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A B S T R A C T   

Introduction: Despite a growing interest in lung MRI, its broader use in a clinical setting remains challenging. 
Several factors limit the image quality of lung MRI, such as the extremely short T2 and T2* relaxation times of 
the lung parenchyma and cardiac and breathing motion. Zero Echo Time (ZTE) sequences are sensitive to short 
T2 and T2* species paving the way to improved “CT-like” MR images. To overcome this limitation, a retro-
spective respiratory gated version of ZTE (ZTE4D) which can obtain images in 16 different respiratory phases 
during free breathing was developed. Initial performance of ZTE4D have shown motion artifacts. To improve 
image quality, deep learning with fully convolutional neural networks (FCNNs) has been proposed. CNNs has 
been widely used for MR imaging, but it has not been used for improving free-breathing lung imaging yet. Our 
proposed pipeline facilitates the clinical work with patients showing difficulties/uncapable to perform breath- 
holding, or when the different gating techniques are not efficient due to the irregular respiratory pace. 
Materials and methods: After signed informed consent and IRB approval, ZTE4D free breathing and breath-hold 
ZTE3D images were obtained from 10 healthy volunteers on a 1.5 T MRI scanner (GE Healthcare Signa Artist, 
Waukesha, WI). ZTE4D acquisition captured all 16 phases of the respiratory cycle. For the ZTE breath-hold, the 
subjects were instructed to hold their breath in 5 different inflation levels ranging from full expiration to full 
inspiration. The training dataset consisting of ZTE-BH images of 10 volunteers was split into 8 volunteers for 
training, 1 for validation and 1 for testing. In total 800 ZTE breath-hold images were constructed by adding 
Gaussian noise and performing image transformations (translations, rotations) to imitate the effect of motion in 
the respiratory cycle, and blurring from varying diaphragm positions, as it appears for ZTE4D. These sets were 
used to train a FCNN model to remove the artificially added noise and transformations from the ZTE breath-hold 
images and reproduce the original quality of the images. Mean squared error (MSE) was used as loss function. 
The remaining 2 healthy volunteer's ZTE4D images were used to test the model and qualitatively assess the 
predicted images. 
Results: Our model obtained a MSE of 0.09% on the training set and 0.135% on the validation set. When tested on 
unseen data the predicted images from our model improved the contrast of the pulmonary parenchyma against 
air filled regions (airways or air trapping). The SNR of the lung parenchyma was quantitatively improved by a 
factor of 1.98 and the CNR lung- blood, which is indicating the visibility of the intrapulmonary vessels, was 
improved by 4.2%. Our network was able to reduce ghosting artifacts, such as diaphragm movement and 
blurring, and enhancing image quality. 
Discussion: Free-breathing 3D and 4D lung imaging with MRI is feasible, however its quality is not yet acceptable 
for clinical use. This can be improved with deep learning techniques. Our FCNN improves the visual image 
quality and reduces artifacts of free-breathing ZTE4D. Our main goal was rather to remove ghosting artifacts 
from the ZTE4D images, to improve diagnostic quality of the images. As main results of the network, diaphragm 
contour increased with sharper edges by visual inspection and less blurring of the anatomical structures and lung 
parenchyma. 
Conclusion: With FCNNs, image quality of free breathing ZTE4D lung MRI can be improved and enable better 
visualization of the lung parenchyma in different respiratory phases.  
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1. Introduction 

Computed tomography (CT) has been historically favored over 
magnetic resonance (MR) when imaging the lung and airways due to 
technical challenges inherent to lung structure and the difficulty 
obtaining high-quality MR images of the chest [1]. MR is a non-ionizing 
technique with potential for robust functional and structural assessment 
in a single examination [2]. Nonetheless, it is more time consuming to 
obtain high quality MR images of lung parenchyma compared to other 
anatomical regions [3]. This is mainly due to low proton density of lung 
tissue, susceptibility differences between tissue and air [4] and motion 
of the heart and lung parenchyma. These issues have a strong effect on 
gradient echo MR sequences leading to a rapid signal decay, low signal- 
to-noise ratio (SNR), and therefore low image quality. 

