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Abstract: Invading pathogens have developed weapons that subvert physiological conditions to
weaken the host and permit the spread of infection. Cells, on their side, have thus developed
countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP
(cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the
cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production
of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an
interesting and innovative target for the development of broad-spectrum antivirals. In this review,
we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms
developed by viruses, through which they escape this defense system; and the therapeutical strategies
that have been developed to date to inhibit viral replication restoring STING functionality.
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1. Introduction

Organisms have learnt how to coexist with invading pathogens by developing barriers
that could counteract the invasion and spread of pathogen. The first step for an invading
pathogen is to overcome chemical and physical barriers such as the skin, mucous mem-
branes, antimicrobial enzymes, and peptides, which are acidic or basic environments that
limit pathogen invasion [1]. However, in some cases, these barriers are not sufficient to
counteract the invasion and pathogens can attack the organism, gaining access to the main
organism’s delivery system, the blood flux, through which they reach all the body districts.
At the same time, they also come into contact with the intrinsic cellular defense system,
where they are detected, triggering the activation of the organisms’ countermeasures [1].
The pathogens’ detection occurs through specific proteins called pattern recognition recep-
tors (PRRs), which bind pathogens’ structures such as lipopolysaccharide (LPS), nucleic
acids, and pathogens’ proteins; more in general, the so-called pathogen-associated molec-
ular patterns (PAMPs) [2,3]. Different PRRs are involved in the pathogen recognition
depending on the PAMP detected, among them are the toll-like receptors (TLRs) and
retinoic-acid-inducible gene (RIG)-I-like receptors (RLRs), as well as NOD-like receptors
(NLRs) and cyclic GMP-AMP synthase (cGAS) [4–7] (Figure 1). TLRs are transmembrane
receptors located on the cellular surface or on the membrane of intracellular vesicles such
as endosomes and lysosomes that detect a wide variety of PAMPs such as lipoproteins,
LPS, flagellin, C–phosphate–G (CpG)-DNA, viral ssRNA, and dsRNA. Differently, RLRs,
NLRs, and cGAS are all located in the cytoplasm of the cells. RLRs detect long and short
dsRNA and 5′triphosphate RNA, inducing pTBK1-dependent IFN-I transcription; NLRs
detect peptidoglycan component (iE-DAP) and intracellular muramyl dipeptide (MDP);
cGAS recognizes viral dsDNA and tumor-derived DNA, producing cyclic dinucleotides
that bind the stimulator of interferon genes (STING), inducing IFN-I transcription [4–9]
(Figure 1).
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Figure 1. Overview on IFN-I induction by pathogens. DNA viruses are detected by cGAS owing to 
the DNA release in the cytosol, inducing STING dimerization and IFN-I transcription; RNA viruses 
are detected by RIG-I and MDA5, inducing MAVS multimerization in the mitochondrial membrane, 
leading to IFN-I production; TLRs are activated by the detection of bacterial PAMPs, inducing IFNs. 
All of these pathways require TBK1 kinase activity. 

PAMP detection is the starting point of the host organism innate immune response 
that involves the activation of phosphorylating cascades and leads to the production of 
cytokines and chemokines. Cytokines are low-molecular-weight (15–20 kDa) proteins or 
glycoproteins [8]. Among the cytokines, there are specific ones principally involved in the 
response to viral infections, called interferons (IFNs) for their ability to interfere with viral 
replication [9]. IFNs can be divided into type I, type II, and the more recently identified 
type III, each of which triggers a different response interacting with specific receptors [9], 
[10]. IFN-I comprehends 13 IFN-α isoforms and only one IFN-β, as well as IFN-ε, κ, δ, τ, 
ω, and ζ. [10]. IFN-II has only one member γ [10], while IFN-III includes λ1, 2, 3, and 4 
[11,12]. IFNs, thanks to their potency in inhibiting viral replication, have been studied and 
used as potential medicines to counteract viral infections such as hepatitis C virus (HCV) 
and hepatitis B virus (HBV) infection [13]. However, treatment with IFNs is not 
complication-free: cases of autoimmune disorders such as psoriasis, vitiligo, rheumatoid 
arthritis, and autoimmune hepatitis have been reported in patients treated with IFNα, 
indicating that direct exposure to INFs can be comparable to an uncontrolled cytokine 
expression incompatible with physiologic conditions where the innate immune response 
is tightly regulated [14]. 

In the fight for spreading, viruses have evolved strategies to evade the innate immune 
response at different levels. A number of virus-specific mechanisms through which 
viruses mask themself to prevent PRR detection have been identified [15]. Viral evolution 
has indeed occurred by selecting strains possessing proteins capable of interacting with 
cellular proteins, preventing the transcription factors’ activation or their translocation in 
the nucleus, impeding the transcription of IFNs or IFN stimulated genes (ISGs) [15–17]. 
Moreover, viral enzymes were shown to be able to degrade cellular proteins by direct 
cleavage or by regulating the cellular-proteasomal-mediated degradation [18–20]. 

