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CNN disruption predictor at JET: Early versus late data fusion approach 
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A B S T R A C T   

This work focuses on the development of a data driven model, based on Convolutional Neural Networks (CNNs), for the real-time detection of disruptive events at 
JET. The predictor exploits the ability of CNNs in learning relevant spatiotemporal information straight from 1D plasma profiles, avoiding hand-engineered feature 
extraction procedures. In this paper, the radiation profiles from both the bolometer horizontal and vertical cameras have been considered amongst the predictor 
inputs, with the aim of discriminating between the core radiation due to impurity accumulations and the outboard radiation phenomena. Moreover, an innovative 
predictor architecture is proposed, where two separate CNNs are trained to focus on events with different timescales, that is, the destabilization of radiation, electron 
density and temperature profiles, and the mode-locking and current profile variations. The outputs of the two CNNs are combined with a logic OR function to provide 
the disruption alarm trigger. The advantages of this data fusion approach impact on the predictor performance, with a very limited number of false alarms (only 1 in 
the considered test set), and on the model output interpretability as the two different branches are triggered by different types of events.   

1. Introduction 

Plasma disruptions pose considerable risks to the operation of high- 
power nuclear fusion devices. In fact, very stringent requirements apply 
to next-generation tokamaks in terms of the allowable number of un
mitigated disruptions. In addition, the scientific community is currently 
actively working on the task of disruption avoidance, aiming to deter
mine the mechanism that causes sudden discharge termination. The goal 
is to enable a recovery action or safe termination of the experiment 
without Massive Gas Injection (MGI). Data-driven methods are very 
powerful in fault prediction, and many approaches, such as Fully Con
nected Neural Networks (FC), Support Vector Machines (SVM), Self- 
Organizing Maps (SOM) and Generative Topographic Mapping (GTM), 
Classification and Regression Trees (CART) and Random Forests (RF), 
have been employed in disruption prediction models at JET [1–9], 
ASDEX Upgrade [10–12], EAST [13], J-TEXT [14], DIII-D [15] and 
Alcator C-Mod [13]. Moreover, research aims to link the physical phe
nomena involved in disruptive processes to the inputs of the data-driven 
prediction models, especially in case of predictive models designed to 
enable disruption avoidance [6,16-19]. Recently, deep Convolutional 
Neural Networks (CNNs) have been adopted in several applications and 
became the state of the art for image processing and computer vision. In 
fact, they are able to automatically extract features from images, over
coming the need for hand-engineered feature extraction [20–22]. In [8] 
the authors proposed a disruption predictor based on a Convolutional 

Neural Network (CNN) for JET tokamak. The CNN processes an image 
obtained from a set of 1D profile data and 0D signals and returns two 
likelihoods: the disruptive one (in red in Fig. 1a) and the non-disruptive 
one (in green in the same Fig. 1a). The predictor was trained and tested 
on data spanning several years, showing overall good performances. 
However, a study of the performances evolution over the different 
campaigns revealed the predictor ageing, with an accuracy degradation, 
mainly in the false alarm number (Table 3 in [8]). Indeed, during the 
2020 JET high power experiments, researchers observed the appearance 
of localized radiation in the Low Field Side (LFS) [23]. Since the pre
viously developed predictor was only analysing the information from 
the bolometer horizontal camera, the CNN could not correctly locate the 
radiation source in these cases, hence triggering a false alarm. Fig. 1 
reports a false alarm triggered by the predictor in [8] on pulse #96893. 
As can be noted, at around 10.5 s, despite a non-disruptive behaviour 
shown by the HRTS profiles and the 0D signals, high radiation seen from 
the central lines of sight of the bolometer horizontal camera (Fig. 1d) 
triggers an alarm, highlighted with a black dashed line in Figs. 1a-f. This 
behaviour, observed in 4 other pulses, motivated the development of a 
new version of the predictor, also including the information from the 
vertical bolometer camera amongst the set of images. 

