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f Italian National Research Council (CNR), Institute for Marine Biological Resources and Biotechnology (IRBIM), via L. Vaccari 61, 91026, Mazara del Vallo (TP), Italy 
g Stazione Zoologica Anton Dohrn (SZN), Lungomare Cristoforo Colombo, 4521, 90149, Palermo, Italy 
h Ifremer Centre Mediterranée, Laboratoire LER/PAC, immeuble Agostini, ZI Furiani, 20600, Bastia, Corse, France 
i Italian Institute for Environmental Protection and Research (ISPRA), Lungomare Cristoforo Colombo, 4521, 90149, Palermo, Italy 
j Ifremer Centre Mediterranée, Laboratoire LER/PAC, Zone Portuaire de Brégaillon, 83500, La Seyne-sur-Mer, France 
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A B S T R A C T   

The progressive increase of marine macro-litter on the bottom of the Mediterranean Sea is an urgent problem that 
needs accurate information and guidance to identify those areas most at risk of accumulation. In the absence of 
dedicated monitoring programs, an important source of opportunistic data is fishery-independent monitoring 
campaigns of demersal resources. These data have long been used but not yet extensively. In this paper, MED-
iterranean International Trawl Survey (MEDITS) data was supplemented with 18 layers of information related to 
major environmental (e.g. depth, sea water and wind velocity, sea waves) and anthropogenic (e.g. river inputs, 
shipping lanes, urban areas and ports, fishing effort) forcings that influence seafloor macro-litter distribution. 
The Random Forest (RF), a machine learning approach, was applied to: i) model the distribution of several litter 
categories at a high spatial resolution (i.e. 1 km2); ii) identify major accumulation hot spots and their temporal 
trends. Results indicate that RF is a very effective approach to model the distribution of marine macro-litter and 
provides a consistent picture of the heterogeneous distribution of different macro-litter categories. The most 
critical situation in the study area was observed in the north-eastern part of the western basin. In addition, the 
combined analysis of weight and density data identified a tendency for lighter items to accumulate in areas (such 
as the northern part of the Tyrrhenian Sea) with more stagnant currents. This approach, based on georeferenced 
information widely available in public databases, seems a natural candidate to be applied in other basins as a 
support and complement tool to field monitoring activities and strategies for protection and remediation of the 
most impacted areas.   
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1. Introduction 

The mass of human-made materials on our planet has recently 
overweight the total living biomass (Elhacham et al., 2020) and one of 
the consequences is that human-generated waste is consistently being 
dispersed in the environment, with oceans ahead (Jambeck et al., 2015). 
Global waste doubled every ~20 years over the last century and it is 
forecasted to reach 53 million tons year− 1 in 2030, for plastic alone 
(Borrelle et al., 2020), which numerically accounts for ca. 60% of the 
whole amount of litter dispersed in the marine environment (https://litt 
erbase.awi.de/litter_graph; Bergmann et al., 2017). Marine macro-litter 
accumulates on the seafloor, which is regarded as the ultimate sink for 
macro-litter dispersed in the environment (Woodall et al., 2014). 

According to recent scientific literature, it is widely recognized that 
litter-free seas represent a utopia; however, more realistic targets (set to 
tackle plastic contamination but still applicable to all macro-litter) 
suggest the use of multiple mitigation measures, that should act syner-
gically to meet ambitious goals (Borrelle et al., 2020; Lau et al., 2020). 
One of these measures is the removal of the fraction of macro-litter 
already accumulated in the ocean, which should be coupled with a 
cap on production of ecologically impacting materials like plastic 
(Bergmann et al., 2022; Rochman, 2016; Rochman et al., 2013). 
Consequently, understanding distribution patterns and monitoring of 
accumulation hotspots becomes crucial steps to drive future remedial 
actions. 

A proper assessment of the distribution and effects of macro-litter on 
the seafloor is primarily challenged by reduced data availability and 
comparability, especially in deep-sea environments. However, data is 
accumulating and studies dealing with spatio-temporal variability of 
macro-litter on the seabed are becoming available (Buhl-Mortensen 
et al., 2022; Canals et al., 2021; Galgani et al., 2021; Parga Martínez 
et al., 2020), thus providing useful information to identify distribution 
and accumulation patterns and hotspots (Cau et al., 2022; Garofalo 
et al., 2020; Tubau et al., 2015). This is particularly relevant within the 
Mediterranean basin, which is globally recognized as a litter hotspot due 
to its features of semi-enclosed and highly anthropized basin (Canals 
et al., 2021; Galgani et al., 2000; Pierdomenico et al., 2019); however, 
only few studies developed models to identify and predict possible lo-
cations where macro-litter might accumulate (e.g., Cau et al., 2022; 
Franceschini et al., 2019; Spedicato et al., 2019). 

From a technical point of view, detection and characterization of 
macro-litter on the seafloor relies mainly on different approaches, 
including litter collection with bottom trawlers (Melli et al., 2016; 
Mifsud et al., 2013; Strafella et al., 2015) and optical and acoustic 
mapping of the seafloor (Angiolillo et al., 2015; Cau et al., 2017; 
Madricardo et al., 2020). Due to their high costs, these latter approaches 
can often be performed over a limited spatial and temporal scale. 
Considering the few and scattered data available and that the distribu-
tion of waste is essentially determined by its release and passive trans-
port (unlike nekton organisms that move autonomously), machine 
learning techniques can be a useful tool to profitably use the already 
available, yet limited, information collected in the field to possibly infer 
about macro-litter distribution over large areas for which direct obser-
vations are not available. 