The search for new targets and antiviral agents is continuously growing, especially 
with broad-spectrum activity. In fact, even though vaccines are the elective way to limit 
diseases and possibly eradicate pathogens, they are not always effective, particularly in 
people with compromised immune defenses, and they can also lose activity against 
rapidly evolving pathogens. Hence, the identification of novel antiviral agents is a priority 
for health systems [15], and the number of approved antiviral drugs is increasing yearly; 

Figure 1. Overview on IFN-I induction by pathogens. DNA viruses are detected by cGAS owing to
the DNA release in the cytosol, inducing STING dimerization and IFN-I transcription; RNA viruses
are detected by RIG-I and MDA5, inducing MAVS multimerization in the mitochondrial membrane,
leading to IFN-I production; TLRs are activated by the detection of bacterial PAMPs, inducing IFNs.
All of these pathways require TBK1 kinase activity.

PAMP detection is the starting point of the host organism innate immune response
that involves the activation of phosphorylating cascades and leads to the production of
cytokines and chemokines. Cytokines are low-molecular-weight (15–20 kDa) proteins
or glycoproteins [8]. Among the cytokines, there are specific ones principally involved
in the response to viral infections, called interferons (IFNs) for their ability to interfere
with viral replication [9]. IFNs can be divided into type I, type II, and the more recently
identified type III, each of which triggers a different response interacting with specific
receptors [9], [10]. IFN-I comprehends 13 IFN-α isoforms and only one IFN-β, as well as
IFN-ε, κ, δ, τ,ω, and ζ. [10]. IFN-II has only one member γ [10], while IFN-III includes λ1,
2, 3, and 4 [11,12]. IFNs, thanks to their potency in inhibiting viral replication, have been
studied and used as potential medicines to counteract viral infections such as hepatitis C
virus (HCV) and hepatitis B virus (HBV) infection [13]. However, treatment with IFNs is not
complication-free: cases of autoimmune disorders such as psoriasis, vitiligo, rheumatoid
arthritis, and autoimmune hepatitis have been reported in patients treated with IFNα,
indicating that direct exposure to INFs can be comparable to an uncontrolled cytokine
expression incompatible with physiologic conditions where the innate immune response is
tightly regulated [14].

In the fight for spreading, viruses have evolved strategies to evade the innate immune
response at different levels. A number of virus-specific mechanisms through which viruses
mask themself to prevent PRR detection have been identified [15]. Viral evolution has
indeed occurred by selecting strains possessing proteins capable of interacting with cellular
proteins, preventing the transcription factors’ activation or their translocation in the nucleus,
impeding the transcription of IFNs or IFN stimulated genes (ISGs) [15–17]. Moreover, viral
enzymes were shown to be able to degrade cellular proteins by direct cleavage or by
regulating the cellular-proteasomal-mediated degradation [18–20].

The search for new targets and antiviral agents is continuously growing, especially
with broad-spectrum activity. In fact, even though vaccines are the elective way to limit
diseases and possibly eradicate pathogens, they are not always effective, particularly in
people with compromised immune defenses, and they can also lose activity against rapidly
evolving pathogens. Hence, the identification of novel antiviral agents is a priority for
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health systems [15], and the number of approved antiviral drugs is increasing yearly; up
to today, over one hundred antivirals have been approved [21,22]. The most common
strategies to develop antiviral drugs are based on the identification of molecules targeting
viral proteins and blocking viral replication as direct acting agents. Although successful,
this strategy must consider that most viruses are easily capable of selecting drug-resistant
strains [22]. Hence, a novel approach for the identification of potential broad-spectrum
antivirals is to target cellular proteins inducing an innate immune response, thus avoiding
the high mutagenesis rate occurring for viral proteins [23–25].

Among the proteins possibly used as drug targets, a recently discovered one is
STING—a downstream actor in the detection of non-self cytosolic nucleic acids related to
viral infections and tumor conditions [26–30]. STING plays a pivotal role in counteracting
viral infections, independently from whether the viral genome is DNA or RNA, mounting a
strong innate immune response driven principally by IFN-I [31,32]. On the one side, when
cytosolic DNA is detected, cGAS produces cyclic GMP-AMP (2′3′ cGAMP) that directly
binds STING, determining TBK1 phosphorylation (pTBK1) and hence transcription of
IFN-I [28,32,33]. On the other side, when the RIG-I pathway is activated in response to viral
RNA detection, STING interacts with activated mitochondrial antiviral signaling protein
(MAVS), determining pTBK1-mediated IFN-I production [32,34].

