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Scene-specific Crowd Counting
Using Synthetic Training Images

Rita Delussu, Lorenzo Putzu, Giorgio Fumera

Department of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy

Abstract

Crowd counting is a computer vision task on which considerable progress has
recently been made thanks to convolutional neural networks. However, it re-
mains a challenging task even in scene-specific settings, in real-world application
scenarios where no representative images of the target scene are available, not
even unlabelled, for training or fine-tuning a crowd counting model. Inspired
by previous work in other computer vision tasks, we propose a simple but effec-
tive solution for the above application scenario, which consists of automatically
building a scene-specific training set of synthetic images. Our solution does
not require from end-users any manual annotation effort nor the collection of
representative images of the target scene. Extensive experiments on several
benchmark data sets show that the proposed solution can improve the effective-
ness of existing crowd counting methods.
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1. Introduction

Crowd counting is a potentially very useful computer vision functionality in
applications involving monitoring and analysis of crowds [1, 2], in particular,
security-related applications based on video surveillance systems. Despite the
considerable effort spent so far by the research community and the performance
improvements achieved by recent methods based on Convolutional Neural Net-
works (CNNs) on benchmark data sets [3, 4, 5], it remains a challenging task in
unconstrained settings characterised by illumination changes, perspective and
scale variations or distortions due to camera views, static and dynamic occlu-
sions, complex backgrounds, and dense crowds. Early methods followed two
different approaches: pedestrian or body part detection, which were effective
only on sparse crowds with very limited or no overlapping, and regression of
the people count from local or global low-level image features [1]. State-of-the-
art methods are based on CNNs [2]. Most of them are regression-based, but
CNNs are enabling effective detection-based methods also for dense crowds [6].
All regression-based methods, as well as recent detection-based ones, require a
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training set of manually annotated crowd images, with annotations consisting
either in the number of people, for early methods, or in the position of each
pedestrian, for CNN-based ones.

Existing work aim at developing crowd counting models capable of general-
ising to unseen scenes, e.g., to different perspectives and background. This is a
very challenging task since it requires training data representative of a large va-
riety of possible crowd scenes. In this work we focus instead on a scene-specific
setting where accurate estimation of crowd size on a given target scene is re-
quired, but collecting, and even more manually annotating a suitable amount
of representative crowd images for training or fine-tuning a regression model, is
too demanding, or even infeasible, for end-users. This is a real-world, challeng-
ing application scenario which was inspired by our work in a recent project,1

involving the development of real-time video analytics tools to support Law
Enforcement Agencies (LEAs) in guaranteeing the security of mass gatherings.
For instance, the above scenario can occur when a new, temporary installation
of surveillance cameras is required in a public area, and should be operational
in a short time.

In the above scenario, a regression model can only be trained on already
available annotated images from other scenes, e.g., using benchmark data sets,
which can differ from the target scene in one or more of the above-mentioned fac-
tors, e.g., perspective, scale and background. However, in such a cross-scene set-
ting, the performance of data-driven regression-based methods can be severely
affected [7, 8]. A fine-tuning to the target scene is, therefore, required [7].
However, existing solutions to address cross-scene issues require a collection of
representative images of the target scene, which in some cases should also be
manually annotated [9, 10, 11, 7]: this does not fit the considered application
scenario.

To address the above issue, we propose an approach based on the use of
synthetic training images. Our approach is inspired by the use of synthetic
images to overcome the scarcity of manually annotated training data in other
computer vision tasks related to crowd analysis and pedestrian detection [12].
Our approach aims to build a scene-specific training set for a given target camera
view, made up only of synthetic images, which can be automatically annotated.
It only requires the user (e.g., a LEA operator) a background image of the target
scene, the binary map (BMAP) of the corresponding region of interest (ROI) and
its perspective map (PMAP). Synthetic training images are then automatically
generated by superimposing images of pedestrians to the background image of
the target scene, on locations allowed by the ROI, re-scaled according to the
PMAP. Such images are then automatically annotated, and finally, they are
used to train or fine-tune a given regression-based crowd counting model.

In this paper, which extends our preliminary work [13], we evaluate the effec-
tiveness of a simple implementation of the above solution through extensive ex-

1LETSCROWD, Law Enforcement agencies human factor methods and Toolkit for the
Security and protection of CROWDs in mass gatherings, EU H2020, https://letscrowd.eu/
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periments on several benchmark data sets and state-of-the-art regression-based
methods, as well as early ones not based on CNNs. We compare our solution
against the usual cross-scene one, i.e., using real training data from other scenes.
Our results show that even in the simple implementation considered in this pa-
per, using synthetic images of the target scene can improve the performance
of existing crowd counting methods and is therefore useful toward satisfying
challenging real-world application requirements.

2. Related work

Crowd counting approaches can be categorised into counting by detection, by
clustering, and by regression [1, 2]. The first two approaches rely on detecting
pedestrians or body parts (e.g., head and shoulders) [1] from still images, or on
clustering pedestrian trajectories from videos [1]. Although these approaches
can provide the exact number of people in a scene, they are severely affected
by the presence of occlusions and are therefore effective only for sparse crowds
with little or no overlapping among people [1].

Regression-based methods estimate people count from low-level image fea-
tures, instead, and can be more effective for dense crowd scenes. Early ap-
proaches used classical regression models [1] to map from holistic scene descrip-
tors (e.g., segment, edge and texture descriptors) to crowd size. This requires
a training set of crowd images manually annotated with the number of peo-
ple. More recent CNN-based methods estimate the density map of the input
image, instead, from which the number of people can be easily derived [2]. In
this case, the training set is made up of the ground truth crowd density map,
which is obtained from the manually annotated head positions of all pedestrians:
this requires a higher effort than just counting them. The density map is then
computed by superimposing 2D Gaussian kernels centred on pedestrians head
positions, each one normalised to sum to one. Therefore, the pixel-wise sum of
the density map equals the number of people in the corresponding image [14];
this simple computation is also carried out during inference to obtain the crowd
size from the estimated density map. More refined definitions of the density
map based on the use of adaptive kernels have also been proposed to improve
robustness to scale and perspective variations [15, 5].

Existing CNN architectures are either modifications of “generic” ones, such
as VGG [16, 11, 17, 5, 18, 15, 19, 20], or are specifically devised for crowd
density estimation [21, 4, 3, 14]. Many architectures share the same backbone
and differ in details, such as the number of branches or columns. The simplest
ones use a single-column architecture [5], whereas others use multiple columns
to address specific issues such as scale variations [17, 5, 15, 14, 19]. Some
approaches fuse low- and high-level features [21], local and global information [4],
and information from the ROI [16].

Some solutions have been proposed so far to address cross-scene issues specif-
ically. A simple one is to use multi-scene training sets [17, 19, 15, 5]. Transfer
learning and domain adaptation approaches have been proposed both for early
regression-based [9] and for CNN-based methods [11]; however, they require

3



manually annotated images of the target scene. A weakly supervised learn-
ing method has been proposed in [7], which also requires manually annotated
images of the target scene, although only in terms of a categorical annotation
into six classes (from “zero” to “very high” density) to reduce user’s effort.
An unsupervised solution has been proposed in [10], which, however, requires
representative, although unlabelled, images of the target scene; furthermore, it
carries out fine-tuning by retrieving similar images from the available train-
ing set; therefore, its effectiveness relies on the availability of training images
representative of the target scene.