To minimize these issues, new pulse sequences have been introduced 
enabling higher SNR and improving image quality, namely Ultrashort 
Echo Time (UTE) [5,6] and Zero Echo Time (ZTE) sequences [4,7]. UTE/ 
ZTE sequences can capture fast decaying signals from lung parenchyma 
using echo time (TE) in the order of microseconds instead of millisec-
onds. According to a recent study comparing UTE and ZTE lung MR 
images, ZTE performs better than UTE for the detection of lung paren-
chyma signal and the visualization of intrapulmonary structures [8] 
with optimized parameters used for each sequence. To avoid motion 
artifacts, images are often acquired at end of expiration, being the 
longest motionless phase in the respiratory cycle and therefore leading 
to significant decreases in respiratory motion artifacts [9]. For this, 
either the patients need to adjust their breathing to the data acquisition 
(in the form of breath holding), or vice versa, the scanner is prospec-
tively adjusted to free-breathing using respiratory triggering or navi-
gators [9,10]. By adding a time dimension to volume data, it is possible 
to acquire both the inspiratory and the expiratory phases of the respi-
ratory cycle. This can be performed using retrospective gating with a 
dynamic four-dimensional (4D) scan. ZTE4D (GE Healthcare, Waukesha, 
WI, USA) is a retrospective respiratory gated version of ZTE which can 
obtain images in sixteen (n = 16) different respiratory phases during free 
breathing [11]. However, this technique shows some limitations in 
clinical settings. For instance, from all the 16 respiratory phases only the 
end-expiratory ones give acceptable image quality. Inspiratory phases 
present higher level of noise, motion artefact from diaphragm move-
ment and blurring around the edges of the tissues that limit their diag-
nostic use. Patients with chronic obstructive pulmonary disease (COPD), 
asthma and young children also have problem to hold their breath, with 
higher chances of motion artifacts. 

To overcome these problems and to improve image quality, artificial 
intelligence, more specifically machine learning techniques can be used. 
Deep learning (DL) is a subset of machine learning methods that uses 

multiple layers to progressively extract high-level features from raw 
input. DL is a promising technique in the medical imaging field, espe-
cially for image classification, lesion detection, segmentation and image 
quality improvement [12] . Within the DL methods, convolutional 
neural networks (CNN) show a remarkable performance in image seg-
mentation, and classification [13,14]. In particular fully convolutional 
neural networks (FCNN) - a neural network that only performs convo-
lutions and subsampling or upsampling operations - can efficiently learn 
to make predictions for pixel-wise tasks like semantic segmentation and 
image denoising [15]. 

To our knowledge, the potential of FCNNs to remove motion artifacts 
and denoising has not been tested in chest ZTE4D MRI imaging to date. 
The purpose of our study was to improve the image quality of ZTE4D 
images using a post-processing pipeline with a FCNN trained algorithm 
based on breath-hold ZTE (ZTE-BH) images, which were used as refer-
ence. We demonstrate the capability of our method to reconstruct all 16 
respiratory phases of ZTE4D with equally acceptable image quality. Our 
proposed pipeline facilitates the clinical work with patients showing 
difficulties/uncapable to perform breath-holding, or when the different 
gating techniques are not efficient due to the irregular respiratory pace. 

2. Materials and methods 

In 4D ZTE, a retrospective soft gating method was used for motion 
correction and image reconstruction as follows. k-space data along with 
physiological signals derived from respiratory bellows were collected 
during the whole respiratory cycles. The k-space data were binned into 
four respiratory motion states based on physiological signals. For each 
respiratory motion state, the k-space data were weighted depending on 
the respiratory displacement from an ideal target physiological signal. 
The corresponding image volume was then reconstructed [11]. 

On the ZTE4D images in respiratory phases not near end-expiration, 
the most problematic artifacts are: the motion artefact of the diaphragm, 
blurring edges of tissues (most importantly of intrapulmonary vessels) 
and higher noise level of the lung parenchyma. A FCNN has been trained 
to learn and remove artifacts. 