This paper is structured as follows: Section 2 reports the Database 
used for this study; Section 3 explains the predictor architecture; Section 
4 reports the training of the predictor model; Section 5 details the re
sults. Finally, in Section 6 the conclusions of the study are discussed. 
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2. Database 

In this work, an upgraded version of the disruption predictor based 
on the CNN architecture presented in [8] is proposed. For sake of 
comparison, the database used to train and test the predictor is the same 
as in [8]. Precisely, the model has been trained using the same 85 dis
rupted and 70 regularly terminated discharges used in [7,8], selected 
from the 2011–2013 JET campaigns. Then, the model was tested on 108 
disruptive and 149 regularly terminated subsequent pulses from the 
2011–2013 (42 disrupted /45 non-disrupted), 2016 (29/41), and 
2019–2020 (37/63) JET campaigns. The pulses are analysed in the 
flat-top phase. For each selected discharge, the flat-top starting time is 
the first time instant where the plasma is in X-point configuration. The 
flat-top ending time tend, is the last available time instant in the flat-top 
for the non-disrupted discharges, while for the disrupted ones, tend is the 
minimum time between the valve activation time for mitigated dis
charges, and the disruption time (tD), for the unmitigated ones. The 
predictor architecture has been designed to optimize the performance 
according to the new set of inputs. The 1D plasma profile data, from the 
High-resolution Thomson Scattering and the bolometer horizontal and 
vertical cameras were sorted to preserve the spatial ordering of the 
channels, resampled to 2 ms to maintain a common time basis, and 
pre-processed to remove outliers and unreliable channels. For the HRTS 
data, the pre-processing consists in the space interpolation of the 
channels having a large estimated error [24]. For the bolometer cam
eras, values higher than 1MW/m2 were saturated, as well as negative 
ones which were saturated to 0 [8]. Afterwards, the input images to be 
fed to the CNN were extracted using a 200 ms sliding window. Then by 
using the maximum and the minimum values from each diagnostic in the 
training set, the four different images are normalized and vertically 
stacked, as shown in Fig. 2. 

3. Predictor architecture 

In general, the architecture of a CNN contains several layers of 
blocks, connected in cascade, which filter an input image for feature 

extraction purposes [20]. Each filtering layer is interconnected with the 
following one by a nonlinear block (usually a rectified linear unit). 
Finally, a multi-layer perceptron combines the extracted features to 
produce the output of the CNN. A dropout layer may be included to 
improve the generalization of the model. Fig. 3 shows the architecture of 
the predictor proposed in this work. It consists of two branches, each one 
being a separate CNN. The top branch, which processes the images of the 
1D profiles, has two convolutional units (CU1, CU2) followed by a max 
pooling layer (Pmax) and an average pooling layer (Pavg) respectively. 
The CU1 and Pmax blocks, filter out vertically (spatial dimension) the 
input image by reducing its size from 154 × 101 to 18 × 101. The 
other blocks (CU2, Pavg) filter out horizontally (time dimension) the 
resulting image by reducing the image size to 18 × 20. Each con
volutional unit consists of three layers: a convolutional layer (Ck), a 
batch normalization layer (Nk) and a rectified linear unit (ReLU) acti
vation layer (Ak). The first convolutional layer has a single filter 
(1-channel kernel) of size 5 × 1, while the second one has one of size 
1 × 11. The output of the 2nd convolutional unit is then a 18 × 20 
image. The lower branch processes the stacked signals of the internal 
inductance li and the normalized Locked Mode MLnorm signals. It consists 
of a separate Convolutional Unit (CU3) with 4 filters (4-channel kernel) 
of size 1 × 5 with dilation 1 × 5 and stride 1 × 1, which process the 
0D dimensional data along the horizontal direction. The block is fol
lowed by a max pooling layer with size and stride 1 × 5, which also 
down samples the features along the horizontal direction. The extracted 
features have a size of 2 × 16 × 4. On both branches, the features are 
flattened and fed into a Fully Connected (FC) block, which combines 
them before a SoftMax layer (S). Before the two fully connected layers, a 
dropout layer with dropout probability of 20% reduces the overfitting 
on the training set and improves the model generalization. 