Our solution is inspired by the use of synthetic images in several computer
vision tasks related to crowd analysis, such as anomalous crowd behaviour de-
tection, pedestrian detection or tracking and crowd analysis based on optical
flow [12], as well as in person re-identification [22], to mitigate the lack of repre-
sentative, manually annotated training data. To our knowledge, using synthetic
images has already been proposed for regression-based crowd counting by only
one work [11], where a large data set of synthetic images was built using the
Grand Theft Auto V (GTA5) video game to pre-train a CNN model. However,
to create more realistic synthetic images this method also trains or fine-tunes
a generative adversarial network (GAN) using real images of the target scene,
which is not feasible in the application scenario considered in this work.

3. A method for constructing scene-specific synthetic training data
for crowd counting

In this section we describe the proposed method for building scene-specific
regression-based crowd counting models. Its goal is to reduce the gap between
the cross-scene performance of existing methods and challenging requirements
of real-world applications, such as real-time crowd monitoring tasks carried out
by LEAs during mass gatherings. For instance, this is the case of ad hoc in-
stallations of video surveillance systems for short-lived mass gathering events.
In such a scenario, a crowd counting model previously trained on annotated
images from different scenes, e.g., benchmark data sets, has to be provided to
end-users.

To mitigate the resulting cross-scene issues, we propose to train or fine-tune
a crowd counting model using only synthetic images of the target scene. This
can be made during system operation with minimal support from LEA opera-
tors, particularly without requiring them to collect, and even more to manually
annotate, a suitable amount of representative crowd images of the target scene.
One of the advantages of synthetic images is indeed the automatic definition of
the ground truth [12], which in crowd counting tasks amounts to automatically
annotate the position of each pedestrian and their exact number. Moreover,
in such tasks, synthetic images allow to reproduce the same perspective, back-
ground and lighting conditions of the target scene, and to choose the spatial
configuration of people.

This work extends two previous conference papers where we evaluated the
cross-scene performance of several regression-based methods [8], and preliminar-
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ily investigated the effectiveness of synthetic images for early regression-based
methods [13]. In this work, we better formalise the generation procedure of syn-
thetic images and evaluate them also for CNN-based methods, including three
additional ones with respect to [8], using two additional data sets. Finally,
we evaluate how several factors (including the synthetic training set size, the
number of pedestrians in synthetic images and their scale) affect crowd count-
ing accuracy. In the following, we describe the requirements of the proposed
method and its steps.

3.1. Requirements

To create accurate, scene-specific crowd counting models, it is crucial to re-
produce the perspective and the background of the target scene, and to define
the ROI, i.e., the region of the image where people can appear [1, 11, 13], as
a binary map. Accordingly, our method requires a background image of the
target scene and the corresponding BMAP and PMAP. Since we focus on real
application scenarios where a crowd counting functionality can be deployed as
a component of dedicated software suites for video surveillance system manage-
ment, the above data can be easily provided by end-users during camera set-up
through a suitable graphical user interface (GUI). Another useful information
that end users can easily provide is the expected value of the largest crowd
size: this allows to generate synthetic images with a different number of people
in the corresponding range, which may help to better fit the underlying crowd
counting model to the target scene. In case of uncertainty, an overestimate of
the largest crowd size should be provided to guarantee examples of the actual
largest crowd size in the training data. The above elements are described in the
following and are exemplified in Fig. 1.

Among the existing techniques for background extraction and perspective
map definition, in this work we consider two techniques that require very limited
operator supervision. First, the background (BG) image can be automatically
extracted during camera set-up. A still image is sufficient if no pedestrians
or other non-static objects (e.g., cars) are present. Otherwise, a background
extraction algorithm (e.g., by image subtraction) can be applied to a short
video that can be easily acquired.

The binary map of the ROI is then necessary to define the region of
the target scene where synthetic pedestrian images can be placed. It can be
easily defined (e.g., as a polygon) on the background image acquired in the
previous step through a suitable GUI. If possible, static objects (if any) should
be excluded from the ROI to avoid inconsistencies with synthetic pedestrians.

Finally, the perspective map should be computed to re-scale synthetic
pedestrians at each location of the BMAP. It consists of an image of the same
size as the target ones, where the value of each pixel is the height, in pixels, of
a standard adult individual at the corresponding location [10]. The PMAP can
be obtained during camera set-up as well, for instance, by manually computing
it on-site or by approximating it through linear interpolation of the height of a
few pedestrians in one or more images of the target scene, assuming they have a
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standard height [10]. In practice, this requires end-users only to manually select
the corresponding bounding boxes (BB).

3.2. Synthetic image generation

Complex approaches have been proposed so far to create data sets of synthetic
images for various computer vision tasks, based on graphics engines [11] or
GANs [22]. We propose a more straightforward method that can be easily
implemented in video surveillance software suites. Based on the above require-
ments, our method consists of superimposing pedestrians’ images to the BG
image, randomly positioned on the ROI and re-scaled using the PMAP. To this
aim, a set of suitable pedestrian images, that we call gallery, should previously
be collected by the system designer, e.g., real images from the Web or synthetic
ones generated by computer graphics tools. To guarantee a sufficient appearance
variability, the gallery should include a sufficiently large number of pedestrians
in different poses. Furthermore, gallery images should contain no background
(e.g., they should contain a transparency layer or a foreground binary mask) and
should be tightly cropped to the height of pedestrians to allow exact re-scaling
through the PMAP. The above requirements are easy to satisfy during design,
especially if computer graphics tools are used to generate pedestrian images.

Synthetic crowd images of the target scene can then be generated by super-
imposing to the BG image the desired number of pedestrians randomly selected
from the gallery, located in randomly chosen and mutually exclusive positions
inside the ROI, and re-scaled according to the PMAP. It is also easy to repro-
duce realistic overlapping between people by adding pedestrians one at a time
from the farthest to the closest location to the camera. A smoothing operation
can also be performed to blend pedestrian outlines with the BG image (different
techniques can be used to this aim). The number N of synthetic images to be
generated depends on the underlying crowd counting model. The number n of
pedestrians in such images can be determined based on the maximum number
of pedestrians nmax specified by the user. This allows to select a set of (ap-
proximately) evenly spaced values of n in the range [1, nmax], and to generate
a fixed number of synthetic images for each value in this set. More precisely, if
nmax = qN , for some q ∈ R+, then one image containing n pedestrians can be
generated, for each n = 1, d1 + q, d1 + 2q, . . . , nmax.

Finally, each synthetic image can be automatically annotated with the ground
truth, i.e., the number of pedestrians and (if required by a CNN-based model)
their location. Basic notions of human anatomy allow this task to be automated
as well: assuming that gallery images are tightly cropped and contain adult in-
dividuals with standard height and body part proportions, the head height is
1/8 of the total body height [23], and the head points are directly located at
1/16 height and 1/2 width of the image.

In Fig. 1 we show an example of the above procedure for generating a syn-
thetic image. Although such images may look unrealistic, e.g., due to unnatural
pedestrians’ pose and to the absence of perspective distortions typical of surveil-
lance cameras, they reproduce the perspective and the background of the target
view, which are the most relevant features to obtain accurate crowd counting
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Figure 1: Example of the proposed procedure for generating synthetic images of a target scene
(best viewed in colour). Top row, left to right: BG image (taken from the UCSD data set, see
Sect. 4.3), pedestrian BBs selected by the user on a real image to compute the PMAP, and
the resulting PMAP. Bottom row, left to right: ROI provided by the user, some pedestrian
images from the gallery used in our experiments (see Sect. 4.4), and a synthetic image with
80 pedestrians and their annotated head positions shown as white dots.

models. Moreover, the proposed image generation procedure is very simple to
implement and has a low processing cost.