In this study, we used a machine learning method (i.e., Random 
Forest; RF - Breiman, 2001), to model the temporal and spatial distri-
bution of seafloor macro-litter in the western and central Mediterranean 
macro-region. A series of spatial layers, corresponding to the main 
sources and/or drivers of waste contamination at sea, were gathered 
from various sources, including the Copernicus Marine Service and the 
MEDiterranean International Trawl Surveys (MEDITS), across six Gen-
eral Fisheries Commission for the Mediterranean (GFCM) Geographical 
Sub-Areas (GSA). These layers were used to train a set of RF models with 
very high spatial resolution (i.e. 1 km square grid), devised to predict the 
abundance of each typology of macro-litter. Our results confirmed the 
power of machine learning techniques in capturing the relationships 

between predictors and the spatio-temporal distribution of different 
types of marine litter. Furthermore, it is possible to distinguish some 
important differences within the vast study area examined and to 
highlight the importance of some anthropogenic forcings. 

2. Materials and methods 

2.1. Study area 

The study area (Fig. 1) belongs to the western and central Mediter-
ranean Sea, covering a total surface of 125,000 km2 and incorporates 
FAO GSA 7 (southern France), 8 (Corsica), 9 (Ligurian and northern 
Tyrrhenian), 10 (south and central Tyrrhenian), 11 (Sardinian Seas, 
considering GSA 11.1 and GSA 11.2 as a single unit) and 16 (south 
Sicily). This area encompasses different environments of the western 
Mediterranean basin such as the Sardinia channel, the strait of Sicily, the 
Gulf of Lyon, and the Tyrrhenian Sea. Whose geological morphologies 
and local circulation features cumulatively affect water masses circu-
lation within the basin (Millot, 1999), thus representing a relevant and 
interesting case study to investigate seafloor macro-litter distribution 
and accumulation patterns. The detailed description of each GSA is 
available in a dedicated section of Supplementary materials. 

2.2. Data collection 

Data used in the present study were collected in the framework of the 
MEDITS survey conducted from 2013 to 2019, in the above-mentioned 
GSAs. The MEDITS is the main bottom trawling survey conducted in 
the whole Mediterranean Sea, aiming at collecting data on demersal 
resources and, since 2013, it has also become a valuable source of in-
formation about seafloor macro-litter (MEDITS working group, 2012). 

The data series used in this study was built taking advantage of 495 
hauls performed yearly across the six GSAs considered, for a total of 
3465 hauls covering 7 years (Supplementary Table 1). In the MEDITS 
protocol, hauls are located according to a depth-stratified random 
design with the following strata: A [0–50m); B [50–100m); C 
[100–200m); D [200–500m) and E [500–800m). For the implementa-
tion of the RF model, MEDITS hauls were assigned to cells of a 1 × 1 Km 
square grid. The cells of the grid were then considered as statistical units 
of the applied model. Given that, in five of the six GSAs considered and 
throughout the temporal period inspected, dozens of hauls per year were 
associated with cells belonging to the [800–1000m) stratum (the depth 
of each cell was computed as the average of the NOAA ETOPO1 records - 
see Supplementary Materials), this additional stratum was considered in 
the model. 

Onboard operations include the separation of seafloor macro-litter 
from the catch and its classification according to nine major categories 
(i.e., L1: Plastic; L2: Rubber; L3: Metal; L4: Glass/Concrete; L5: Cloth; 
L6: Processed wood; L7: Paper and cardboard; L8: Other; L9: Unspeci-
fied) and relative sub-categories, according to the MEDITS handbook 
(MEDITS working group, 2012). Within each category, items were 
counted, and wet weight was measured; in the case of containers, water 
and sediment contents were washed/removed prior to weighting. The 
total weight and the number of items collected per each sub-category 
were standardized according to the swept area, expressed as the num-
ber of items and weight km− 2. For the purposes of this paper, five out of 
the nine categories of macro-litter were used in the analysis (L1, L2, L3, 
L4, L5). Plastic litter (L1) was further divided in two sub-categories, 
distinguishing objects that are ‘related’ to fishing activities (i.e., fish-
ing nets, lines, ropes, etc.) and ‘non-related’ (i.e., plastic bags, bottles, 
wraps, etc.; Table 1). 

Several environmental and anthropogenic variables were considered 
and used as predictors in the models (Table 2). These variables were 
considered as reliable proxies for the main sources and drivers of the 
distribution of marine macro-litter. Sea bottom depth was estimated, for 
each cell of the grid, querying the NOAA ETOPO1 Global Relief Model 
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Fig. 1. Area of study (western and central Mediterranean Sea) in which the borders of the six Geographical Sub Areas are shown together with the portion (in 
orange) of the sea bottom from the coastline to the 1000 m depth isobath. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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using the R package “marmap” (Pante and Simon-Bouhet, 2013). Dis-
tance from the coastline was computed for each cell of the grid, using the 
‘dist2Line’ function of the R package “geosphere” (Hijmans et al., 2021). 
Rivers’ mouth positions and catchment area (in km2) were obtained 
from the European Environmental Agency https://www.eea.europa. 
eu/data-and-maps/data/european-river-catchments-1) and used to 
compute, for each cell of the grid, an index of the Impact of River Basins 
defined as the average of catchment areas weighted by the distance of 
the cell centre from the river mouths. The positions of the main shipping 
lanes were downloaded from (Halpern et al., 2008) (https://knb.ecoin 
formatics.org/view/doi:10.5063/F1S180FS) and used to compute, for 
each cell of the grid, the Mean Distance from Shipping Lanes. The po-
sitions and the surface (in km2) of the Urban areas were downloaded 
from the Efrain Maps Website (https://www.efrainmaps.es/english-vers 
ion/free-downloads/europe/) and used to compute an index of the 
Impact of Urban Areas defined as the average of urban areas weighted by 
the inverse of their distance from the cell centre. Positions and size class 
of the port areas were downloaded from the National 
Geospatial-Intelligence Agency website (https://msi.nga.mil/Publica 
tions/WPI) and used to compute an index of the Impact of Port Areas, 
defined as the average of port classes weighted by the inverse of their 
distance from the cell centre. The Northward and Eastward Sea water 
velocities in m-s, the Northward and Eastward Sea surface wave stokes 
drift in m-s the Mean Sea Level in m, the Northward and Eastward wind 
speed in m-s and the Mean Sea Wave Height in m were downloaded from 
the Copernicus Marine Service (https://marine.copernicus.eu/) for the 
period of interest and average to obtain single values for the cells of the 
grid. Rugosity (RUG) (i.e. the roughness of the seafloor), an indicator of 
the occurrence of hard-bottom habitat, was derived from the bathyme-
try layer using the Benthic Terrain Modeller tool in ArcGIS 10.1. RUG is 
quantified as the likelihood of hard-bottom habitat presence and ranges 
from zero to one. Finally, three different variables were generated from 
the analysis of Vessel Monitoring System (VMS) data, according to the 
procedures described in (Russo et al., 2014) and Russo et al. (2016). The 
spatial representation of considered environmental and anthropogenic 
variables is reported in Supplementary Figs. S1 and S2a-b. 