In this review, we will analyze STING interaction with mitochondrial proteins involved
in the innate immune response, how mitochondrial DNA release can trigger innate immune
response through STING activation, the proteins involved in ubiquitin-mediated STING
regulation, and how viruses interact with this pathway to inhibit it. Finally, we will
summarize the efforts that have been made in the search for broad-spectrum antivirals
targeting STING.

2. Functional Role of STING

STING protein is the product of Tmem173 gene; it is a transmembrane protein iden-
tified in the first decade of the new century by different research groups simultaneously,
starting from a previously uncharacterized molecule supposed to be an inducer of the INF-I
response [32,35,36]. STING itself cannot be considered a PRR; in fact, its activation is an
event downstream of DNA detection in the cytosol by cGAS that determines the production
of 2′3′ cGAMP; hence, cGAS is the actual PRR in the cascade. Cytosolic DNA represents a
red flag for the cells. During DNA damage reparation, it commonly happens that short
ssDNA fragments are released in the cytosol; DNA repair and replication factors are re-
sponsible for pulling back these ssDNA fragments to the nucleus, where they are degraded
by endonucleases [37,38]. When this mechanism is altered, the ssDNA accumulation in
the cytoplasm induces cGAS activation, leading to the production of cyclic dinucleotides
(CDNs) [38]. Of note, only dsDNA with a minimum length of 36 nucleotides can effectively
induce cGAS, as short dsDNA fragments bind to cGAS in a manner not stable enough to
induce the formation of CDNs [37,38].

The cGAS-produced CDN in turn directly binds STING, leading to its dimerization
and phosphorylation (Figure 2). Once activated, STING determines TBK-1-mediated IRF3
phosphorylation; pIRF3 dimerizes; and the dimer translocates in the nucleus, establishing
the antiviral state [39].

Comparative analysis between wild-type cells expressing STING and STING-/- cells
demonstrated that knocking out of STING reduced IFN-β as well as pro-inflammatory cy-
tokines’ production, resulting in higher susceptibility to viral and bacterial
infections [40–42]. The same pathway was also found to be activated during infections
with L. Monocytogenes, an intracellular pathogen that expresses di-adenylate cyclase (DAC),
which produces the CDN 3′3′ cGAMP, detected by STING, inducing IFN-β production.
Interestingly, this enzyme was identified through bioinformatic analysis in bacteria and
archaea including Staphylococci, Streptococci, Mycobacteria, Chlamydia, and Mycoplasma spp.,
possibly suggesting that all of these pathogens could induce a STING-mediated immune
response [43].
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Figure 2. cGAS–STING pathway. The cGAS protein detects cytosolic DNA, leading to the produc-
tion of CDNs. Both cellular- and bacterial-derived CDNs bind STING, leading to the activation of 
TBK1 kinase activity on IRF3. Phospho-IRF3 dimer enters the nucleus, binding the IFN-I promoter, 
inducing IFN-I transcription. IFN-I is produced and secreted outside the cell. 
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tribute to the RIG-I-mediated innate immune response through direct interaction with 
RIG-I, but not MDA5, as STING is not able to interact with MDA5 [44]. Of note, as confir-
mation of the importance of STING in infection with RNA viruses, RNA viruses have 
evolved strategies to target the STING protein in order to overcome the innate immune 
response [32,45–47]. 

In addition, it was also demonstrated that long-term exposure to the genotoxin etopo-
side induces the activation of DNA damage inside the nucleus, leading to a non-canonical 
STING activation with neither cGAS activation nor cGAMP production. In this case, the 
proteins ATM (ataxia telangiectasia mutated) and PARP1 (poli-ADP-ribose polymerase 1) 
are responsible for p53 phosphorylation, which leads to the interaction with IFN-induci-
ble factor 16 (IFI16) in the nucleus, leading to the interaction with the cytosolic E3 ubiqui-
tin ligase tumor-necrosis-factor-receptor-associated factor 6 (TRAF6). This complex, as-
sembled straddling the nuclear membrane, interacts with STING located on the ER sur-
face, leading to its TRAF6-mediated K-63-linked poli-ubiquitination [48,49]. The non-ca-
nonically activated STING preferably activates NF-kB rather than IRF3, inducing a differ-
ent gene profile transcription with respect to the canonical STING activation [48]. 

  

Figure 2. cGAS–STING pathway. The cGAS protein detects cytosolic DNA, leading to the production
of CDNs. Both cellular- and bacterial-derived CDNs bind STING, leading to the activation of TBK1
kinase activity on IRF3. Phospho-IRF3 dimer enters the nucleus, binding the IFN-I promoter, inducing
IFN-I transcription. IFN-I is produced and secreted outside the cell.

The cGAS-mediated pathway is not the only possible STING activation pathway.
In fact, several studies reported that, when viral RNA in the cytosol is detected by
RIG-I or MDA5, depending on whether the RNA is short or long, respectively [4], STING
may contribute to the RIG-I-mediated innate immune response through direct interaction
with RIG-I, but not MDA5, as STING is not able to interact with MDA5 [44]. Of note, as
confirmation of the importance of STING in infection with RNA viruses, RNA viruses have
evolved strategies to target the STING protein in order to overcome the innate immune
response [32,45–47].