4. Experimental setting

The goal of our experiments is to evaluate the effectiveness of the proposed
method for training or fine-tuning existing crowd counting models using only
scene-specific synthetic images of the target camera view, and to compare it
with the alternative cross-scene solution based on using real images from differ-
ent scenes. To this aim, we carried out extensive experiments on a representative
selection of four early regression-based crowd counting methods (Sect. 4.1) and
nine state-of-the-art CNN-based ones (Sect. 4.2), using five single-scene and
one multi-scene benchmark data sets of real crowd images (Sect. 4.3). Each
single-scene data set is used in turn as the target scene (testing set), and a syn-
thetic, scene-specific training set is built using the proposed method (Sect. 4.4).
Its performance is then compared with the one achieved by using each one of
the other single-scene data sets for training, to simulate a cross-scene setting
through cross-data set experiments. A comparison is also made with the per-
formance attained using the multi-scene data set for training, since this is one
of the existing solutions for improving cross-scene accuracy. For completeness,
a comparison is also made against the same-scene performance of each target
data set, which is evaluated using training images of the same data set, to assess
cross-scene performance degradation.

4.1. Early regression-based methods

Despite the substantial progress achieved through CNN-based methods, early
regression-based ones are still used [2, 24], since they exhibit a lower complexity,
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require a lower manual annotation effort, and can nevertheless provide accurate
and fast results, especially in the presence of severe occlusions. Various ap-
proaches have been proposed to extend these methods through new feature
representations or more sophisticated regression models [1, 24], but they still
share a similar processing pipeline. In the following, we describe their main
components, namely feature representations and regression models, focusing on
the ones chosen for our experiments.

4.1.1. Feature extraction

Several kinds of features have been proposed so far, and often different comple-
mentary features are combined. For our experiments, we considered segment
and edge features, which are among the most common foreground ones, as well
as the Grey-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns
(LBP) textural features. Foreground features can be obtained through back-
ground subtraction: segment features aims at capturing global properties of
image regions, such as area and perimeter, whereas edge features focus on com-
plementary information about local image characteristics, such as the number of
edge pixels and edge orientation. Textural features encode spatial relationships
among image pixels [1], instead. GLCM is defined as the number of occurrences
of pairs of pixels with certain values in a given spatial relationship; several
global statistical features can then be extracted from it [1]. The well-known
LBP descriptor characterises local image textures [1]; it is rotation invariant
and robust to grey-scale variation. A drawback of most of the above features is
that they are strongly affected by image background [25]. In our experiments,
we concatenated all the above features.

4.1.2. Regression models

Early regression-based methods can be subdivided into global and local [1].
They estimate the people count on the whole image, or as the sum of estimates
on different image patches, respectively. Although local methods can handle
scenes characterised by non-uniform crowd density more effectively, their pro-
cessing cost is too high for real-time applications. We focused therefore on global
methods and selected four representative regression models [1]: two linear mod-
els, namely simple Linear Regression (LR) and Partial Least Squares (PLS) re-
gression; and two non-linear models, Random Forests (RF) and Support Vector
Regression (SVR) with a radial basis function (RBF) kernel. Gaussian Pro-
cess Regression has also been proposed as a global crowd counting method [25];
however it exhibits several drawbacks in crowd counting tasks with respect to
other non-linear models such as RF: it is not scalable, its processing cost at the
prediction phase is too high for real-time applications, and it is more sensitive
to parameter selection.

4.2. CNN-based methods

Among the large number of CNN-based crowd counting methods recently pro-
posed, we selected nine representative methods whose source code was available.
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They are described below and summarised in Table 1, and can be categorised
according to the following criteria: network architecture (backbone, number of
parallel columns and loss function), type of input used for training, including
the augmentation process (“images”) and the type of kernel (“head points”,
either fixed or adaptive), and inference time (“speed”) evaluated in ms on a
reference input size of 640× 480.

The Multi-Column CNN (MCNN) architecture [14] aims at achieving robust-
ness to scale variations. It is made up of three parallel and identical columns
(except for filter dimensions), whose feature maps are merged by a final block.
The Cascaded Multi-task Learning (CMTL) architecture [3] uses two columns
that share the first layers to address two related sub-tasks: crowd count categori-
sation into ten qualitative levels and density map estimation. The Deformation
Aggregation Network (DAN) [20] consists of two parts: a VGG backbone, made
up of eight blocks, and a multi-layer aggregation that learns adjustable weights
to estimate the density map by an adaptive fusion of feature maps of differ-
ent layers. The Spatial Fully Connected Network (SFCN) [11] uses a ResNet-
101 backbone to improve density map estimation on congested crowd scenes.
The Congested Scene Recognition Network (CSRN) [17] consists of a dilation
module on top of a VGG-16 backbone that aggregates multi-scale information
without increasing the number of parameters to keep processing time low. The
Context-Aware Network (CAN) [19] encodes multi-scale contextual information
exploiting a VGG-16 backbone, concatenates the output with weighted feature
maps and obtains the density map using dilated convolutions. The Spatial-
/Channel-wise Attention Regression (SCAR) network [18] uses spatial-wise and
channel-wise attention modules to encode large-range contextual information,
to improve the accuracy of head location and alleviate estimation errors. The
Deep Structure Scale Integration (DSSI) network [15] aims at handling large
scale variations through three parallel sub-networks that process the same input
image with different scales; their outputs are merged to increase the resolution
of the density map. Finally, the Bayesian Loss for crowd counting estimation
architecture (BL+) [5] exploits a loss function designed to directly use the head
point supervision to handle large scale variations.

4.3. Real data sets

As explained in previous sections, we focus on crowd counting systems that
have to be deployed on a specific target scene (camera view). To reproduce this
setting in our experiments, data sets containing a sufficient number of manually
annotated training and testing images from a single camera view should be
used. Unfortunately, existing benchmark data sets do not fulfil all the above
requirements together. To our knowledge, only three of them contain dense
crowd scenes, namely ShanghaiTech, UCF-QNRF and World Expo Shanghai
2010 [14, 21, 2]. However, the first two are made up of single images taken from
different scenes. The latter contains five one-hour test videos, each one from a
single camera, but only one frame every 30 seconds is manually annotated, that
is only 120 frames in total, which is not suitable to our experiments.
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Table 1: Main features of the CNN-based methods used in our experiments. Network archi-
tecture: pre-trained backbone network (– denotes training from scratch), number of columns,
loss function (MSE: Mean Squared Error; BCE: Binary Cross Entropy; Bayesian loss). Input:
type of input images (whole or cropped image, and augmentation technique: flip, noisy, scale),
and kernel used for computing the density map. Speed: inference time (in ms) on a reference
input image of size 640 × 480.

Method Network architecture Input Speed
backbone columns loss images kernel

MCNN [14] – 3 MSE Crop Fixed 130
CMTL [3] – 2 MSE&BCE Crop&Flip&Noisy Fixed 350
DAN [20] VGG16 5 MSE Crop Fixed 210
SFCN [11] ResNet – MSE Whole Fixed 900
CSRN [17] VGG16 – MSE Crop&Flip Fixed 480
CAN [19] VGG16 4 MSE Crop&Flip Fixed 450
SCAR [18] VGG16 2 MSE Whole Fixed 412
DSSI [15] VGG16 3 MSE 3 scales Adaptive 510
BL+ [5] VGG19 – Bayesian Crop&Flip Adaptive 260

The only data sets containing a sufficient number of frames from a single
camera view (from 1,299 to 2,000 frames, see below) manually annotated with
the head position, are Mall [26], UCSD [27] and PETS [28]. Although they
do not contain dense crowd scenes (at most 53 people per image are present),
they are challenging data sets as they exhibit lighting variations, perspective
distortions and severe occlusions. We therefore used them as target data sets,
as well as training data sets for cross-data set experiments.