2.3. Random Forest 

Classification (or Decision) Trees (CTs) are a non-parametric super-
vised learning method based on a model that predicts the value of a 
target variable (which can be qualitative or quantitative) by inferring 
simple decision rules from the input data. When an ensemble of Clas-
sification Trees is combined (into a “Forest”) and their predictions are 
averaged (if the target variable is quantitative) or used to establish the 
most voted class (if the target variable is qualitative), we are dealing 
with a RF (Breiman, 2001). The procedure begins by choosing a boot-
strap sample from a subset of the training data for each tree in the forest 
(Breiman, 2001). Out-Of-Bag (OOB) records are those that were not 
included in the current bootstrap sample of the data. Each tree is then 
automatically built to its maximum depth and left unpruned for each 
bootstrap sample. Only a randomly chosen (hence the term “Random”) 
subset of q predictive variables, where p is the total number of pre-
dictors, are accessible for binary partitioning at each split in the tree 
(Breiman, 2001). Usually, the number of Classification Trees in the 
forest is represented by the number ntree, which is how many times this 
method is repeated. The final step is to average the results of all the trees 
for regression applications (Breiman, 2001; Cutler et al., 2007; Gislason 
et al., 2006; Liaw and Wiener, 2002). The performance of RF can be 
modified using a number of its parameters. The primary variables that 

Table 1 
Classification scheme of marine litter categories and sub-categories applied in 
the present study.  

Category Sub- 
category 

Type Source Groups 

L1  Plastics Mixed  
L1a Bags Non Fishing- 

related 
L1-Non 
Fishing-related 

L1b Bottles Non Fishing- 
related 

L1-Non 
Fishing-related 

L1c Food wrappers Non Fishing- 
related 

L1-Non 
Fishing-related 

L1d Sheets Non Fishing- 
related 

L1-Non 
Fishing-related 

L1e Hard objects Non Fishing- 
related 

L1-Non 
Fishing-related 

L1f Fishing nets Fishing- 
related 

L1-Fishing- 
related 

L1g Fishing lines Fishing- 
related 

L1-Fishing- 
related 

L1h Other fishing- 
related 

Fishing- 
related 

L1-Fishing- 
related 

L1i Synthetic ropes Fishing- 
related 

L1-Fishing- 
related 

L1j Others Others  
L2  Rubber Others L2 
L3  Metal Others L3 
L4  Glass/Ceramic/ 

Concrete 
Others L4 

L5  Cloth(textile)/ 
Natural fibres 

Others L5  

Table 2 
Environmental and anthropogenic factors collected and processed in order to 
train the random forest model for the distribution of seafloor litter in the western 
Mediterranean Sea.  

Environmental 
variable 

Reference Anthropogenic 
variable 

Reference 

Sea bottom depth NOAA ETOPO1 
Global Relief Model 
using the R package 
‘marmap’ (Pante 
and Simon-Bouhet, 
2013) 

Impact of River 
Basins 

(https://www.ee 
a.europa.eu/dat 
a-and-maps/dat 
a/european-rive 
r-catchments-1) 

Distance from the 
coast 

‘dist2Line’ function 
of the R package 
geosphere (Hijmans 
et al., 2021) 

Mean Distance 
from Shipping 
Lanes 

(https://knb. 
ecoinformatics. 
org/view/d 
oi:10.5063/ 
F1S180FS) 

Northward sea 
water velocity 

(https://marine. 
copernicus.eu/) 

Impact of Urban 
Areas 

(https://www. 
efrainmaps.es 
/english-vers 
ion/free 
-downloads/eur 
ope/) 

Eastward sea 
water velocity 

(https://marine. 
copernicus.eu/) 

Impact of Port 
Areas 

(https://msi.nga 
.mil/Publica 
tions/WPI) 

Northward Sea 
surface wave 
stokes drift 

(https://marine. 
copernicus.eu/) 

Mean Fishing 
effort (bottom 
otter trawling) 

Russo et al. 
(2014) and  
Russo et al. 
(2016) 

Eastward Sea 
surface wave 
stokes drift; 

(https://marine. 
copernicus.eu/) 

Average effort in 
neighbouring 
cells 

Russo et al. 
(2014) and  
Russo et al. 
(2016) 

Mean Sea Level (https://marine. 
copernicus.eu/) 

Delta effort 
inside/outside 

Russo et al. 
(2014) and  
Russo et al. 
(2016) 

Eastward wind 
velocity 

(https://marine. 
copernicus.eu/)   

Northward wind 
velocity 

(https://marine. 
copernicus.eu/)   

Mean Sea Wave 
Height 

(https://marine. 
copernicus.eu/)   

Rugosity Benthic Terrain 
Modeller tool in 
ArcGIS 10.1 ( 
Wright, 2011)    
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significantly impacted the accuracy of this method were the total 
number of trees in the forest (ntree), the number of randomly chosen 
predictors available at each split for the binary partitioning, known as 
mtry, as well as the minimum number of records contained in each leaf 
to stop the splitting procedure (ndsize) (Cutler et al., 2012; Scornet, 
2017). All 3 of these parameters are tuned by means of an iterative 
procedure in which a wide range of values is explored for each of them. 
The final values obtained from the tuning procedure and used in this 
study were: ntree = 1000, mtry = 7, ndsize = 5. 