In addition, it was also demonstrated that long-term exposure to the genotoxin etopo-
side induces the activation of DNA damage inside the nucleus, leading to a non-canonical
STING activation with neither cGAS activation nor cGAMP production. In this case, the
proteins ATM (ataxia telangiectasia mutated) and PARP1 (poli-ADP-ribose polymerase 1)
are responsible for p53 phosphorylation, which leads to the interaction with IFN-inducible
factor 16 (IFI16) in the nucleus, leading to the interaction with the cytosolic E3 ubiquitin
ligase tumor-necrosis-factor-receptor-associated factor 6 (TRAF6). This complex, assembled
straddling the nuclear membrane, interacts with STING located on the ER surface, leading
to its TRAF6-mediated K-63-linked poli-ubiquitination [48,49]. The non-canonically acti-
vated STING preferably activates NF-kB rather than IRF3, inducing a different gene profile
transcription with respect to the canonical STING activation [48].

3. Structure of STING and Interaction with Ligands

STING is composed of 379 amino acids (aa) that can be divided into nine domains
(Figure 3A). Starting from the ammino-terminal portion, STING presents four transmem-
brane domains (TMD) responsible for the localization in the organelles’ membrane, endo-
plasmic reticulum, and mitochondrion. The main domain, comprehending aa 139–379, is
the cytosolic domain (CTD), located in the carboxyl-terminal region in which reside the
ligand-binding domain (LBD) and the highly conserved dimerization motif GXXXS re-
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quired for STING dimerization; the remaining domains are considered linker domains [50].
STING exerts its function through homodimerization by adopting the α+ β fold, involving
five-stranded sheets in the center and four helices in the periphery [50] (Figure 3B). The
dimerization motif localized in the transmembrane region identified as LBDα1 is essen-
tial for STING activity, as demonstrated through mutagenesis studies [51]. The resulting
homodimer is the functional element able to bind the signaling nucleotide 2′3′ cGAMP.
Its binding site is located in the interface between the two chains, where the Tyr167 in the
LBDα1 is responsible for the binding with 2′3′ cGAMP (Figure 3C).
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Figure 3. Human STING (hSTING) secondary structure and CDN binding site. (A). Schematic
representation of the apo hSTING secondary structure. (B). Open conformation of hSTING homod-
imer (PDB: 8GT6). (C). Prediction of 2′3′ cGAMP (red) interaction with hSTING Tyr 167 residues
(blue) obtained through molecular docking of hSTING (8gt6) with 2′3′ cGAMP extracted from the
deposited chicken STING structure (PDB: 5GRM), obtained with AutoDock 1 [52] and Discovery
Studio Visualizer [53].

The binding requires charge–charge interaction between the phosphates in the 2′3′

cGAMP and the protein residues and determines the conformational change from an open
to a closed active form [51,54–57]. Of note, bacterial CDN, 3′3′ cGAMP, is also detected
by STING; however, it can only form a weak interaction with STING in the binding site,
suggesting lower effectiveness in the activation of STING with respect to the interaction
with the 2′3′ cGAMP, indicating that STING is not the major detector of bacterial infection,
but is still involved in building the innate immune response against bacteria too [43,58,59].
STING interacts with TBK1 through its cytosolic domain, more specifically, with the LBD,
in a constitutive manner. The binding with 2′3 cGAMP induces STING multimerization,
leading to trans-autophosphorylation of TBK1 [60]. pTBK1 attracts interferon regulatory
factor 3 (IRF3), forming the STING–TBK1–IRF3 complex. Although the complex formation
dynamics are still unclear, the interaction leads to IRF3 dimerization and phosphorylation
mediated by pTBK1 [50]. Then, the active IRF3 dimer translocates in the nucleus, where it
binds the IFN-I promoter, leading to IFN-I production [36,61,62].
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4. STING Connection with Mitochondria

Mitochondria are cellular organelles with a significant role in cellular metabolism, as
they are the center of ATP production and serve as metabolic hubs. They are factories for
the biosynthesis of macromolecules as lipids, proteins, and nucleotides [63], and they also
play a pivotal role in redox homeostasis responding to cell’s stressors, both cellular and
environmental, as well as in programmed cell death, responding to pathogenic conditions
leading to instauration of a pro-apoptotic state or triggering the activation of the innate
immune response [63–65].