Mall is made up of 2,000 frames with a size of 640×480 pixels, collected from
a single scene by a surveillance camera in a shopping mall. It contains a total of
62,325 pedestrians, with 13 to 53 people per frame (on average, 31). Mall is a
challenging data set with severe perspective distortions and frequent occlusions
caused by static objects or by other people. According to recent work [1, 2] we
used the first 600 frames for training, the next 200 ones for validation, and the
remaining 1,200 frames for testing. UCSD contains 70 videos acquired from a
low-resolution camera (238×158 pixels) installed in a pedestrian walkway at a
university campus. It contains a total of 49,885 pedestrians, with an average of
25 people per frame. We used a subset of 2,000 frames: frames from 600 to 1,399
for training (600 frames) and validation (200 frames), and the remaining 1,200
frames for testing [1, 2]. PETS2009 was released at the 11th IEEE Int. Work-
shop on Performance Evaluation of Tracking and Surveillance [28], for different
visual surveillance tasks. Part “S1” is devoted to crowd counting and is subdi-
vided into three difficulty levels (different crowd density and people behaviour),
and each level contains two sequences (frame size of 576 × 768) acquired with
different cameras, at different times under different illumination and shading.
We grouped the images from the first three cameras (for different difficulty levels
and acquisition time) to create three single-scene data sets named PETSview1,
PETSview2 and PETSview3. These new data sets contain in total 1,229 frames
that we split into training, validation and testing sets of size 361, 128 and 740,
respectively. Since the original PETS2009 does not include the head position
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Figure 2: Example of images from the data sets used in our experiments. Top row, left to right:
Mall, UCSD, PETSview1. Bottom row, left to right: PETSview2, PETSview3, ShanghaiTech.

for each frame, we used the ground truth provided in [29].
We also used the above mentioned ShanghaiTech data set to evaluate

the cross-scene performance achieved using multi-scene training data. Shang-
haiTech is widely used in the literature, especially for training CNN models,
since it contains images acquired from different cameras, with different illumi-
nation, perspective and crowd density. It contains 1,198 images, for a total of
330,165 pedestrians, and is usually divided into parts two parts, Part A and
Part B, containing 482 and 716 images, respectively. Each part is further sub-
divided into 300 images for training and the remaining ones for testing [14, 2].
Fig. 2 shows some examples of frames from each of the above data sets.

4.4. Synthetic data sets

We first collected a gallery of pedestrian images from the Web, according to
the requirements described in Sect. 3.2. Taking into account the crowd size in
the considered target data sets, for our experiments, we set the gallery size to
100 and chose images of pedestrians of standard height and in an upright pose;
we also avoided to purposely select pedestrian images whose appearance was
similar to the ones of target data sets. In principle, in applications where much
larger crowd sizes can occur in (unknown) target scenes, a larger gallery may
be necessary. In sect. 5.4 we shall evaluate the influence of the gallery size on
crowd counting accuracy.

For each of the five target scenes (Mall, UCSD, PETSview1, PETSview2 and
PETSview3) we extracted one BG image through a simple image subtraction
algorithm applied to all training images. More effective techniques may be
necessary for more complex scenes to avoid a noisy background image, which
may affect the accuracy of crowd counting models.

We then manually defined the ROI as a polygon, without removing static
objects (if any) inside it as mentioned in Sect. 3.1. Although this may re-
sult in inconsistencies between foreground and background objects when syn-
thetic pedestrians are added to the background image, such inconsistencies are
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Figure 3: Examples of synthetic images from each of the considered target data sets. Top row,
left to right: Mall, UCSD, PETSview1. Bottom row, left to right: PETSview2, PETSview3.

not likely to significantly affect the accuracy of crowd counting models, since
early regression-based ones mainly focus on fine textures and foreground objects
(pedestrians), and CNN-based ones mainly localise pedestrians heads.

We then computed the PMAP from a single training image by manually
selecting the BBs of three pedestrians at different locations. This simple proce-
dure was sufficient to provide an accurate PMAP for the considered target data
sets. Other more accurate techniques can be used to take into account more
complex scenes (see Sect. 3.1).

We finally set the number of synthetic training images to N = 1, 000, and
the maximum number of pedestrians in each target scene to nmax = 100, taking
into account the characteristics of the target scenes and the size of the respective
ROIs (see Fig. 2). Note that the chosen value of nmax overestimates the actual
maximum crowd size of the real data sets by about twice. According to Sect. 3.2,
for each target scene we generated nmax/N = 10 synthetic images containing n
pedestrians, for each n = 1, 2, . . . , nmax, for a total of 50,500 pedestrians. We
finally subdivided this data set into a training and a validation set of 800 and
200 images, respectively. In Section 5 we shall evaluate how the values of N
and nmax affect the performance of the considered crowd counting models.

Fig. 3 shows some examples of synthetic images for each target scene.2 Ta-
ble 2 reports the main characteristics of real and synthetic data sets.

4.5. Performance measures

We evaluated crowd counting accuracy using two common metrics that are
defined over a single image: the absolute error (AE) and the root squared
error (RSE). We report their average values across all testing images of a
given target scene, i.e., the mean absolute error (MAE) and the root mean

squared error (RMSE), which are defined as MAE = 1
Nt

∑Nt

i=1 |ηi − η̂i| and

2All our synthetic data sets are available at here.
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Table 2: Statistics of real and synthetic data sets used in our experiments.

Type Data set Image size Number of images Pedestrian count
total training validation test total min avg max

R
ea
l Mall 480× 640 2,000 600 200 1,200 62,235 13 31 53

UCSD 158× 238 2,000 600 200 1,200 49,885 11 25 46
PETSview1 576× 768 1,229 361 128 740 32,719 1 27 40
PETSview2 576× 768 1,229 361 128 740 36,458 2 30 40
PETSview3 576× 768 1,229 361 128 740 41,873 11 34 40

S
y
n
th
et
ic Mall 480× 640 1,000 800 200 – 50,500 1 50 100

UCSD 158× 238 1,000 800 200 – 50,500 1 50 100
PETSview1 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview2 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview3 576× 768 1,000 800 200 – 50,500 1 50 100

RMSE =
(

1
Nt

∑Nt

i=1(ηi − η̂i)2
) 1

2

, where Nt is the number of testing images, ηi

is the ground truth (pedestrian count) and η̂i is the estimated pedestrian count
for the i-th image. As a result of the squaring operation, the RMSE penalises
larger errors more heavily than MAE.

5. Experimental results

We first present the cross-scene results attained using single-scene (Sect. 5.1)
and multi-scene (Sect. 5.2) real training images, then the ones attained using
scene-specific, synthetic training data, and finally we compare them (Sect. 5.3).

5.1. Cross-scene results for real single-scene training data

Tables 3 and 4 report the results of cross- and same-data set (scene) experiments
for early regression-based and CNN-based methods, respectively. For ease of
comparison, same-scene results are highlighted in grey.