In this study, the RF approach provided in the R package “Ran-
domForest” (Liaw and Wiener, 2002) was applied to predict the spatial 
distribution of each of the categories and sub-categories, and groups 
listed in Table 1. All variables described above as well as the MEDITS 
data about litter density and weight, per each category/sub-category, 
were standardized over the set of 11,341 cells covering the portion of 
GSAs from the coastline to the 1000 m isobath. The number of cells in 
which at least one MEDITS sampling occurred in the period considered 
was 1048 (around 10% of the total domain of 11,341 cells). This set of 
1048 was used to train and test the RF models, as described in the next 
section. 

The applied procedure can be summarized as follows:  

● For each of these litter typologies, the set of 1048 cells containing the 
MEDITS records was split into two subsets: the training set and the test 
set, including 70 % and 30%, respectively, of the total cells. This 
splitting procedure, repeated 100 times, was pseudo-random as we 
forced the sampling to guarantee that the 70/30% proportion 
occurred for each of the bathymetric strata of the MEDITS (see Sec-
tion 2.2).  

● 10 RFs models were trained and tested for each of these pairs of 
training and test sets. Namely, the adjusted R2 and the root-Mean- 
Square Error (rMSE) indexes were used to compare the observed vs 
predicted values of litter categories and sub-categories in the number 
of objects and weights by cell. For each RF model, the relative 
importance of each predictor was internally assessed by the ran-
domforest function in R, using the approach described in (Breiman, 
2001). This approach was devised to assess how much removing or 
noising each variable reduces the accuracy of the model prediction 
(on the training dataset). Finally, the trained RFs were used to pre-
dict the amount of litter over the whole domain (11,341 cells), to 
obtain a series of spatial maps of litter categories and sub-categories 
in the study area. 

2.4. Relationship between number and weight of objects: Generalized 
additive models 

The visual inspection of the results (see next section) suggested a 
further analysis of the relationship between the number and weight of 
objects in the original MEDITS data (which are actual observations). 
This was done by fitting Generalized Additive Model (GAM - Hastie and 
Tibshirani, 1986) model in which: 

Where WYear, cell is the weight of objects (kg km− 2) in a given cell in a 
given year, N is the corresponding number of objects km− 2, and category 
is one of the six groups represented in Table 1. GAMs are non-parametric 
regression models allowing to model the associations between variables 
without defining the exact shape of the underlying regression function. 
Compared to parametric (including linear) forms of models, GAMs 
provide more flexibility when smooth functions are used as regressors. 
GAMs were applied using the R package “mgcv” (Wood, 2023). 

This “naive” modelling approach was devised to assess whether the 
average weight of waste is significantly different across different GSAs 
and litter categories. In particular, the Davies’ approach (Davies, 1987) 
was applied to test for statistical differences between regression pa-
rameters related to the GSAs, eventually supporting the existence of 
statistical differences between the slopes of the regression between GSAs 
(different mean weight of litter categories in different areas). All the 

analyses described above were carried out in the R environment (R Core 
Team, 2023). 

3. Results and discussion 

3.1. Data exploration, areas of accumulation and hotspots 

The mean distribution of seafloor macro-litter collected from 3465 
hauls in the period 2013–2019 is shown in Fig. 2, for both number (2A) 
and weight (2 B) of objects. In all GSAs, the main group of litter is non- 
fishing related plastics, followed by fishing related plastics, whereas the 
other groups contribute with lower, often marginal, percentages to the 
total. The northern part of the west Mediterranean, which includes 
northern Tyrrhenian Sea (Italy; GSA9), southern Tyrrhenian Sea 
(GSA10), and the Gulf of Lion (France, GSA7) consistently appeared to 
be the most impacted region, with mean densities that sometimes rea-
ches ~ 105 items km− 2 in the case of fishing-related or non-fishing- 
related plastic, being three orders of magnitude (102 to 105) more 
impacted than e.g. the strait of Sicily (Fig. 2). The pattern described 
above is consistent with previous findings that reported an accumulation 
of macro-litter along the eastern coast of Corsica (Gerigny et al., 2019). 
Moreover, this section of the Western Mediterranean hosts important 
active fisheries and it is close to significant commercial routes. Further 
environmental drivers are local wind and water velocity that cumula-
tively could provide clues on the observed patterns, as already docu-
mented by Spedicato et al. (2019), who documented a similar pattern of 
plastic accumulation in this region and attributed this phenomenon to the 
peculiar local circulation pattern. 

When considering the total amount of litter in terms of weight of the 
objects is more balanced (Fig. 2B). Rubber (e.g. tires) is present in large 
quantities in all GSAs, as for fishery-related plastics and metals. Only 
GSA07 shows high values of weight for non-fishery plastics. The kernel 
densities (Supplementary Fig. S3) report unimodal distributions for 
almost all the categories and sub-categories across the GSAs. The dis-
tributions show skewness near zero, but in the GSA16, they are often 
platykurtic, which means that litter items are, on average, heavier than 
in other areas. Results indicate that rubber accounted for a small portion 
in terms of the number of items; however, it was among the most 
abundant in terms of weight, being mostly composed of dumped car tires 
(i.e., fewer but heavier objects). Car tires and rubber in general do not 
decompose easily and can remain on the seafloor for a long time (Kole 
et al., 2017). Car tires, for instance, slowly degrade into micro-sized 
rubber fragments. As they break down over time, they release harmful 
chemicals and pollutants into the marine environment, including heavy 
metals and toxic compounds (Halsband et al., 2020). Leachates from 
different plastics and car tire rubber contain a variety of metals and 
organic additives that cumulatively can affect fish behaviour, gamete 
fertilization, embryonic development, larvae motility and survival of 
different species (Capolupo et al., 2021; Halsband et al., 2020; Gorule 
et al., in press). 

