sign ± depends on the side of the channel, with the negative sign for y > 0 and vice-versa. Neglecting edge
effects in the upstream leading edge of the beam, the pressure on both sides reads:

p+(x) = −6µQx/ (w∗

c/2− w(x))
3
+ p(x = 0) ,

p−(x) = −6µQx/ (w∗

c/2 + w(x))
3
+ p(x = 0) .

(S14)

At a fixed downstream position, the pressure difference between the upper (+) and lower (-) part of the beam is
expressed as a Taylor series for w(x)/w∗

c → 0:

∆p(x) (ey) =− p+ (ey) + p− (ey) =
576µQx

w∗3
c

(

w(x)

w∗

c

)

ey +O(w3(x)) ≈ αxw(x)ey , (S15)

where ey is the unit base vector along y and α is defined as a result. This force acts along the same direction of the
displacement and is analogous to a Winkler foundation with a negative spring stiffness αx, and can also be seen as a
fluid compliance due to pressure.

Instability threshold due to pressure load

The transverse load per unit transversal length thus reads

qy =
576µQx

w∗4
c

w(x) , (S16)

which is included in the linear beam equation [8]

EÎw′′′′(x)− 576µQx

w∗4
c

w(x) = 0 . (S17)

Upon non-dimensionalization with the length of the beam l and introduction of the Cauchy number CY = µUmaxl
2

EÎ
(at the inlet, Q = (2/3)Umaxwc), the equation reads

w̄′′′′(x̄)− 384CY

(

l

w∗

c

)3

x̄w̄(x̄) = 0 → w̄′′′′(x̄)− ᾱx̄w̄(x̄) = 0 . (S18)

Note that we assumed w∗

c/wc ≈ 1 in our calculations. Indeed, w∗

c/wc ∈ [0.7, 1] in our experiments and simulations, thus
not affecting the scaling in an appreciable manner. The general solution of this equation is written via hypergeometric
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FIG. S8. Tip displacement in the presence of imperfections for w̄0 = 0.001 and w̄1 = w̄2 = 0. The red vertical line denotes the
analytical instability threshold.

functions

w̄(x̄) =
(−1)3/5c4ᾱ

3/5x̄3
0F3

(

; 6
5 ,

7
5 ,

8
5 ;

ᾱx̄5

625

)

25 52/5
+

(−1)2/5c3ᾱ
2/5x̄2

0F3

(

; 4
5 ,

6
5 ,

7
5 ;

ᾱx̄5

625

)

5 53/5
+

+

5
√
−1c2

5
√
ᾱx̄ 0F3

(

; 3
5 ,

4
5 ,

6
5 ;

ᾱx̄5

625

)

54/5
+ c1 0F3

(

;
2

5
,
3

5
,
4

5
;
ᾱx̄5

625

)

, (S19)

with the classical free-edge (w̄′′(0) = w̄′′′(0) = 0) and clamp conditions (w̄(1) = w̄′(1) = 0). Non-trivial solutions
of this problem are found by imposing a zero determinant for the system matrix of equations stemming from the
boundary conditions, leading to

f(ᾱ) = 3ᾱ 0F3

(

;
3

5
,
4

5
,
6

5
;
ᾱ

625

)

0F3

(

;
7

5
,
8

5
,
9

5
;
ᾱ

625

)

−

−0 F3

(

;
2

5
,
3

5
,
4

5
;
ᾱ

625

)(

72 0F3

(

;
3

5
,
4

5
,
6

5
;
ᾱ

625

)

+ ᾱ 0F3

(

;
8

5
,
9

5
,
11

5
;
ᾱ

625

))

= 0 . (S20)

A simple approximation of this expression is found by exploiting the Taylor series:

f(ᾱ) = − 11ᾱ2

12600
+

6ᾱ

5
− 72 +O(ᾱ3) → ᾱ1 = 7560/11− (720

√
91)/11 ≈ 62.88 , (S21)

very close to the numerical value 62.8531 from the exact f(ᾱ). Therefore, the following expression for the critical
Cauchy number for the instability as a function of the gap-to-beam length ratio is obtained:

384Ccr
Y

(

l

w∗

c

)3

= ᾱ1 → Ccr
Y ≈ 0.1637

(

w∗

c

l

)3

. (S22)

The effect of imperfections of the beam position in the tip displacement at buckling

Small imperfections can be modeled by modifying the gap as H = w∗

c/2±w(x) +w0 +w1x+w2x
2 + ... . Here, w0

represents an offset in the position of the beam with respect to the centerline of the channel, w1 represents a small
rotation with respect to ex, and 2w2 represents a linear natural curvature. Truncating the imperfection at order
O(x2), a simple solution based on the previous one can be obtained. This solution gives a flavour on the observable
effects of imperfections in experiments. We introduce the variable transformation

w̄∗(x̄) = w̄(x̄) + w̄0 + w̄1x̄+ w̄2x̄
2 . (S23)
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Equation (S18) together with its boundary conditions can be re-written as

w̄∗′′′′(x̄)− ᾱx̄w̄∗(x̄) = 0 , w̄∗(1) = w̄0 + w̄1 + w̄2 , w̄
∗′(1) = −w̄1 + 2w̄2 , w̄

∗′′(0) = 2w̄2 , w̄
∗′′′(0) = 0 . (S24)

The analytical solution is formally analogous to Eq. (S19) where constants satisfy the boundary conditions. The
numerical tip displacement w̄(0) = wt/l obtained for different values of ᾱ from Eq. (S24) for w̄0 = 0.001, w̄1 = w̄2 = 0,
is reported in Figure S8. Through a Taylor expansion, we can approximate the tip displacement as follows:

wt/l = ᾱ
(−84w̄0 − 35w̄1 − 18w̄2)

2520
+ ᾱ2 (−10923w̄0 − 4690w̄1 − 2464w̄2)

19958400
+O(ᾱ3) , (S25)

i.e. the tip displacement is initially linear with the flow rate (see Figure S8), as observed in the experiments, with a
progressive divergence when reaching the asymptotic value given by the instability threshold.

THREE-DIMENSIONAL EFFECTS: COMPARISON BETWEEN THEORY AND NUMERICS

The analytical values of f(w∗

c/bc) and g(w∗

c/bc) as functions of w∗

c/bc are reported in Figure 3 of the main text.
For w∗

c/bc → 0, these functions approach the unity, i.e. the values of G and τ are well approximated by their two-
dimensional counterparts. Conversely, these values increase when the channel becomes narrow. These theoretical
values well agree with those extracted from numerical simulations, obtained by averaging quantities on the upper wall
of the beam, with varying b/bc and w∗

c/l, as shown in Figure S9. Small deviations are imputed to local distributions
due to edge effects as well as integral approximations, and do not alter the qualitative and quantitative agreement of
the scaling.

FIG. S9. Surface-average on the upper wall of the beam (obtained from numerical simulations) of (a) pressure gradient and
(b) wall shear stresses, rescaled with the theoretical values as functions of b/bc.
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SUPPLEMENTARY MOVIES

MOV. S1. Experiment with wc/l = 0.13, h/l = 0.0066, b/bc = 0.46 at Q = 50 mL min−1, higher than the buckling threshold.
The beam, made of PET (Mylar®), can be seen in black, while touching the wall of the channel.

MOV. S2. Experiment with wc/l = 0.47, h/l = 0.00354, b/bc = 0.46 at Q = 35 mL min−1, higher than the buckling threshold.
The beam is made of PET (Mylar®).

MOV. S3. Experiment with wc/l = 1.67, h/l = 0.0175, b/bc = 0.46 at Q = 16 mL min−1, higher than the buckling threshold.
The beam is made of VPS-32.
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