One of the most important mitochondrial proteins involved in the innate immune
response is MAVS, a transmembrane protein located in the outer membrane (OM) of the
mitochondria. MAVS is an effector of the RIG-I pathway, involved when RNA viruses are
detected. MAVS aggregates and interacts with STING to induce TBK1 phosphorylation
and then IFN-I transcription [63] (Figure 4A). MAVS is also modulated by bioproducts of
the metabolism. In fact, it is associated in the OM with the glycolytic enzyme hexokinase 2
(HK2), which prevents MAVS multimerization in normal conditions when RLRs are not
activated [63,66].
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Figure 4. Inhibition of STING interaction with MAVS. (A) MAVS interaction with STING is required
for the activation of RIG-I-mediated IFN-I transcription. In physiologic conditions, MAVS aggregate
in the mitochondrial surface and bind STING, leading to its aggregation and activation of IFN-I
transcription. (B) Viral infection, as well as tumorigenesis, can lead to the production of lactate as a
bioproduct of aerobic glycolysis; lactate binds MAVS that cannot aggregate and, as a consequence, the
MAVS–STING interaction is impeded. (C) NLRX1 in viral-infected cells inhibits the MAVS–STING
interaction through direct binding with SITNG, leading to its proteasomal degradation.

Viruses have developed strategies to manipulate mitochondria metabolism to inhibit
IFN production. An interesting example is the small molecule lactate [63], a bioproduct
of the lactate dehydrogenase complex (LDH) that generates it, starting from acetyl-CoA
in absence of oxygen. This production can actually occur even in presence of oxygen
because of the aerobic glycolysis, a condition called the Warburg effect, which is frequently
promoted during viral infections and in cancer cells [62,67–69]. Lactate then binds MAVS,
preventing its aggregation and the interaction with the downstream effectors of the cascade
involved in IFN-I production, TBK1 and STING [63] (Figure 4B).
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Another important mitochondrial protein that interacts with the STING signaling
pathway is the nucleotide binding oligomerization domain (NOD)-like receptor 1 (NLRX1).
It belongs to the NLR family; is ubiquitously expressed; possesses the NACHT domain,
responsible for hetero-dimerization, and the leucine-rich repeats domain (LRR) in the C-
terminus; and is the only NLR localized on the OM owing to the presence of a mitochondrial
targeting sequence in the N-terminus [4,70]. This localization was reported to be important
for the interaction with proteins involved in innate immunity, such as the mitochondrial
MAVS and STING, as well as cytoplasmic proteins such as TRAF6 and IKK complex [4,71].

The interaction of NLRX1 with the effectors of the innate immune response occurring
through the NACHT domain promotes their ubiquitination and, consequently, proteaso-
mal degradation, resulting in the inhibition of NF-kB and IRF signaling following viral
infection [71] (Figure 4C).

In fact, in cells infected with Sendai virus, influenza A virus, and HCV, the RIG-
I/MAVS signaling was negatively affected by NLRX1 [70,71]. This inhibition is related to
glucose levels; high glucose levels activate NLRX1, which binds poly(rC) binding protein
2 (PCBP2), which drives MAVS, unable to aggregate owing to the presence of a lactate
covalent bond, as previously described, to ubiquitination and degradation [70,71]. A very
similar mechanism was reported for STING in cells infected with human immunodeficiency
virus type-1 (HIV-1), in which reverse-transcribed viral DNA induces IFN-I transcription
through cGAS-STING; in human papilloma virus 16 (HPV16)-infected cells, the viral
protein E7 promotes NLRX1-mediated STING degradation [72,73].

5. Triggering of STING through mtDNA Release

The mitochondrial genetic system, constituted of a double-stranded circular DNA, was
identified when studying the various encoded proteins mostly involved in the oxidative
phosphorylation [74]. It is organized in highly controlled and regulated protein-rich
structures and it is present in at least one copy per mitochondrion, thus resulting in
hundreds of copies per cell. The loss of this highly controlled structure is called “mtDNA
stress” and leads to the release of mtDNA in the cytosol [75]. The mtDNA in the cytosol is
detected as foreign DNA, triggering cGAS-STING-IRF3-dependent IFN-I transcription and,
consequently, ISGs’ transcription [75] (Figure 5).
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Viruses interact with mitochondria and mtDNA in different ways. Herpes viruses
have been reported to induce mtDNA stress and, consequently, its release in the cytosol,
activating the STING pathway. In particular, the alphaherpesvirus protein UL12.5 localizes
in the mitochondria, where it contributes to the mtDNA depletion often coupled with
its release. Indeed, the absence of this viral protein was found to mount a less potent
TBK1 STING-dependent phosphorylation with respect to the wild type, confirming an
mtDNA-dependent innate immune response [75]. Dengue virus (DENV) infection induces
RIG-I- and MDA5-mediated IFN response. It also determines cellular damage causing
mtDNA release and inducing IFN-I transcription in a cGAS-STING-dependent way. As a
countermeasure, DENV produces the NS2B protease, which cleaves cGAS, neutralizing its
activity [76].