2.1. Volunteers and imaging 

The study including healthy volunteers scanning was approved by 
the local Institutional Review Board (MEC2018–134, MEC2018–002). 
Written informed consent was obtained from all subjects before MR 
scans. From March 2019 to May 2020 the volunteers underwent chest 
MRI. MRI scans were performed on a 1.5 T scanner (Signa Artist, GE 
Healthcare, Waukesha, WI, USA) without contrast agent. The MRI pro-
tocol consisted of a retrospectively reconstructed multi-phase radial 
ZTE3D scan (ZTE4D) and a 20 s breath-hold radial ZTE3D (ZTE3D-BH) 
using a 32-channels body coil. Both sequences were optimized for 
Proton-Density (PD) weighting. All scans used 3D grad warping to 
compensate for gradient non-linearities within the large field-of-views 
(FOV) acquired. Details of the acquisition parameters are presented in 
Table 1. 

ZTE4D acquisition captured the maximum16 phases along the res-
piratory cycle to achieve the highest possible time resolution. We 
compared ZTE4D to ZTE-BH, which was used as ‘ground-truth’ to 
identify possible artifacts for each respiratory phase. For obtaining 
comparable images between the 2 acquisitions, we obtained ZTE-BH at 
five (n = 5) different inflation levels ranging from full expiration to full 
inspiration. To match the tidal breathing respiratory excursion, the 
volunteers were instructed to take consecutively one, two and three 
small breaths and hold the inspiratory positions until scanning was 
completed. The middle 3 inspiratory levels of ZTE-BH that matched the 
excursion of the reconstructed phases of the ZTE4D acquisitions were 
chosen for comparison. Full inspiration (total lung capacity) and full 
expiration (residual volume) were excluded, as during tidal breathing 
the volunteers usually do not reach these respiratory phases. 

Table 1 
Acquisition parameters [11].  

Sequence ZTE4D (vol) ZTE3D BH (vol) 

Acquisition plane Coronal Coronal 
TR/TE (ms/μs) 

flip angle (◦) 
RF 

1.4/2 
1 
Non-selective 

1.25/2 
2 
Non-selective 

In-plane matrix 150 × 150 150 × 150 
k-space trajectory Radial radial 
In-plane Field-of-view(FOV) 

RecFOV 
Actual voxel resolution (mm3) 

34 
- 
2.2 × 2.2 × 2.2 
110 
2.2 

34 
- 
2.2 × 2.2 × 2.2 
110 
2.2 

Receiver bandwidth (KHz) 50 62.5 
Number of averages 

Number of phases 
No. of readout spokes per segment 

7 
16 
64 

1 
1 
200 

Physiological triggering Retrospective 
pneumobelt 

BH 

Scan time (sec) RR = 20 3 min 10s 20s  
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2.2. The preparation and image reconstruction pipeline 

Our set-up consists of three major components, which are summa-
rized in Fig. 1. The first component aims to reproduce the artifacts on the 
ZTE-BH images as they are regularly present in free breathing ZTE4D 
images. The second component uses the modified (as explained in the 
‘training set generation/creation’ section) ZTE-BH as input for training 
the FCNN which gives the artefact free image as output. The last 
component takes the network trained on ZTE-BH to remove the artifacts 
from free-breathing ZTE4D. The details of each component are 
explained in the following sections.  

1) Training set generation/creation 

For the purpose of creating a training dataset for the neural network, 
we modified the ZTE-BH image data (Fig. 1) to simulate the artifacts of 
ZTE4D images. The power of the noise is often estimated from the 
standard deviation of the pixel signal intensity in an image region with 
no signal [16]. To get lower SNR, we added Gaussian noise to the real 
and imaginary components and performed image transformations 
(translations, rotations) to imitate the effect of motion in the respiratory 
cycle and motion artefact from varying diaphragm positions. Each res-
piratory phase has different standard deviation of the noise (difference 
in SNR) and different amplitude of the translation (shadowing artifacts 
of the diaphragm on the ZTE4D images). To account for these differences 
by keeping only anatomically possible scenarios on the ZTE4D images, 
we used different random noise levels and different weight parameters 
of the artifacts on each slice. More specifically; between a given range 

Fig. 1. Flow diagram of the proposed framework. The first step was the modification of the original breath-hold images, followed by the training of the FCNN, then 
the denoising of the original ZTE4D images. 