The SoftMax layer produces the likelihood of the input segment to 
belong to a disrupted discharge. As an example, Fig. 4a shows the 
SoftMax outputs for the JET disrupted pulse #96998, where the blue 
line refers to the disruptive likelihood from the top branch and the 
magenta line that one from the bottom branch. Finally, for each branch, 
a final classification layer (CO) simply thresholds the disruptive 

Fig. 1. False alarm triggered by the predictor in [8] on the regularly terminated discharge #96893. (a) CNN likelihood curves, where the green line is the regularly 
termination likelihood and the red line is the disruption likelihood; (b) internal inductance in green and mode lock normalized by the plasma current in blue; (c) 
radiated power from the bolometer vertical camera; (d) radiated power from the bolometer horizontal camera; (e) electron temperature from the HRTS; (f) electron 
density from the HRTS. The dashed black line indicates the CNN alarm time. 
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likelihood to perform the image classification. For each branch, a 
threshold on the likelihood is optimized by minimising the errors of the 
entire predictor on the training set, as detailed in Section 4. Fig. 4b 
shows the branch binary outputs, which are obtained by setting to 1 the 
membership values greater than or equal to their own optimized 

threshold, and by setting to 0 the remaining ones. A disruptive behav
iour is detected by a branch when its binary output equals 1 (blue curve 
for top branch and magenta curve for the bottom branch in Fig. 4b). The 
logic OR function produces the final disruption trigger. 

4. Predictor training 

Since the CNN is employed in a supervised learning framework, it is 
necessary to explicitly label the time windows (or time slices) in the 
training dataset. In this work, the non-disrupted time slices are selected 
from the non-disrupted discharges, while the disrupted ones are ob
tained by identifying specific time windows within the disrupted dis
charges. Since the two CNNs were trained independently from each 
other, two different criteria have been adopted for defining the disrup
tive phase. The reason for adopting a different definition is the training 
of two specialized CNN branches, where each of them is focusing on 
events with different timings. In particular, the destabilization of the 
profiles at JET is usually due to the process of impurity accumulation or 
to the edge cooling [25], revealable by the plasma radiated power and 
density profiles, and it is exhibited at longer timescales than the insur
gence of the locked mode. Hence, the two branches aim to increase the 
performance of the entire model exploiting the different information 
carried out by the profiles and the 0D signals. For the 1D profile images, 
the onset of disrupted phase is defined by the automatically identified 
pre-disruptive times tpre− disr as in [7,8], whereas, for the 0D signal im
ages, the onset of disrupted phase is defined by the mode locking time 
(tML). To this purpose, a threshold has been optimized, resulting in 2⋅10-4 

mT/MA, on the Locked Mode signal normalized by the plasma current. 
The time interval [tML, min(tML+0.3 s, tend)] has been labelled as 
disruptive phase. 

Due to the unbalance between the number of non-disrupted and 
disrupted samples, caused by the different duration of the two pre- 
disrupted phases, different subsampling strategies for the 200 ms 
sliding window have been adopted for the training. For the CNN top 
branch, one image every 24 ms has been sampled from the disrupted 
discharges in the timespan after tpre− disr, whereas one image every 150 
ms has been extracted from the non-disrupted discharges. This choice is 
motivated by the low resolution of the HRTS, which has a 50 ms sam
pling period. Instead, for the 0D signals every segment of pre-disrupted 
phase (i.e., one every 2 ms) is considered for the training, whereas one 

Fig. 2. Sketch of the pre-processing steps applied to pulse #96998 to generate the input images for the predictor left) Pre-processed data are converted into images; 
Right) Input data for the CNN model, obtained by normalizing the data with the training set ranges and by vertically stacking the different diagnostics. The black 
solid line indicates the disruption alarm triggered by the proposed predictor whereas the dashed magenta line indicates the tpre− disr. 