Mitochondria also play a key role in nucleotide biosynthesis as a central hub for the
dNTP salvage synthesis pathway [63]. Briefly, the multifunctional protein CAD, compre-
hending the carbamoyl-phosphate synthetase (CPSase), the aspartate transcarbamylase
(ATCase), and the dihydroorotase (DHOase); the dihydroorotate dehydrogenase (DHODH)
located in the inner mitochondrial membrane; and uridine monophosphate synthetase
(UMPS) are responsible for de-novo pyrimidine biosynthesis, starting from glutamine,
aspartate, and bicarbonate; meanwhile, the salvage pathway processes uridine and cy-
tidine in order to produce intermediates embedded in the de novo nucleotide synthesis
cascade [63,77]. Some enzymes involved in pyrimidine biosynthesis such as DHODH and
CAD were found to be targeted by antiviral compounds, leading to pyrimidine depriva-
tion, impairing viral genome production and, as a consequence, viral replication [77–84].
Moreover, interestingly, pyrimidine deprivation is related to mtDNA release and, as a
consequence, to the activation of a cGAS-STING-mediated IFN response [78,85]. However,
it is still unclear whether this mechanism takes place in infected cells as an antiviral defense,
inducing spontaneous mtDNA release to trigger innate immunity.

6. Role of Ubiquitin in the STING-Mediated Innate Immune Response

The ubiquitin proteasome system comprehends ubiquitin (Ub), a highly conserved
small molecule of 76 amino acids and 3 enzymes: the E1 Ub-activating enzyme, the E2 Ub-
conjugating enzyme, and the E3 ligase [86,87]. The best-known function of Ub conjugation
is to target proteins to modulate their half-life, driving target proteins to proteasomal
degradation; however, a second role is the regulation of protein activity [86–88]. The Ub
chain is bound to the target protein starting from its activation: E1 adenylates the Ub C-
terminal group; then E2 transfers the activated Ub to the active site; and finally E3 catalyzes
the formation of a covalent bond between a lysine, belonging to the target protein, and the
Ub C-terminal [86].

Ubiquitination can occur as mono- or polyubiquitination in selected Ub lysine residues:
K6, K11, K27, K29, K33, K48, and K63 [89]. Only two of them, K29 and K48, are related
to proteasomal degradation; all of the others modulate protein activity during inflamma-
tion, innate immune response, endocytic trafficking, transcriptional regulation, and DNA
repair [90–92]. These Ub chains can be removed from target cells through the activity of
enzymes called deubiquitinases (DUB or USP) [93]. Ubiquitination and deubiquitination
are tightly regulated because the absence of regulation in processes as important as the
innate immune response could lead to pathogenic conditions like immune diseases [94].

STING activity is controlled and regulated through Ub conjugation and deconjugation;
in fact, binding to CDNs is sufficient to induce the conformational changes required for
STING multimerization and IFN-I induction; however, ubiquitination can enhance its
activity or regulate the protein’s half-life [95].

Enhancing ubiquitination requires the activity of two of the main E3 ligases, tripartite
motif (TRIM) protein 56 and 32, which have been found to link K-63 ubiquitin to STING.
TRIM56 ubiquitinates K150 residue, while TRIM32 ubiquitinates multiple lysine residues
(20/150/224/236) (Figure 6A) [96]. The E3 ligase ring finger protein 26 (RNF26) medi-
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ates K11 ubiquitination, protecting STING from K48 Ub conjugation and preventing its
degradation [97] (Figure 6A).
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Figure 6. STING ubiquitination. (A) K6–K11–K27–K33–K63 ubiquitination is required to induce
STING activation and IFN-I transcription; viral proteins as well as cellular proteins inhibit the IFN
response by deubiquitinating or inducing deubiquitination. (B) K29–K48 ubiquitination is the signal
for proteasomal degradation; in viral-infected cells, this ubiquitination is promoted and the cellular
proteins HSP27, RNF5, and TRIM29 ubiquitinate STING in order to induce proteasomal degradation;
K29–K48 deubiquitination is promoted in order to establish the antiviral state with the activity
of USPs.

The proteasomal degradation, on the other hand, is induced through K-29 and
K-48 ubiquitination; the RNF5, TRIM29, and the heat shock protein 27 (HSP27) medi-
ate K-48/K-29 UB conjugation, leading to STING degradation [98–100] (Figure 6B). Cellular
USPs modulate the STING ubiquitination by removing UB chains: USP18, USP20, and
USP44 target STING, promoting K-48 deubiquitination and preventing STING degrada-
tion; meanwhile, USP49 was found to play a pivotal role in negatively regulating cellular
antiviral responses via deconjugating K63-linked ubiquitination of STING [96,101–103]
(Figure 6B).