Fig. 2. Example of enhancing original ZTE-BH images with increased contrast level and wavelet denoising. A) native image and B) is the enhanced version.  
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we changed the kernel and standard deviation values of the Gaussian 
noise and choose randomly from 60 different shift values (used values to 
be found in the provided github repository). To mimic the diaphragm 
movement, we randomly applied the shift filter either one or two times. 
With this approach, we left the possibility to have images which did not 
change from the original at all (mimicking those end-expiratory phases 
captured properly), and the ones representing the worst possible sce-
narios. For each original ZTE-BH slice one ZTE4D like image were 

constructed. Each ZTE-BH phase contained 110 slices (330 slices per 
volunteer were captured). After clearing the data from slices not con-
taining any anatomical information, 1000 ZTE breath-hold slices with 
variety of artifacts were used for training. 

In order to increase the efficiency of the network, we enhanced the 
ground truth (original ZTE3D-BH) images without changing any of their 
characteristics by increasing the contrast using wavelet denoising [17]. 
Fig. 2 shows an example of the original and the enhanced BH images. 

Fig. 3. Architecture of our model (a modification taken from [15]). The network uses a 3 × 3 convolution kernel size.  

Fig. 4. Positioning of the ROIs to calculate SNR values. The mean signal intensity (SI) of the red area was divided by the standard deviation (STD) of the green area. 
On the left (A) the original image and on the right the predicted images. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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2) Fully convolutional neural network Training 
2.1 FCNN input 

The ZTE4D like ZTE-BH images obtained in the previous step were 
used as input for the FCNN. The network's task was to predict the 
enhanced ZTE-BH image as output. Therefore, the network would learn 
suited features to remove the breathing motion artefact and blurring 
effects. The network's architecture is described in Section 2.2. The 
training dataset consisting of ZTE-BH images of 10 volunteers was split 
into 8 volunteers for training, 1 for validation and 1 for testing. 

2.2 Network architecture 

We followed the same architecture as in Souza and Frayne [18] with 
the modification of removing the second U-net. Our network contains 
three successions of three 2D convolutions with a 3 × 3 kernel size, 
followed by a rectified linear unit each and a max pooling of 2 × 2. A last 
succession of three consecutive 2D convolutions with up-sampling. A 
concatenation with the corresponding computed featured map from the 
down-sampling part was performed after up-sampling. In the final layer, 
a 2D convolution having 1 × 1kernel size was used to map computed 
features to restore the modified image. In each convolution layer, 
appropriate padding was used. A schematic representation of the used 
CNN is shown in Fig. 3. The original code, and the code used in our 
experiments can be found in Github [19,20]. 

The training of the network was implemented in Keras (version 
2.0.2) with Tensor Flow (version 1.0.1) as backend in Python (version 
3.5.3). The training and prediction were performed on a GeForce GTX 
TITAN Xp GPU (NVIDIA). The loss function during training was mean 
squared error (MSE) and optimized using Adam optimizer [14] with a 
learning rate of 0.01. The total number of epochs was set to 500. The 
output of the trained network was a 256 × 256 image.  

3) FCNN to remove artifacts. 

As the last step we tested the trained network on the unseen original 
ZTE4D data of six (n = 6) volunteers (age range 20–52, median 28). 
Afterwards, the images predicted by the network were quantitatively 
evaluated in terms of SNR, CNR and the artifacts were qualitatively 
evaluated by visual inspection. 