Fig. 3. CNN architecture, where: I is the image input; CUk is the kth con
volutional unit, composed by the cascade of a convolutional layer (Ck), a batch- 
normalization layer (Nk) and a nonlinear activation layer with ReLU functions 
(Ak); Pmax and Pavg are the max-pooling and average-pooling layers, respec
tively; D is a dropout layer; FC is a fully-connected layer; S and CO are the 
SoftMax and classification output layers, respectively. Finally, an OR logic 
block activates the predictor whether one of the two branches output is 1. 

Fig. 4. Disrupted pulse #96998 a) Disruptive membership functions for each 
predictor branch, where the blue line is the top branch one, and the magenta 
line is the bottom branch membership; b) Logic output for each branch (blue for 
the top branch, magenta for the bottom one) for the same pulse. The dashed 
magenta line indicates the tpre-disr, the solid black line indicates the alarm time. 
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segment every 200 ms is sampled from the regularly terminated dis
charges. In the test instead, the sliding window has a stride of 2 ms, so 
that every sample of all the test discharges (regularly terminated and 
disrupted) has been classified. The alarm thresholds of the CO layers 
have been chosen by optimizing the full predictor performances on the 
training data. In the disruption prediction literature, the following 
metrics are generally considered when comparing different predictors:  

• Successful predictions (SP): pulses that are correctly predicted 
(hence, an alarm is triggered in disruptive pulses and no alarm is 
raised in non-disruptive discharges).  

• Missed alarms (MAs): pulses which disrupt where the predictor does 
not trigger an alarm.  

• False alarms (FAs): non-disruptive discharges where the model 
triggers an alarm. 

Considering these metrics, the single branch thresholds have been 
selected by minimizing the sum of the full predictor MAs and FAs, and 
then the distance between the alarm times and the tpre− disr on the training 
discharges. In fact, firstly a scan of the different thresholds identifies the 
combinations where the sum of the FAs and MAs is minimized. In this 
subset, the thresholds which minimize the mean distance between alarm 
times and tpre− disr are selected. The optimized thresholds result in 0.99 
for the top branch and 0.925 for the bottom one. 

5. Results and discussion 

The results of the predictor are reported and compared with [8] in 
Table 1. The new model performs better both in the training and in the 
test sets. In particular, the predictor allows to greatly reduce the number 
of false alarms in the test set (from 14 to 1). 

Another important metric for evaluating disruption predictors 
designed for avoidance and/or mitigation purposes is the warning time 
distribution, used to statistically evaluate the available time from the 
predictor alarm before the tend. An early warning time could allow the 
adoption of automatic procedures to try to recover the disruptive plasma 
state or to safely terminate the experiment, while with a short warning 
time the disruption is generally mitigated. However, to allow the 
adoption of disruption avoidance strategies, the model should also 
provide information on the type of instability which is destabilizing the 
discharge. Fig. 5 reports the warning times of the top branch (blue line), 
bottom branch (green line), and full predictor (black line) in the test 
dataset. If both branches are triggered in the same discharge, only the 
first alarm is plotted. In fact, by reading in correspondence to the time to 
disruption equal to 10− 3, in Fig. 5, it is possible to notice that around 
54.62% and 43.51% of the disruptions are detected by the top and 
bottom branches, respectively. Note that, the top branch CNN, which 
processes the 1D profile data, can provide larger warning times than the 
bottom one, which instead detects the mode-locking phase. The sepa
ration of the two different mechanisms makes the predictor alarm more 
interpretable, in view of the development of avoidance schemes. Finally, 
the vertical red dashed line highlights that disruptions should be iden
tified at least 10 ms in advance to adopt mitigation actions at JET. De
tections with a warning time shorter than 10 ms are late or tardy alarms. 
The predictor can detect different disruptive patterns. For instance, in 
pulse #96998, as visible from the Fig. 2 and Fig. 4, the top branch de
tects a change of the plasma profiles, and it allows the predictor to 

trigger an alarm at 14.25 s in correspondence of the tpre− disr, identified by 
a dashed yellow line. 