3.2. Random Forest performance and main drivers of litter accumulation 

The results of the application of RF (Supplementary Fig. S4) indicate 
that the corresponding models largely have a value of median R2 on the 
test sets higher than 0.8. The exceptions, represented by L1-Plastics, L1e- 
Hard objects, L1j-Others and L6-Others, when quantified as weight, have 
median R2 values around 0.25, which indicates a low predictive ability 
of the trained RF models. The median rMSE is always below 0.15 and 
often below 0.1. Overall, the RF models showed great efficacies for all 
categories of macro-litter, particularly when the number of items per 
category was used as a response variable rather than weight. Consid-
ering also how the model output showed low values for rMSE, the lower 
predicting power of the model for those categories could be ascribed to 
the fact that some relevant categories of predictive factors were not 
included in the model. 
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Fig. 2. Maps with pie charts showing the mean total amount (radius of the pie) and the mean composition (with respect to the main categories) of marine litter, by 
GSA, as number of objects km− 2 (A) and weight of objects kg km− 2; (B). 
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With respect to the relative importance of predictors (Supplementary 
Figs. S5a and S5b), it is possible to notice that, for most of the 
categories/sub-categories, only one or a few predictors tower above the 
others. Interestingly, trawl effort influences the distribution of fishing 
related categories (i.e., hard objects [L1e] and other fishing related 
[L1h]), while the distance from the coast (dCoast) is associated with 
fishing lines (L1g). In contrast, a large set of predictors influences the 
amount of litter in terms of the weight of the objects (Supplementary 
Fig. S5b). It is interesting to notice that single use plastics (i.e., bags 
[L1a], bottles [L1b], and food wrappers [L1c]) are mainly influenced by 
their relative position with respect to urban areas, and by the distance 
from the coast and shipping, while fishing lines (L1g) are associated with 
trawling. This resulted in scattered accumulation hotspots for the two 
different categories, with the former being more abundant in areas 
closer to the coastline and, likely, to their source point, while the latter 
was more concentrated on fishing grounds far from the coastline 
(Fig. 3a). 

However, the Year is by far the most important variable when 
modelling all the categories and sub-categories in terms of the number of 
objects. The temporal pattern of the absolute amount of seafloor macro- 
litter in the study area shows interannual fluctuating trends (Fig. 4); still, 
an overall increase is detectable in most of the GSAs. Observed trends 
become more fluctuating when the weight of objects is considered. 
Nonetheless, our results further highlight how the standing stock of 
marine macro-litter is highly unstable due to variations in inter-annual 
dynamics of both natural events (e.g., flooding, heavy rain, storms) or 
human activities that modulate macro-litter leak into aquatic environ-
ments. On top of these, the fraction of macro-litter already accumulated 
in the environments can possibly get dislocated by trawling activities 
(Franceschini et al., 2019), resuspended in case of lighter objects, or 
even buried in case of proximity to peculiar hydrological and/or 
geomorphological settings (e.g., Pierdomenico et al., 2023). These 
documented but still poorly understood patterns could play a role in 
explaining the sharp increase or decrease (i.e., in the order of ~30–50%) 
that was observed for some categories of macro-litter such as glass (L4) 
or Rubber (L2; Fig. 4) over certain years. 

3.3. Predicted spatio-temporal distribution of seafloor macro-litter 

Trained RF was used to forecast the amount of litter for each category 
and sub-category within the spatial domain considered in the study 
(11,341 cells), on a yearly basis from 2013 to 2019. The averaged spatio- 
temporal patterns are proposed in Fig. 3a and b. Fig. 3a provides clues 
on the predicted density and abundance of macro-litter towards the 6 
bathymetric strata depth gradient. It appears that single use items, or 
more generally lightweight objects, tend to be consistently more abun-
dant in the shallower depth range and consistently decrease with depth 
across all GSAs (Fig. 3a_A). Indeed, a significant proportion of land- 
based litter is composed of single use objects. When litter originates 
from the mainland or areas close to the coast, most of them are found to 
be stranded quickly and a significant portion remains in coastal waters 
near their point of origin. (Critchell and Lambrechts, 2016). 

On the contrary, heavier objects are predicted to be more abundant 
in the deepest strata or at least as abundant as in shallower ones. This is 
the case of plastic subcategories such as L1h - Other fishing-related 
objects, L1i - Synthetic ropes, L1j - Others, or other heavier categories 
such as L2 Rubber and L3 Metal. These items are expected to increase 
with depth in GSA 07, 08, 11, and 16. The increase of small or light 
objects on the seafloor at high depths relies essentially on two mecha-
nisms: i) 

temporal changes in the weight of floating litter due to biofouling 
(Amaral-Zettler et al., 2021) and/or ii) local features of water circulation 
and geomorphologies such as submarine canyons, which are known to 
funnel huge quantities of macro-litter to the deep ocean (Hernandez 
et al., 2022). On the other hand, heavy objects are likely to be dropped 
directly into the sea and proximity to major trade routes may have been 

a contributing factor. The "other" category of L1j is a subcategory that is 
especially important in the deepest depths. Overall, any object that does 
not fall within a specific category or subcategory in the classification list 
is to be classified under the ’other’ category: e.g. as regards its size or 
quantity of material. Therefore, it is not easy to know which type of 
objects are covered by the particular category and any speculation on 
those patterns cannot be substantiated. Unfortunately, this aspect does 
not vary from one classification scheme to the other and becomes even 
more important for protocols such as the MEDITS survey that proposes a 
rather limited number of subcategories. In this view, we emphasize the 
need for waste monitoring protocols to propose a workflow for the 
correct use of the "other" category. 