2.3. Quantitative assessment 

To evaluate the ability of the network in detecting lung parenchyma 
signal and depict different structures (e.g alveoli, bronchi), the signal 
intensity (SI) of the parenchyma was measured. Additionally, uncon-
ventional SNR values were calculated, where regions of interest (ROIs) 
were drawn in the lung parenchyma and in the tracheal lumen air. The 
ROI in the lung parenchyma was carefully positioned and sized on the 
original scans as it covered the whole area, leaving out major vessels; the 
ROIs were subsequently copied to the predicted slices, evaluated per 
subject (Fig. 4). The SNR of the lung parenchyma was compared be-
tween the original images and the predicted ones. SNR was calculated as 
the mean SI of the measured structure divided by the standard deviation 
(STD) of the trachea: 

Fig. 5. Positioning of the ROIs to calculate CNR values. The mean SI of the red area was subtracted from the mean SI of the green area, divided by the STD of the red 
area. A is the original image and B the predicted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. MSE loss funtion of the validation and training sets.  

Table 2 
Comparison of SNR of the lung parenchyma and CNR of the lung parenchyma 
and blood between the original and the improved dataset (mean ± standard 
deviation).   

Original ZTE4D Predicted ZTE4D 

SNR 479.55 ± 96.15 952.95 ± 254.04 
CNR 10.42 ± 3.53 10.87 ± 3.70  
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SNR =
SIlung parenchyma

STDtrachea
.

We choose this way to calculate SNR since the conventional method 
of taking the STD from the background air of the image was not possible, 
as the field of view (FOV) did not contain background air, or when it did, 

due to the shortness of the echo time, the coil elements became visible 
which was a major disturbance in the selection. As expected, this 
resulted in higher SNR values, due to the very low standard deviation of 
the signal inside the small area of the trachea. 

CNR of the lung parenchyma and pulmonary artery - indicating 
visibility of intrapulmonary vessels – was also calculated. Calculations of 

Fig. 7. Validation set. A is the ground truth (native ZTE-BH), B is the artificially modified BH images mimicking the ZTE4D artifacts, C is the prediction by 
the network. 

Fig. 8. Result of the prediction on unseen data. A is the unseen ZTE4D and B is the prediction by the network. Horizontal lines show the diaphragm positions, and the 
arrows point to a vessel getting enhanced by the network. 

Fig. 9. ZTE4D original (A) and predicted (B) 
images of a volunteer with a very inconsis-
tent breathing pattern. Red circles show the 
artefact from diaphragm movement, green 
ones highlight the blurring of the hearth. The 
red arrow shows an example vessel, which 
get sharper definition. Our model improved 
the images, finding sharp edges of the dia-
phragm, but it was unable to completely 
removing the movement artifacts. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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the CNR values were as follows: 

CNR =
mean(SI (pulmonary artery ) ) − mean (SI (lung) )

STD(SI (lung) )
.

The ROI in the lung parenchyma was carefully positioned and sized 
on the original scans to exclude any vessels. The ROIs of the vessels 
included pixels from pulmonary artery (see Fig. 5). For image segmen-
tation ITK-SNAP was used [21]. 

3. Results 

Our dataset contains MR scans from 10 healthy volunteers (age range 
20–52, median 32). All subjects successfully completed the protocol. 

Our model obtained an MSE of 0.09 on the training set and 0.135 on 
the validation set as shown on Fig. 6. 

With quantitative assessment the ability of improving SNR was 
tested. Results are shown in Table 2. 

The SNR values were improved almost by a factor of two, the CNR 
values by 4.2% (p = 0.12) by the FCNN. 

The network successfully removed the diaphragm's motion artifacts 
from the validation set as illustrated in Fig. 7. 

When tested on unseen data of ZTE4D the predicted images from our 
model improved the contrast of the pulmonary parenchyma against air 
filled regions (airways or air trapping). By visual inspection, it is obvious 
that artifacts like the shadowing diaphragm were considerably reduced, 

(Fig. 8.). 
One of the biggest artifacts we see on the images was due to the 

diaphragm movement, mostly motion artefact at different inflation po-
sitions. The artefact was reduced by the network, and giving sharp edges 
for the diaphragm. 