In fact, the electron temperature (Te) flattens and the electron density 
(ne) peaks. This phenomenon is synchronous with strong radiation from 
the central channels of the horizontal and vertical bolometer. On the 
other hand, the membership function of the bottom branch in Fig. 4 
(magenta line) rises later, at around 15.7 s, in correspondence to the 
Locked mode onset. Hence, the top-branch is trained to detect de
stabilizations in the 1D profiles distributions, while the bottom branch 
on detecting the onset of a locked-mode and a late disruption pattern. 
Fig. 6, instead, shows the disruption detection in pulse #92426. The 
membership function of bottom branch (blue line, Fig. 6a) triggers the 
alarm at around 13.80 s because of the li and MLnorm growth (Fig. 6b), 
while the membership function of the top branch slowly grows following 
the late change of ne and Te profiles. 

Fig. 7 shows the regularly terminated pulse #96,893, which was 
detected as disruptive in [8]. In this case, the predictor does not trigger 
an alarm, because the high radiation pattern at chords #13–16 of the 
horizontal bolometer is not coincident with a high radiation from the 
central lines of sight of the vertical bolometer camera. 

6. Conclusions 

In this work, a disruption predictor based on CNNs has been devel
oped using data from 2011–2013 campaigns at JET. The test of the 
model included more recent JET discharges and high power experiments 
up to the 2020 experimental campaigns. First, the vertical bolometer 
camera is added to the set of 1D plasma profile features considered in 
[8]. Then, two different CNN classifiers, whose thresholds are optimized 
to achieve the best full predictor performance, are trained to detect 
different destabilizing events. The automatic detection of the 
pre-disruptive phase of disruptions is used to train the top branch CNN, 
while an automatically identified locked mode time is employed for 
training the bottom branch of the model. The model can correctly 
identify the local perturbations of the 1D plasma profiles, leading to 
about, 98.87% of SPs, 0.67% of FAs and 1.87% of MA, considering a test 
set with 108 disruptive and 149 non-disruptive discharges. Moreover, 
the proposed approach allows to associate the predictor alarm with the 
destabilizing mechanism of the discharge. The automatic classification 
of the different profile instabilities, for instance distinguishing between 
temperature hollowing and edge cooling [25], would be another step 
forward towards the implementation of machine learning aided avoid
ance schemes. 
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Table 1 
Predictor performance.  

Dataset SP MA FA 

Train 98.71% 0% 2.85% 
Train [8] 98.00% 0% 4.28% 
Test 98.83% 1.87% 0.67% 
Test [8] 93% 3.7% 9.4%  

Fig. 5. CNN model warning time distributions in the test set for the top branch 
(blue line), the bottom one (green line) and full predictor (black line). Only the 
first alarm is reported. The vertical red dashed line allows to identify tar
dive detections. 
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Fig. 6. JET disrupted discharge #92462. (a) CNN membership functions, where the blue line is the top branch membership function, and the magenta line is the 
bottom branch membership function; (b) internal inductance, in green, and mode lock normalized by the plasma current, in blue; c) radiated power from the 
bolometer vertical camera; (d) radiated power from the bolometer horizontal camera; (e) electron temperature from the HRTS; (f) electron density from the HRTS. 
The dashed magenta line indicates the tpre− disr, and the solid black line the alarm time. 

Fig. 7. JET regularly terminated discharge #96893. (a) CNN logic output curves, where the blue line is the top branch logic output, and the magenta line is the 
bottom branch logic output.; (b) internal inductance, in green, and mode lock normalized by the plasma current, in blue; c) radiated power from the bolometer 
vertical camera; (d) radiated power from the bolometer horizontal camera; (e) electron temperature from the HRTS; (f) electron density from the HRTS. 
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