The main spatial results were simplified by focusing on the different 
degrees of accumulation of the various types of macro-litter across 
various areas. To achieve this, a trade-off was made between the het-
erogeneity of the litter, its origin in relation to human activities, and the 
heterogeneity of the spatial distribution. 

Spatial patterns for macro-litter sub-categories are represented in 
Fig. 3b. This is because spatial patterns are of particular interest since 
they allow the identification of the main hotspots, which are the most 
relevant areas to be identified and, eventually, where mitigation actions 
should be prioritized. Moreover, the temporal persistence of accumu-
lation areas can be a further diagnostic tool to give relevance to a certain 
hotspot. This aspect has never been tested so far and the present study 
provides the first insights into the temporal pattern, based on a yearly 
basis, of accumulation hotspots. 

Regions with moderate to low accumulations of seafloor macro-litter 
include the coasts of Sardinia (GSA11) and Sicily (GSA16), the two 
largest Italian islands. In comparison to the accumulation observed 
along the northern Italian coastline, non-fishing-related plastic items 
were found to be very scarce. This pattern changes a bit when consid-
ering the weight of the objects (kg per km− 2) as the response variable 
and Sicily and Sardinia islands (GSA16 and GSA11, respectively), 
showed very large values for the weight of L1 - Fishing-related items and 
L3 - Metal. More in general, those areas in these two GSAs that appear 
numerically less contaminated with waste, do become among the most 
contaminated if the weight of waste is considered. 

3.4. Number versus weight 

Monitoring litter by number or weight can lead to different results, as 
explained by other authors (Smith & Turrell, 2021). The efficacy of 
monitoring based on the number is influenced by factors such as the 
minimum detectable fragment size, the age of the debris, and environ-
mental forcings that can increase the fragmentation processes (Smith & 
Turrell, 2021). Given that the single presence or absence of mega-litter 
may constitute a strong bias in weight-based monitoring (Smith & 
Turrell, 2021), it is important to combine data on the number and 
weight of objects in order to generate reliable information. The effect of 
the number of objects on the respective value of the weight of the object 
is, as expected, close to linear (Fig. 5A). In addition, GAM detected a 
significant effect of the GSA, with a pattern of the coefficients (Fig. 5B) 
in which the GSA16 has the highest value and the GSAs 09 and 08 the 
smallest ones (Table 3). Davie’s test also allowed us to reject the null 
hypothesis that coefficients (slopes) of the number/weight relationship 
for the different GSAs belong to the same distribution. This demonstrates 
that, in the Strait of Sicily (GSA16), macro-litter is heavier than in other 
areas, as observed in the steeper slope of the area (Fig. 5C). The differ-
ence between number and weight patterns, represented in Fig. 3a and b, 
could be justified by the fact that along the southern coast of Sicily, 
stronger currents prevent the deposition on the seafloor of lighter items. 
In contrast, the ribs of GSA09 and GSA10 are characterised by greater 
stagnation, which allows even lighter items to be deposited on the 
bottom. Indeed, (Collignon et al., 2014) demonstrated that the mean 
weight of particles in the northwestern Mediterranean Sea is smaller 
than in other areas, in agreement with the results of this study. 
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Fig. 3a. Barplots of the predicted seafloor litter abundance in the western Mediterranean Sea, by depth stratum, and Geographical Sub Areas, for all the sub- 
categories, as (A) mean number of objects km− 2 and (B) mean weight of objects per (kg km− 2). Bars represent the mean value over the period (years 
2013–2019) considered, and the standard deviation is represented by the error bars. 
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Fig. 3b. Maps showing the average amount of marine litter categories over the period 2013–2019, as total number and weight of objects km− 2.  
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Fig. 4. Temporal trends (2013–2019) for the main litter groups across different GSAs, expressed both as n. of items and kg of objects km− 2.  
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Northwestern Mediterranean coasts were also characterised by the 
presence of high accumulation zones in the near-shore region (Pedrotti 
et al., 2016). In essence, it seems reasonable to assume that the part 
north of the Tyrrhenian Sea is the one (within the six GSAs considered in 
this study) with the highest number of plastic items but with a lower 
average weight than other areas (such as the southern coasts of Sicily), 
and this is due to the synergistic effect of two factors: the presence of 
major rivers (the Tiber, the Arno, the Rhone), and a hydrodynamic 
regime that favours stagnation and accumulation. 

Results here presented are based on a broader geographical scale 
compared to available studies conducted in single GSAs within the study 
area (e.g., Alvito et al., 2018; Franceschini et al., 2019; Garofalo et al., 
2020); which eventually allowed us to put into a broader perspective 
some of the results obtained locally; this is the case of GSA11, that 
appeared less critical once put into a larger spatial scale and perspective, 
not showing any relevant accumulation hotspot compared to the whole 
western Mediterranean pattern. This, however, should not divert 
attention from local peculiarities, since potential mitigation actions 

Fig. 5. A) General relationship (GAM smoothed effect of the number of objects on the weight of objects, irrespectively of the GSA; B) Barplot of the GSA-specific 
coefficient for the weight of objects; C - GSA-specific relationship between weight and number of object in which the linear trend is represented. 
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would mostly act locally, based on the efforts of local fisheries (e.g., 
fishing for litter initiatives). Still, present results could provide useful 
insights to define sub-basin spots that would deserve priority for 
broader, coordinated efforts. 