Early regression-based methods (Table 3) achieved a high same-scene
performance, especially on Mall and UCSD. The best models turned out to be
LR and PLS. However, the performance of LR and PLS considerably worsened
in cross-scene settings, whereas the one of RF and SVR degraded only slightly;
in particular, for training and target scenes characterised by similar perspective
and scale, which is the case of Mall and the three views of PETS (see Fig. 2), in
some cases the cross-scene performance by RF and SVR was even better than
the corresponding same-scene one. CNN-based methods (Table 4) exhibited
a similar behaviour: they achieved a high same-scene performance (with the
exceptions of DAN on PETSview2 and of DSSI on UCSD and PETS) and a
lower cross-scene performance, with some exceptions as well. Also, for CNN-
based methods, the cross-scene performance was in some cases close or even
better than the same-scene one on Mall and PETS, whose perspective and
scale is similar. Instead, the most noticeable gap between same- and cross-
scene performance can be observed when UCSD is used as either the training
or the target scene since its scale and perspective are very different from those
of the other data sets (see Fig. 2). A comparison between early regression-
based and CNN-based methods shows that the latter generally achieved a
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Table 3: Cross-scene MAE and RMSE of early regression-based methods (LR, RF, SVR and
PLS) using single-scene training sets. Same-scene results (training and testing on the same
data set) are also reported for comparison, highlighted in grey. The best cross-scene result for
each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

L
R

Mall 2.74 3.49 9.59 11.63 289.2 294.4 348.7 349.0 268.1 270.9
UCSD 67.3 78.75 2.9 3.54 334.6 347.9 369.2 374.0 128.2 146.6

PETSview1 276.9 277.0 577.1 577.2 6.25 7.91 33.43 38.04 9.35 11.17
PETSview2 210.2 210.3 308.4 308.4 97.86 127.0 4.85 5.98 159.4 160.2
PETSview3 12.15 14.01 29.09 29.93 110.3 110.7 125.1 126.6 6.84 8.42

R
F

Mall 3.82 4.85 5.12 7.42 9.27 12.43 12.15 13.96 4.44 6.59
UCSD 5.83 6.98 3.82 4.66 9.12 11.45 8.06 10.46 5.22 5.94

PETSview1 3.89 5.07 6.92 8.12 9.47 11.03 13.59 14.98 8.36 9.31
PETSview2 6.88 8.57 5.38 7.31 8.01 8.94 9.56 11.05 6.27 8.14
PETSview3 5.52 7.07 6.34 7.73 10.11 11.54 11.59 12.54 11.41 12.49

S
V
R

Mall 4.8 6.29 8.15 9.18 9.56 10.45 9.8 10.68 8.74 9.55
UCSD 7.68 9.32 5.38 7.31 10.74 12.08 12.09 13.15 12.86 13.88

PETSview1 12.26 13.57 6.21 8.52 12.82 15.25 14.85 16.79 17.67 18.56
PETSview2 8.54 10.12 5.13 7.3 11.06 12.62 12.6 13.81 13.78 14.8
PETSview3 5.11 6.71 7.52 8.61 9.76 10.61 10.2 11.04 9.5 10.37

P
L
S

Mall 3.16 4.1 110.7 110.9 51.97 65.77 16.97 20.94 53.4 61.05
UCSD 266.3 268.0 2.6 3.23 99.38 109.1 428.7 429.9 460.9 467.7

PETSview1 49.0 49.37 13.0 14.21 8.46 10.13 20.39 24.53 21.07 26.56
PETSview2 23.01 23.42 103.9 104.1 57.72 68.15 7.65 9.06 103.1 103.8
PETSview3 18.05 18.67 5.1 7.27 14.55 16.86 25.12 26.75 9.03 10.06

better or slightly better same-scene performance, as one may expect, with the
largest improvement occurring mainly on the three views of PETS. On the
other hand, the best early regression-based methods (RF and SVR) turned out
to be generally more robust than CNN-based ones in cross-scene settings. For
instance, the cross-scene MAE and RMSE values of RF and SVR (Table 3)
never exceed 20, whereas for all CNN-based methods many cross-scene MAE
and RMSE values are above 20, and, except for DSSI and CSRN, several such
values are even one order of magnitude higher.

5.2. Cross-scene results for real multi-scene training data

As mentioned in Sect. 2, multi-scene training sets are commonly used to improve
the cross-scene performance of CNN-based models [17, 19, 15, 5]. Accordingly,
for all the considered CNN-based models, we also carried out experiments using
the multi-scene data set ShanghaiTech, either part A or part B, for training,
with a similar setting as in Sect. 5.1. The results are reported in Table 5. To
speed up these experiments, whenever possible, we used CNN models already
trained on ShanghaiTech and made available by the respective authors. To
ease the comparison with cross-scene results achieved using single-scene training
data, we also report for each model the best and worst cross-scene results from
Table 4. We did not carry out this experiment on early regression-based methods
since holistic features require a BG image of each training image, which is not
available for ShanghaiTech, and cannot be computed since each image of this
data set is taken from a different scene.
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Table 4: Cross-scene MAE and RMSE of CNN-based methods using single-scene training sets.
Same-scene results are also reported for comparison, highlighted in grey. The best cross-scene
result for each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C
N
N Mall 5.33 6.17 24.64 25.75 5.94 7.83 9.67 10.95 9.9 11.22

UCSD 86.39 88.04 2.3 2.84 144.9 149.6 49.4 56.85 180.6 181.2
PETSview1 19.54 20.16 24.18 25.28 6.2 7.86 22.05 23.59 9.77 11.75
PETSview2 3.39 4.27 19.62 20.92 20.93 22.19 4.23 5.08 24.29 27.72
PETSview3 4.31 5.35 21.28 22.47 19.54 21.63 10.37 11.66 4.18 5.13

C
M
T
L Mall 5.53 6.39 23.42 24.58 5.77 7.42 17.65 19.28 11.41 12.79

UCSD 189.1 191.1 2.04 2.50 213.7 217.9 111.9 113.7 298.5 300.8
PETSview1 9.93 10.73 24.18 25.13 5.11 6.29 15.56 17.20 4.46 5.95
PETSview2 4.68 5.95 24.63 25.76 36.85 38.49 4.80 6.06 47.34 50.96
PETSview3 4.61 5.79 21.94 23.12 21.90 24.54 11.50 13.97 4.23 5.06

D
A
N

Mall 5.43 6.42 25.42 26.54 7.51 9.43 11.7 13.14 8.84 10.27
UCSD 164.1 166.1 5.18 6.39 185.9 192.1 61.76 66.53 227.3 228.5

PETSview1 7.97 9.06 26.1 27.09 4.92 6.15 16.41 19.12 6.34 7.74
PETSview2 28.95 29.54 27.86 29.0 26.43 28.38 28.68 30.37 32.89 33.38
PETSview3 7.9 9.48 18.8 20.12 18.02 20.45 13.2 15.15 4.63 5.92

S
F
C
N

Mall 4.05 5.02 28.15 29.27 19.37 20.85 27.66 28.72 71.38 71.87
UCSD 880.2 882.1 2.91 3.64 853.5 859.6 634.3 635.5 988.4 990.6

PETSview1 8.33 9.64 27.13 28.1 6.32 7.57 12.83 14.5 10.74 12.05
PETSview2 36.55 38.35 25.93 26.85 85.29 87.81 8.1 9.81 106.9 108.6
PETSview3 14.78 15.98 28.23 29.36 11.49 13.64 10.03 12.74 4.35 5.68

C
S
R
N Mall 6.57 7.73 24.51 25.8 21.55 23.89 19.08 21.61 15.37 16.38

UCSD 70.78 71.46 6.2 7.01 57.52 61.86 28.29 31.21 69.06 69.36
PETSview1 14.51 14.96 27.33 28.43 5.54 6.83 15.62 17.46 20.57 21.11
PETSview2 12.15 12.66 27.06 28.16 10.14 11.82 7.09 7.9 8.42 9.53
PETSview3 9.21 9.89 27.49 28.62 5.84 6.8 9.66 10.56 2.9 3.76