Small Ub-like modifier conjugation (SUMOylation) is comparable to ubiquitination as
it modulates protein activity, function, stability, subcellular localization, and the interaction
with other proteins [104]. Four different SUMOs are known: SUMO1-2-3-4; SUMO 2 and
3 are isoforms, SUMO1 shares 50% homology with SUMO2/3, while SUMO4 is the least
studied. The conjugation mechanism for Ub requires the maturation of SUMO, E1-mediated
SUMO activation, E2-mediated conjugation, and E3-mediated ligation [104]. The TRIM38
is a E3 ligase found to ligate SUMO to both cGAS and STING in uninfected cells and in the
early phases of infection, regulating their activity. However, both cGAS and STING were
de-SUMOylated by sentrin specific peptidase 2 (Senp2), leading to their degradation [105].

Viruses, on their hand, have evolved proteases and mechanisms to mediate either
Ub conjugation or deubiquitination in order to modulate intrinsic cell processes to their
advantage. HBV possesses two proteins that effectively block cGAS and STING, the
viral polymerase deubiqutininates K-63 STING and downregulates dsDNA sensing, while
the HBx protein downregulates the accumulation of cGAS expression by promoting its
ubiquitination and autophagy [106,107]. In herpes simplex virus 1 (HSV-1)-infected cells,
cellular USP49 as well as HSV-1 protein 1-2 (VP1-2) have deubiquitinatig activity against
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STING targeting K-63 linked Ub inhibiting its activity [108]. In cells infected with HSV-1,
the cellular protein RNF5 plays a major role in inhibiting the STING-mediated innate
immune response by K-48 ubiquitination [96]. In cells infected with pseudorabies virus
(PRV), a herpesvirus causing diseases in domestic and wild animals, HSP27 promotes PRV
proliferation by targeting the cGAS-STING pathway, inhibiting IFN-I transcription [100]. In
Epstein–Barr-virus-infected cells, TRIM29 ubiquitinates STING, inducing its proteasomal
degradation to inhibit the innate immune response [99]. All coronaviruses, (+) ssRNA
viruses, encode for at least one papain-like protease (PLP) that acts as DUB removing Ub
chains from target proteins; moreover, the intrinsic characteristics of these proteases make
them able to cleave interferon-stimulated gene 15 (ISG15), an ISG with similar activity to
Ub [34,109,110].

7. Direct Viral STING Inhibition

STING is also directly targeted by viral proteins, determining its degradation or
inactivation. HSV-1 encodes three different proteins that inhibit STING signaling: ICP27
interacts with the activated STING–pTBK1 complex, preventing phosphorylation and
activation of the transcription factor IRF3 [111]; UL46, a tegument protein, binds both
STING and TBK1 with different domains, preventing STING and TBK1 interaction [112];
and γ134.5 prevents STING phosphorylation by direct interaction [113]. STING plays a
major role in Kaposi sarcoma virus (KSHV) detection during primary infection and in
the reactivation from latency with the viral protein vIRF3 shown to interact with STING,
preventing its binding to TBK1 [114]. The HCMV tegument protein, UL82, was found
to inhibit STING trafficking towards the Golgi, blocking IFN-I activation [115]. More
recently, it was described that the viral protein UL42 inhibits the cGAS-STING pathway,
directly interacting with cGAS and STING [116]. Moreover, HCMV possess the IE86 protein
that promotes RNF5 activity, determining STING proteasomal degradation [117]. In HCV
infection, the viral NS4B protein disrupts STING interaction with TBK1 and MAVS to
prevent the activation of the innate immune response [45,118,118]. The same mechanism
was reported for DENV NS4B protein. Moreover, the DENV protease NS2B3 has been
reported to cleave both cGAS and STING to block IFN-I production [46,47,76].

8. STING Agonists as Broad-Spectrum Antivirals

The involvement of STING in activating INF production as well as all of the efforts
that viruses put into shutting down the activity of STING clearly indicate that STING is a
potential target for small molecules acting as STING agonists that may be broad-spectrum
antiviral agents. Indeed, computational studies have confirmed that STING is a druggable
target, showing the possibility of accommodating small molecules acting as STING agonists.
A few studies have already been published on this topic.

The second messenger 2′3′ cGAMP (Figure 7) has been studied as a STING natural
ligand in the treatment of viral infection because of its potential antiviral activity. In both
in vitro cell-based infection and in mice infected with Herpes simplex virus 2 (HSV-2),
local and systemic delivery of 2′3′ cGAMP induced strong IFN-I and ISG production. Of
note, 2′3′ cGAMP showed stronger antiviral effect with respect to TLR agonists [119–121].
However, despite their strong IFN induction, CDNs are not suitable for drug therapy
because of their poor membrane permeability and metabolic instability [29,122].