3.5. Replicability and limitations 

One of the strengths of the approach proposed in this paper is that it 
is based on widely and easily accessible information through online 
portals such as those of NOAA and Copernicus. This could make it 
possible to expand predictions to other areas of the Mediterranean or, 
more generally, of European seas and world oceans (considering that 
initiatives similar to Copernicus exist in other areas of the globe). In 
addition, future applications of this kind of predictive model could allow 
for the refinement of predictions in already investigated areas, since 
machine learning techniques (such as RF) are born precisely to exploit 
the mass of information (big data) that is progressively accumulated. On 
the other hand, it will be necessary to supplement direct information, 
like that from MEDITS but also other forms of data collection such as 
image-based analysis, on the amount of macro-litter present on the 
seabed. With this respect, a number of limitations of this work emerge: 
1) it is a data-demanding approach; 2) it has so far only been applied to 
macro-litter, as there is no geo-referenced information for litter of 
smaller size classes; 3) we do not know whether this kind of approach 
can also work in 3D (for litter in the water column) and for surface litter. 
These aspects, however, open the prospect for new work and stimulate 
the integration of observations from different sources in order to explore 
the limits of the method itself. Marine litter threat is, indeed, a trans- 
boundary issue and the best strategy to tackle it requires close cooper-
ation across geographically close and distant countries. 

3.6. Conclusions, implications, and future perspectives 

The ecological modelling exercise presented in this study aims to try 
to answer the question in the title: what, where, and when (and, 
potentially, why) does litter accumulation occur on the seafloor? From a 
compositional point of view, the category of non-fishing related objects 
represents the numerically most abundant component, especially along 
the continental coasts. By weight, however, the situation is more het-
erogeneous. Islands (Sicily, Sardinia, and Corsica) are the least 
contaminated areas, while considering the temporal pattern of hotspots, 
as anticipated, results here put emphasis on the temporal consistency of 
hotspots, an overlooked that would deserve consideration. This is of 
crucial importance since it is well documented how macro-litter can be 
displaced or buried and a proper identification of hotspots could be 
compromised. In case of consistent and spatially stable hotspots, 

stakeholders would have the tool to identify areas where the litter 
standing stock is stable across time and where: i) mitigation can be 
prioritized and ii) test for the efficacy of broad transnational litter 
reduction policies. Indeed, besides a few environmental factors, input 
from land, in all its forms, represents the main contributor and driver of 
macro-litter distribution. Our approach, which likely does not allow us 
to assess local measures’ effectiveness could, on the contrary, be very 
effective in detecting the temporal effects of binding targets foreseen 
within transnational initiatives such as the plastic treaty of the United 
Nation (Bergmann et al., 2022). 

Mapping the distribution of marine macro-litter is also a key element 
in assessing the exposure of marine organisms to potential plastic 
pollution. In the case of plastic ingestion by marine species or just 
entanglement in ghost fishing gear, the risk assessment must indicate 
where and when harm may occur. These risks are largely defined by the 
potential encounter of marine organisms with litter, but also by litter’s 
nature and form. Risk assessment has been used recently to study areas 
where species may be harmed by the presence of litter and, more spe-
cifically, to predict areas where the risk of ingestion is high (e.g., 
ecological threats to marine biota at the population level are often un-
clear, as is the geographic extent of impacts). Modelling the likelihood of 
litter ingestion by cross mapping the distribution of both litter and sea 
turtles or cetaceans has been proposed as a tool to define areas at risk, in 
terms of exposure (Darmon et al., 2017; Fossi et al., 2018). This tool was 
then used to investigate the possible overlap between plastic accumu-
lation maps and microplastics in bioindicator species and ichthyofauna 
in Mediterranean Marine Protected Areas (Compa et al., 2023, 2022). As 
the mapping of demersal fish abundance has been recently described in 
the Mediterranean Sea (Colloca et al., 2015), the same approach could 
be used, taking advantage of the results of the modelled macro-litter 
distribution to predict areas where the demersal fish population may 
be affected, environmentally, but also with possible consequences for 
the quality of fish as seafood. 

Within mitigation initiatives, a good example is the “Fishing for 
litter” initiative (https://fishingforlitter.org) (García-Hermosa and 
Woodall, 2023). Indeed, trawls cover the largest total swept area (Haarr 
et al., 2022) and, most importantly, remain the only available option for 
reaching greater depths, during the regular working routine of fisheries. 
However, trawls come at great environmental costs due to their 
disturbance (and possible destruction) of substrate and biota (Canals 
et al., 2021; Pusceddu et al., 2014). Scientific evidence informs on how 
trawl-based mitigation action could prioritize macro-litter hotspots to be 
more effective and how cumulative maps of hotspots could be spatially 
misleading (Cau et al., 2022); we stress here that the temporal factor can 
play a crucial role as well. This latter information was missing from 
available literature and clearly shows how hotspots identified during a 
survey conducted in a specific year may not be consistent in the 
following years. The reasons that can explain such temporal changes are 
ascribable, as anticipated above, to remobilization or burial as major 
causes, but also to differential riverine input driven by major atmo-
spheric events across years (Laverre et al., 2023), or fluctuations in 
seasonal anthropic activities such as coastal tourism (Ronchi et al., 
2019). 

Initiatives that involve fishermen to collect macro-litter are rela-
tively low-cost and efficient, at least considering exclusively fishing 
grounds, even though several difficulties arise in their execution and 
implementation (Cho, 2009; Ronchi et al., 2019; Viejo et al., 2023). The 
effective reduction of marine litter’ contamination should begin with a 
cap on the production, especially of hazardous materials like plastic 
(Bergmann et al., 2022). However, for that fraction of macro-litter 
already dispersed in sea bottoms worldwide, mitigation initiatives 
represent the most realistic and feasible strategy to pursue, still 
considering the enormous limitations that arise when working at high 
depths in the marine environment (Canals et al., 2021). Our approach 
could also provide a benchmark for monitoring the effectiveness of 
numerous directives that are put in place at both national and 

Table 3 
GAM coefficients and main statistics for the relationship between 
number of objects km− 2 and weight of objects (kg km− 2). The GAM 
model was fitted on the dataset of 5869 records corresponding to the 
values of marine litter abundance in 1073 cells (corresponding to the 
MEDITS sampling sites) monitored over seven years. Asterisks mark 
significant values (* P-value <0.05, ** P-value <0.01, *** P-values 
<0.001), which are also highlighted in bold.  