C
A
N

Mall 2.59 3.21 28.09 29.23 8.28 10.36 17.49 20.02 29.54 30.11
UCSD 281.6 283.1 4.73 6.16 173.5 176.9 133.4 135.2 252.0 252.4

PETSview1 10.5 11.17 27.5 28.56 6.33 7.5 8.43 9.25 3.94 4.84
PETSview2 27.59 28.51 27.1 28.15 24.62 26.03 6.07 7.67 5.09 6.77
PETSview3 6.73 7.7 27.55 28.7 7.5 9.07 11.54 12.78 6.82 7.84

S
C
A
R Mall 3.99 4.75 372.28 372.8 42.3 45.41 55.78 56.46 93.3 93.51

UCSD 19.43 20.98 4.19 5.24 19.45 21.11 6.67 8.19 15.3 17.83
PETSview1 265.37 265.53 503.0 504.1 3.38 4.07 122.04 128.9 134.72 135.23
PETSview2 314.63 315.81 574.18 577.12 13.47 17.53 5.09 6.32 123.88 124.16
PETSview3 36.1 37.14 575.91 578.83 11.88 13.53 38.03 44.03 8.39 10.32

D
S
S
I Mall 5.44 7.09 37.35 37.81 22.81 23.56 18.1 19.03 13.78 14.98

UCSD 25.6 26.84 21.75 23.2 27.36 28.53 26.92 28.11 26.52 27.72
PETSview1 9.87 14.1 69.02 69.8 18.0 20.44 12.63 15.0 10.31 11.36
PETSview2 8.02 12.5 66.81 67.57 20.25 22.26 14.64 16.51 11.31 12.21
PETSview3 4.14 6.47 62.54 62.8 24.09 24.75 17.32 18.22 11.46 12.46

B
L
+

Mall 2.18 2.74 152.76 153.63 6.9 7.86 15.12 16.08 8.22 9.98
UCSD 23.96 25.05 2.5 3.57 22.65 23.8 21.17 22.0 23.66 24.77

PETSview1 10.09 11.81 127.26 129.71 3.75 5.12 12.41 14.34 10.49 12.86
PETSview2 15.73 17.91 77.63 80.9 15.35 17.78 5.8 6.57 10.22 11.68
PETSview3 26.01 26.69 132.99 133.57 18.69 19.53 7.44 9.0 4.72 5.61

As one may expect, the performance achieved using multi-scene training
data is almost always better than the worst performance achieved over all the
considered single-scene training sets. More significantly, in several cases (see
the entries in boldface), it is even better than the best single-scene performance,
up to be comparable to the “ideal” same-scene one (see Table 4). However,
these latter results were achieved mainly by BL+, DSSI and CAN, and only in
a minority of cases by other models; moreover, even for BL+, DSSI and CAN,
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Table 5: Cross-scene MAE and RMSE of CNN-based methods attained using for training
either part A (ShTechA) or part B (ShTechB) of the multi-scene ShanghaiTech data set. For
comparison, best and worst cross-scene results achieved on single-scene training data (S-best
and S-worst) are reported from Table 4. For each method and target data set, multi-scene
results that are better than the best single-scene ones are highlighted in boldface.

Training
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C
N
N ShTechA 16.16 16.77 18.88 19.64 9.3 10.04 10.26 11.98 33.9 38.67

ShTechB 21.03 21.58 22.01 22.86 7.51 8.58 23.2 24.86 6.55 8.12
S-best 3.39 4.27 19.62 20.92 5.94 7.83 9.67 10.95 9.77 11.75
S-worst 86.39 88.04 24.64 25.75 144.9 149.6 49.4 56.85 180.6 181.2

C
M
T
L ShTechA 17.71 18.33 21.0 21.84 8.51 9.39 10.36 11.92 33.46 40.68

ShTechB 13.92 14.6 22.26 23.02 10.32 11.38 17.95 19.89 9.61 12.39
S-best 4.61 5.79 21.94 23.12 5.77 7.42 11.5 13.97 4.46 5.95
S-worst 189.1 191.1 24.63 25.76 213.7 217.9 111.9 113.7 298.5 300.8

D
A
N ShTechA 16.76 17.32 23.96 24.67 8.88 10.21 14.49 16.56 15.68 16.68

ShTechB 18.02 18.64 22.82 24.01 8.93 10.71 19.19 22.03 20.13 21.11
S-best 7.9 9.48 18.8 20.12 7.52 9.43 11.7 13.14 6.34 7.74
S-worst 163.1 166.1 27.86 29.0 185.9 192.1 61.76 66.53 227.3 228.5

S
F
C
N ShTechA 773.2 777.4 5.42 7.55 30.59 31.5 802.1 802.3 683.6 687.4

ShTechB 31.21 32.4 322.7 323.7 10.88 12.46 238.5 238.5 33.8 34.3
S-best 8.33 9.64 25.93 26.85 11.49 13.64 10.03 12.74 10.74 12.05
S-worst 880.2 882.1 28.23 29.36 853.5 859.6 634.3 635.5 988.4 990.6

C
S
R
N ShTechA 14.64 15.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55

ShTechB 10.61 11.1 28.06 29.2 10.97 12.11 12.28 13.83 15.44 16.62
S-best 9.21 9.89 24.51 25.8 5.84 6.8 9.66 10.56 8.42 9.53
S-worst 70.78 71.46 27.49 28.62 57.52 61.86 28.29 31.21 69.06 69.36

C
A
N ShTechA 9.72 10.28 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67

ShTechB 3.6 4.56 28.05 29.18 6.53 8.25 10.31 11.49 15.57 16.55
S-best 6.73 7.7 28.09 29.23 7.5 9.07 8.43 9.25 3.94 4.84
S-worst 281.6 283.1 28.09 29.23 173.5 176.9 133.4 135.2 252.0 252.4

S
C
A
R ShTechA 738.4 739.2 520.4 521.1 997.9 999.5 918.9 919.9 911.7 913.5

ShTechB 512.9 513.5 326.2 327.2 813.5 815.5 829.9 811.7 825.6 826.1
S-best 19.43 20.98 372.3 372.8 11.88 13.53 6.67 8.19 15.3 17.83
S-worst 314.6 315.8 575.9 578.8 42.3 45.4 122.5 128.9 134.7 135.2

D
S
S
I ShTechA 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55

ShTechB 12.93 13.47 26.24 27.2 13.47 15.52 9.88 11.68 25.65 26.1
S-best 4.14 6.47 37.35 37.81 20.25 22.46 12.63 15.0 10.31 11.36
S-worst 25.6 26.84 69.02 69.8 27.83 28.53 26.92 28.11 26.52 27.72

B
L
+

ShTechA 6.07 7.05 16.63 17.08 5.28 6.28 7.77 9.48 16.51 17.36
ShTechB 6.78 7.57 18.52 19.2 4.21 5.34 7.05 8.9 10.07 11.85
S-best 10.09 11.81 77.63 80.9 6.9 7.86 7.44 9.0 8.22 9.98
S-worst 26.01 26.69 152 153.63 22.65 23.8 21.17 22.0 23.66 24.77

there are several exceptions, especially on PETSview3.3 Moreover, it turns out
that the performance on a given target scene strongly depends on the multi-scene
training set used. Indeed, some models achieved a higher performance using
part A of ShanghaiTech rather than part B, whereas the opposite happened
for other models; moreover, the performance gap between different multi-scene
training sets can be large (see, e.g., MCNN and CMTL on PETSview2 and
PETSview3). Similar behaviour can be observed for each model with respect
to the different target scenes. To sum up, the results in Table 5 do not show

3The behaviour of SCAR emerges as a clear outlier, as its performance with multi-scene
training data was very poor for all target scenes. We could not find the cause of this behaviour.
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a clear pattern of improvement due to the use of multi-scene over single-scene
training data, but a mixed behaviour depending on the specific crowd counting
method, target scene and training data set. This means that, in the considered
application scenario where a crowd counting model has to be trained before
deployment without any information on target scenes, using multi-scene training
data is not guaranteed to be an effective solution.