DMXAA (Figure 7) is a well-known antitumor agent used to induce the disruption of
the tumor vasculature and the release of chemokines by the activation of tumor-associated
macrophages [123]. Although, once moved to human clinical trials, it failed to show
any effect against human tumors. The compound was also demonstrated to be a potent
antiviral in murine and mouse models, but showed no effect in human cells; further studies
demonstrated that DMXAA selectively binds murine and mouse STING, but not human
STING, explaining the inefficacy of the compound in human models [124]. This selectivity
resides in the difference among human and mouse STING CTDs; in fact, although mSTING
and hSTING binding pockets are composed of identical amino acids, they only share a



Int. J. Mol. Sci. 2023, 24, 7448 11 of 18

76% homology sequence in the CTD, which confers different conformations to the lid
domains [57]. Indeed, Gao et al. demonstrated through mutagenesis studies that hSTING
Ser162, Glu232, and Gly266 residues are responsible for DMXAA mSTING selectivity over
hSTING [125].
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Alpha-Mangostin (Figure 7) is a xantone with antimicrobial properties that was re-
ported to induce IFN-I production in a STING-dependent manner, binding to the STING
CTD. Alpha-Mangostin has been shown to have antiviral properties and activity against
DENV and HBV replication in cell-based assays, while in vivo studies have not yet been
performed [126–130].

The dimeric amidobenzimidazoles (diABZIs) are non-CDN STING agonists identified
through in silico studies, which showed the ability to induce IFN-β, α-chemokine CXCL1
and IL-6 transcription, and anti-tumor activity [131]. Two of them have been tested for
their ability to inhibit viral replication: di-ABZI-3 (Figure 7) was tested in primary human
bronchial epithelial cells infected with parainfluenza virus 3 and rhinovirus, subverting
viral infection in a STING-dependent manner [132]. More recently, it was active in inhibiting
the replication of HCoV-OC43 and SARS-CoV-2 [133–135]. di-ABZI-4, which differs from
di-ABZI-3 because of its more favorable solubility profile, was also tested in vitro and in an
animal model for its ability to inhibit SARS-CoV-2 replication [136].

The result of a high-throughput in vitro screen identified 4-(2-chloro-6-fluorobenzyl)-
N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, also called
G10 (Figure 7), which was found to active in inhibiting the alphaviruses Chikungunya
virus (CHIKV), Venezuelan equine encephalitis virus (VEEV), and Sindibis virus (SINV) in
human cells [137].

9. Conclusions

During the last few decades, a new protein named STING, involved in the innate
immune response, was discovered and characterized [32,35,44]. STING plays a central role
in the innate immune response, mediating the IFN production in response to cytosolic
DNA (viral, tumor-derived, and mitochondrial DNA) and acting as a linker among the
different responses to RNA viruses and bacteria [28,34,48,138].
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IFNs represent a very strong wake-up call for the organism, meaning that the danger
occurring in the cells evokes the activation of defense mechanisms. It is well known that
dysregulation in the production of IFNs and their downstream activity can lead to the devel-
opment of autoimmune diseases. Hence, pathways leading to the production of IFNs must
be tightly regulated [14]. STING is not exempted in this fine-tuned regulation. In fact, its
activity is modulated by cellular proteins through Ub conjugation and deconjugation in order
to control its activation and proteasomal degradation, as well as trafficking between ER and
mitochondria, where it interacts with several mitochondrial proteins [88,90,96,98,102]. As the
mitochondria is an important hub for cellular metabolism, the interaction with mitochondrial
proteins, influenced by metabolism alterations, suggests that STING regulation is also related to
metabolism perturbation [66,69,71,72].

Viruses are well known for their ability to mutate to adapt to and overcome cel-
lular defense weapons. Viral proteins target cellular proteins to cleave them entirely
or partially by removing post-translational modification required to modulate the pro-
tein’s activity, such as, for example, through deubiquitination [18–20,100,102,106,139–143].
STING is targeted by both DNA and RNA viruses as it is recognized as a driver for the
instauration of the antiviral response; moreover, modulation of cell metabolism alters the
ability of STING to interact with upstream and downstream effectors involved in IFNs’
production pathways.

The request for novel antivirals is continuously increasing, especially owing to the
rapid onset of novel viral strains leading to the identification of targets among the cellular
proteins involved in cellular defense for the development of broad-spectrum antivirals [21,144].
STING’s central role in innate immunity and the viral-mediated inhibition attracted attention
to this protein as a potential cellular target for the development of broad-spectrum antivirals.
A few molecules identified by computational approaches have been studied in vitro, showing
the ability to induce a strong IFN response and, in some cases, to inhibit viral replication
in a STING-dependent manner [29,31,31,122,124,127–129,131,145–147]. Notwithstanding the
promising results obtained in vitro, none of the identified compounds active on human STING
have been tested in animal models.

Targeting STING remains a suitable strategy to inhibit viral replication by small
molecules; further studies are required to identify novel and more effective STING agonists
as broad-spectrum antiviral agents.
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