Figs. 9 and 10 are exemplary of the worst images obtained in the 
ZTE4D scans, when the volunteer's breathing pattern was inconsistent. 
Our model improved the image substantially, but some remaining arti-
facts were present. 

The 16 different phases can be seen in the supplementary material. 

4. Discussion 

Currently, free-breathing technique is required for infants, pediatric 
patients below 6 years old or for patients who are incapable of following 
breath-hold instructions. The main advantage of using ZTE4D is the 
possibility to capture different both the inspiratory and the expiratory 
respiratory phases in a single examination [22]. ZTE4D has the potential 
of capturing 16 different respiratory phases to get information of the 
parenchymal signal changes together with the anatomical information. 
The main limitation of the current implementation of ZTE4D technique 
is that from all 16 phases only the end-expiratory ones are acceptable in 
term of image quality, mostly because inconsistent respiratory gating. 
Motion artifacts of the diaphragm, blurring of fine anatomical structures 
and lower SNR appear on most of the captured phases. In this study we 

Fig. 10. Representation of the fine structure visualization with a line plot over intrapulmonary vessels. The curves show the signal intensities over the drawn lines on 
the original and the predicted ZTE4D images. 
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aimed to improve ZTE4D MR image quality using a FCNN, by removing 
possible motion artifacts related to breathing. 

The first challenge of developing the image post processing pipeline 
was to create a training dataset. ZTE4D and ZTE3D-BH had the same 
parameters set, so firstly we tried to match the breath-hold images with 
the free-breathing ones. This was unsuccessful, as the volunteers were 
never laying completely still, and during tidal breathing the captured 
phases were not always matching any of the breath-hold phases. Since 
there were no ground truth for ZTE4D we created artificial ones from the 
breath-hold images. On the real ZTE4D images the diaphragm's motion 
artefact, blurring and increased noise level appear differently not just 
from patient to patient but within one patient as well between different 
respiratory phases. This indicated that not only the depths of motion 
artifacts of the diaphragm but also the distance of the movement varied. 
We took this into account and randomly changed the parameters image 
by image when we created the training dataset. 

The SNR of the lung parenchyma was quantitatively improved by a 
factor of 1.98 and the CNR lung- blood, which is indicating the visibility 
of the intrapulmonary vessels, was improved by 4.2%. Our main goal 
was rather to remove the diaphragm's motion artifacts from the ZTE4D 
images, to improve diagnostic quality of the images. Our network was 
able to reduce these motion artifacts, such as diaphragm movement and 
blurring, and enhancing image quality. As main results of the network, 
diaphragm contour increased with sharper edges by visual inspection 
and less blurring of the anatomical structures and lung parenchyma. 

Data leakage is a big problem in machine learning. This occurs, for 
example, when data from the same person is used to create the model 
and to validate the model [23]. In this study, apart from one individual, 
we tested the model on data from the same volunteers as it was trained 
on. However, ZTE3D BH and ZTE4D are different acquisitions, and a 
person is never 100% motionless plus the breathing pattern changes 
even if they are completely calm. This is the reason we considered that 
the ZTE4D scans of the five volunteers who were part of the training/ 
validation sets were not related to their ZTE3D-BH scans, as they contain 
different information. 

Our method shows still some limitations: the sample size is small and 
more data with an extended range of different artefact could be added to 
the training set to improve the method. To further improve the network, 
it could extend to different views and not only the coronal view, 
matching the usual axial radiological view. We plan to improve the 
performance including more volunteers and clinically validate it on 
patient data for its clinical acceptance. 

5. Conclusion 

We propose a post-processing pipeline to improve the image quality 
of ZTE4D in not-near end expiratory phases using a FCNN. We demon-
strated that our method is allowing free breathing acquisition for better 
visualization of the lung parenchyma in various respiratory phases in 
subjects with irregular respiration pace. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mri.2023.01.019. 
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