5.3. Results for scene-specific synthetic data sets

In this section, we present the main results of this work. Table 6 shows the
results attained on each target data set using scene-specific synthetic training
images, together with a comparison with the best cross-scene results attained
using real training data. In particular, the best cross-scene results over all single-
scene training sets is reported for early regression-based methods, from Table 3,
and over multi-scene training sets for CNN-based methods, from Table 5. The
“ideal” same-scene results are also reported from Tables 3 and 4.

For early regression-based methods, in many cases, synthetic images pro-
vided a better (see the entries in boldface) or close performance to the best
cross-scene one. In particular, the performance of RF and SVR was even better
than the “ideal” same-scene one. Only in a few cases, mainly on PETS target
scenes, synthetic images achieved a significantly lower performance than the
corresponding best cross-scene one.

For CNN-based models, synthetic images attained a better or similar perfor-
mance to the best cross-scene one on almost half of the cases. This is especially
evident for SCAR, which performed poorly for multi-scene training data. On
the other hand, the largest gap between the performance of synthetic data and
the best cross-scene one (in favour of the latter) was observed for MCNN, CSRN,
CAN, DSSI and BL+, although not for all target data sets; for CAN, DSSI and
BL+ this result is coherent with the one of section 5.2, where these methods
turned out to be the ones that most benefited from multi-scene training data.
Nevertheless, a significant result that emerges from Table 6 is that using syn-
thetic images allowed all the considered models (including early regression-based
ones) to exceed the best cross-scene performance on the UCSD target scene,
which differs in scale and perspective from the other single-scene data sets, as
well as from many images of the multi-scene ShanghaiTech; the only exceptions
are the cross-scene MAE values of PLS and SFCN, which are nevertheless very
close to the corresponding values achieved using synthetic images. Therefore,
despite some models may benefit from multi-scene training data, most of the
considered ones exhibited a performance degradation if few or no training im-
ages exhibited a similar perspective to the one of the target scene. This result
confirms the conclusion drawn at the end of Sect. 5.2 about the limited benefit
of multi-scene training data in the considered application scenario.

Since the considered CNN-based models compute the crowd count from the
estimated density map, we also examined and compared the quality of the den-
sity maps obtained using scene-specific synthetic training images with the ones
attained using real training images from other scenes. We considered, in par-
ticular, the accuracy of the density map in locating the regions of the target
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Table 6: MAE and RMSE attained by all the considered crowd counting models, using as a
training set: target scene-specific synthetic images (“Synthetic”), real images from the same
scene (“Real-same”), and real images from different scenes (“Real-cross”: best results over all
single-scene training sets for early regression-based methods, and over the two ShanghaiTech
training sets for CNN-based methods). For each data set and model the cases in which using
synthetic training sets outperformed the best cross-data set results are highlighted in bold.

Testing set (target scene)
Method Training Mall UCSD PETSview1 PETSview2 PETSview3

set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LR
Real-same 2.74 3.49 2.9 3.54 6.25 7.91 4.85 5.98 6.84 8.42
Real-cross 12.15 14.01 9.59 11.63 97.86 127.0 33.43 38.0 9.35 11.17
Synthetic 14.94 16.34 4.74 7.09 23.25 27.08 19.14 30.16 26.6 33.19

RF
Real-same 3.82 4.85 3.82 4.66 9.47 11.03 9.56 11.05 11.41 12.49
Real-cross 3.89 5.07 5.12 7.42 8.01 8.94 8.06 10.46 4.44 6.59
Synthetic 6.76 8.1 3.12 3.59 7.51 9.13 18.35 23.41 7.82 9.61

SVR
Real-same 4.8 6.29 5.38 7.31 12.82 15.25 12.6 13.81 9.5 10.37
Real-cross 5.11 6.71 5.13 7.3 9.56 10.45 9.8 10.68 8.74 9.55
Synthetic 7.98 9.57 2.85 4.13 6.96 8.66 8.83 10.63 4.6 6.54

PLS
Real-same 3.16 4.1 2.6 3.23 8.46 10.13 7.65 9.06 9.03 10.06
Real-cross 18.05 18.67 5.1 7.27 14.55 16.86 16.97 20.94 21.07 26.56
Synthetic 13.39 16.29 5.16 6.46 17.06 21.32 29.1 30.59 11.22 14.05

MCNN Real-same 5.33 6.17 2.3 2.84 6.2 7.86 4.23 5.08 4.18 5.13
Real-cross 16.16 16.77 18.88 19.64 7.51 8.58 10.26 11.98 6.55 8.12
Synthetic 20.73 21.68 2.94 3.65 12.22 13.43 17.86 18.67 11.39 13.69

CMTL Real-same 5.53 6.39 2.04 2.50 5.11 6.29 4.80 6.06 4.23 5.06
Real-cross 13.92 14.6 21.0 21.84 8.51 9.39 10.36 11.92 9.61 12.39
Synthetic 22.96 23.47 8.4 9.65 9.43 11.09 9.39 10.57 8.74 11.19

DAN Real-same 5.43 6.42 5.18 6.39 4.92 6.15 28.68 30.37 4.63 5.92
Real-cross 16.76 17.32 22.82 24.01 8.88 10.21 14.49 16.56 15.68 16.68
Synthetic 17.51 18.49 10.31 12.21 4.05 5.37 19.37 22.32 10.55 12.56

SFCN Real-same 4.05 5.02 2.91 3.64 6.32 7.57 8.1 9.81 4.35 5.68
Real-cross 31.21 32.4 5.42 7.55 10.88 12.4 238.5 238.5 33.8 34.3
Synthetic 17.76 18.57 6.34 7.34 15.56 16.85 23.22 24.82 10.19 12.46

CSRN Real-same 6.57 7.73 6.2 7.01 5.54 6.83 7.09 7.9 2.9 3.76
Real-cross 10.61 11.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55
Synthetic 19.9 20.18 3.45 4.8 13.35 15.42 21.33 23.78 20.01 20.55

CAN Real-same 2.59 3.21 4.73 6.16 6.33 7.5 6.07 7.67 6.82 7.84
Real-cross 3.6 4.56 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67
Synthetic 16.77 17.26 7.35 8.0 12.78 14.4 16.99 19.19 30.95 31.36

SCAR Real-same 3.99 4.75 4.19 5.24 3.38 4.07 5.09 6.32 8.39 10.32
Real-cross512.93513.47326.24 327.2 813.47815.52829.88811.68825.65 826.1
Synthetic 23.54 24.0 7.83 8.88 8.35 9.59 7.77 10.53 15.18 16.61

DSSI Real-same 5.44 7.09 21.75 23.2 18.0 20.44 14.64 16.51 11.46 12.46
Real-cross 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55
Synthetic 28.91 29.5 14.86 16.91 19.18 21.81 21.29 23.58 29.48 30.02