Term Coefficient 

GSA08 0.32*** 
GSA09 0.3*** 
GSA10 0.47*** 
GSA11 0.49 *** 
GSA16 0.76*** 
L1-Fishing-related 0.05 
L1-Non Fishing-related − 0.11*** 
L2-Rubber 0.75*** 
L3-Metal 0.08* 
L4-Glass/Ceramic/Concrete 0.57*** 
Deviance explained of the GAM 47.5%  
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international levels. Since macro-litter can be identified and divided into 
subcategories (i.e. plastics, rubbers, metals, glass, and clothes), the 
temporal trends of each of these categories could be informative of the 
actual effectiveness of specific measures, such as waste management 
policies, bans of certain products or introduction of taxes and charges 
(Chen, 2015). 
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Suikkanen, S., Woodall, L., Fakiris, E., Molina Jack, M.E., Giorgetti, A., 2021. The 
quest for seafloor macrolitter: a critical review of background knowledge, current 
methods and future prospects. Environ. Res. Lett. https://doi.org/10.1088/1748- 
9326/abc6d4. 

Capolupo, M., Gunaalan, K., Booth, A.M., Sørensen, L., Valbonesi, P., Fabbri, E., 2021. 
The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean 
mussel Mytilus galloprovincialis. Environ. Pollut. 283, 117081 https://doi.org/ 
10.1016/J.ENVPOL.2021.117081. 

Cau, A., Franceschini, S., Moccia, D., Gorule, P.A., Agus, B., Bellodi, A., Cannas, R., 
Carugati, L., Cuccu, D., Dessì, C., Marongiu, M.F., Melis, R., Mulas, A., Porceddu, R., 
Porcu, C., Russo, T., Follesa, M.C., 2022. Scattered accumulation hotspots of macro- 
litter on the seafloor: insights for mitigation actions. Environ. Pollut. 292, 118338 
https://doi.org/10.1016/j.envpol.2021.118338. 

Cau, A., Moccia, D., Follesa, M.C., Alvito, A., Canese, S., Angiolillo, M., Cuccu, D., Bo, M., 
Cannas, R., 2017. Coral forests diversity in the outer shelf of the south Sardinian 
continental margin. Deep-Sea Res. Part I Oceanogr. Res. Pap. 122, 60–70. https:// 
doi.org/10.1016/j.dsr.2017.01.016. 

Chen, C.L., 2015. Regulation and management of marine litter. In: Marine Anthropogenic 
Litter. Springer International Publishing, pp. 395–428. https://doi.org/10.1007/ 
978-3-319-16510-3_15/TABLES/2. 

Cho, D.O., 2009. The incentive program for fishermen to collect marine debris in Korea. 
Mar. Pollut. Bull. 58, 415–417. https://doi.org/10.1016/j.marpolbul.2008.10.004. 

Collignon, A., Hecq, J.H., Galgani, F., Collard, F., Goffart, A., 2014. Annual variation in 
neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi 
(Mediterranean-Corsica). Mar. Pollut. Bull. 79, 293–298. https://doi.org/10.1016/j. 
marpolbul.2013.11.023. 

Colloca, F., Garofalo, G., Bitetto, I., Facchini, M.T., Grati, F., Martiradonna, A., 
Mastrantonio, G., Nikolioudakis, N., Ordinas, F., Scarcella, G., Tserpes, G., 
Tugores, M.P., Valavanis, V., Carlucci, R., Fiorentino, F., Follesa, M.C., Iglesias, M., 
Knittweis, L., Lefkaditou, E., Lembo, G., Manfredi, C., Massutí, E., Pace, M.L., 
Papadopoulou, N., Sartor, P., Smith, C.J., Spedicato, M.T., 2015. The seascape of 
demersal fish nursery areas in the north Mediterranean Sea, a first step towards the 
implementation of spatial planning for trawl fisheries. PLoS One 10, e0119590. 
https://doi.org/10.1371/journal.pone.0119590. 

Compa, M., Alomar, C., Deudero, S., 2023. Mapping microplastic overlap between 
marine compartments and biodiversity in a Mediterranean marine protected area. 
Sci. Total Environ. 892, 164584 https://doi.org/10.1016/j.scitotenv.2023.164584. 

Compa, M., Wilcox, C., Hardesty, B.D., Alomar, C., March, D., Deudero, S., 2022. 
Quantifying the risk of plastic ingestion by ichthyofauna in the Balearic Islands 
(western Mediterranean Sea). Mar. Pollut. Bull. 183, 114075 https://doi.org/ 
10.1016/j.marpolbul.2022.114075. 

Critchell, K., Lambrechts, J., 2016. Modelling accumulation of marine plastics in the 
coastal zone; what are the dominant physical processes? Estuar. Coast Shelf Sci. 171, 
111–122. https://doi.org/10.1016/J.ECSS.2016.01.036. 

Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random forests. Ensemble Machine Learning 
157–175. https://doi.org/10.1007/978-1-4419-9326-7_5. 

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 
2007. Random forests for classification in ecology. Ecology 88 (11), 2783–2792. 
https://doi.org/10.1890/07-0539.1. 

Darmon, G., Miaud, C., Claro, F., Doremus, G., Galgani, F., 2017. Risk assessment reveals 
high exposure of sea turtles to marine debris in French Mediterranean and 
metropolitan Atlantic waters. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 
319–328. https://doi.org/10.1016/j.dsr2.2016.07.005. 

Davies, R.B., 1987. Hypothesis testing when a nuisance parameter is present only under 
the alternatives. Biometrika 74, 33. https://doi.org/10.2307/2336019. 

Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y.M., Milo, R., 2020. Global human- 
made mass exceeds all living biomass. Nature 588, 442–444. https://doi.org/ 
10.1038/s41586-020-3010-5. 
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