BL+ Real-same 2.18 2.74 2.5 3.57 3.75 5.12 5.8 6.57 4.72 5.61
Real-cross 6.07 7.05 16.63 17.08 4.21 5.34 7.05 8.9 10.07 11.85
Synthetic 15.5 15.87 7.85 8.59 8.01 10.1 12.23 13.71 18.74 19.42

(testing) images containing pedestrians: the rationale is that high accuracy in
crowd count may be achieved even if localisation accuracy is low. To this aim,
we focused on MCNN, which is one of the models that achieved the lowest
benefit in crowd counting accuracy from synthetic training data (see Table 6).
A first qualitative evaluation on some testing images, carried out through a
visual comparison, showed an interesting result, i.e., density maps produced
by synthetic training data turned out to locate pedestrian regions more accu-
rately. Fig. 4 shows an example on two testing images from PETSview1 and
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Figure 4: Density maps produced on two frames of PETSview1 (top) and PETSview2 (bot-
tom) by MCNN trained on synthetic images (left), single-scene PETSview3 (middle), multi-
scene ShanghaiTech PartB (right). Ground truth (red) and estimated (green) density maps
are superimposed to the original frames. Yellow regions are the ones where the two maps co-
incide, corresponding to perfect localisation of pedestrians. The highest localisation accuracy
is achieved when synthetic training images are used (left). Best viewed in colour.

PETSview2 data sets: despite using synthetic images provided (on average)
worse crowd count results on these data sets (Table 6, row ‘MCNN’), it can
be seen that the corresponding density maps are more accurate with respect to
the ones obtained using real training images from PETSview3 (the most similar
scene to PETSview1 and PETSview2) and from the multi-scene ShanghaiTech
partB.

To quantitatively analyse MCNN localisation accuracy on each target data
set, we used the Grid Average Mean absolute Error (GAME) metric [6]. GAME
subdivides the density map into a grid of 4L cells, computes the MAE values
within each cell and averages them over the whole grid. The higher the value of
L, the more precise the corresponding evaluation of localisation accuracy (note
that, for L = 0, GAME = MAE). Table 7 shows the GAME values for L = 3, 5
attained on each target data set, using as training data scene-specific synthetic
images and real multi-scene images (from ShanghaiTech). It can be seen that
using synthetic training images produced more accurate density maps for some
target data sets, for L = 3, and for all of them for L = 5. Moreover, the increase
in GAME from L = 3 to L = 5 is lower for synthetic images. To sum up, the
above results provide evidence that scene-specific synthetic images can be an
effective solution also for obtaining more accurate crowd density maps.

5.4. Ablation study

As explained in Sect. 4.4, synthetic data sets built for our experiments for each
target scene were made up of N = 1, 000 images (800 for training and 200 for
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Table 7: Cross-scene GAME values of MCNN for L = 3, 5, using as training data scene-
specific synthetic images, and real multi-scene images from ShanghaiTech part A (ShTechA)
or part B (ShTechB).

Test set Syntetic ShTechA ShTechB
L = 3 L = 5 L = 3 L = 5 L = 3 L = 5

Mall 27.56 33.8 26.13 35.12 27.04 35.13
UCSD 17.41 24.04 23.59 26.62 24.65 26.97

PETSview1 16.03 23.0 15.99 26.54 14.57 26.81
PETSview2 21.87 25.25 22.18 31.13 25.92 29.79
PETSview3 24.35 32.94 58.55 74.12 22.13 37.32

validation) containing from 1 to nmax = 100 pedestrians re-scaled according to
the PMAP. In this section, we evaluate how the accuracy of the resulting models
is affected by the parameters N and nmax, and by pedestrian scale variations
in training images. To avoid re-training all the considered models, we selected
a subset of models with the aim of including at least one early regression-based
model, one CNN-based model trained from scratch, one trained using image
patches, one trained using whole images, one using fixed kernels and one using
an adaptive kernel. Accordingly, we selected four methods that fulfil all the
above requirements: RF, MCNN, DAN and BL+. Effect of training set
size. To analyse the effect of N we carried out experiments using randomly
selected subsets of the original 800 synthetic training images for each target
data set. Fig. 5 shows the MAE values of RF, MCNN, DAN and BL+ for
N ranging from 200 to 800 with a step of 200. The behaviour of the RMSE
metric was similar and is not reported due to lack of space. Apart from small
fluctuations, which are likely caused by the randomness of image selection from
the original training sets, the MAE values do not show a decreasing trend as N
increases. We point out that the same behaviour was observed both for models
obtained by transfer learning (DAN and BL+) and for MCNN, which is trained
from scratch. This means that even a relatively small synthetic data set can be
adequate to train a scene-specific regression model, which in turn can speed up
the training procedure.

Effect of the maximum number of pedestrians. To analyse this aspect,
we carried out experiments for nmax ranging from 20 to 100 with a step of 20,
both in training and in validation images. Considering the size of the original
data sets (N = 1000 images), to guarantee an equal number of images for
each nmax value, these experiments were carried out using 200 training and 200
validation images. The results, reported in Fig. 6, show that in this case the
behaviour of the early regression-based model RF turned out to be different
from the one of CNN-based models. The MAE values of MCNN and BL+
showed a slightly decreasing trend as nmax increased, whereas no definite trend
emerged for DAN. Instead, the MAE value of RF attained a minimum when
nmax was closest to the maximum number of pedestrians actually present in the
corresponding target scene. This suggests that early regression-based models
are more sensitive than CNN-based ones to nmax. Accordingly, the guideline
we provided in Sect. 3.2 on how to set nmax, i.e., overestimating it in case of
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Figure 5: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using
synthetic training data, as a function of training set size. Best viewed in colour.

uncertainty, seems more suited to CNN-based models.
Effect of pedestrian scale variations. If the PMAP is not accurate

or the height of the pedestrians in the gallery is not precisely estimated, the
scale of pedestrians in synthetic training images can be different than in real
images. To analyse the effect of scale variations, we created four alternative
synthetic data sets for each target scene, where pedestrian images are re-scaled
by a factor of 0.5 to 2 with respect to the corresponding original PMAP (note
that a re-scaling factor of 1 corresponds to the original PMAP). The results
are reported in Fig. 7. Generally, scale variations resulted in a sensible increase
of MAE. Exceptions can be observed for RF, BL+ and DAN: RF attained a
lower MAE on PETSview2 when pedestrians were undersized by a factor of 0.75;
similarly, BL+ attained a lower MAE on Mall and PETSview3 for undersized
pedestrian images; the performance of DAN on the PETSview1 target scene was
only slightly affected even by large scale variations. The behaviour of BL+ may
be due to the fact that the corresponding ground truth density map of training
images is computed using adaptive kernels whose size is related to the distances
between pedestrians.

Effect of gallery size. To analyse the effect of gallery size, we created
four alternative synthetic data sets for each target scene, where the gallery size
was set to 1, 5, 20 and 50 (note that the gallery size of 100 corresponds to the
original synthetic data set). The results, reported in Fig. 8, show that apart
from few exceptions, the MAE values show a decreasing trend as the gallery size
increases. However, in most cases, in particular involving BL+ for all the target
scenes, the MAE values decrease only slightly for gallery sizes larger than 20.
This means that even a relatively small gallery can be adequate. This is likely to
hold also for larger and dense crowds, characterised by severe overlapping among
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Figure 6: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using
synthetic training data, as a function of the maximum number of pedestrians in training
images. Best viewed in colour.

pedestrians, whose heads are often almost the only visible part, and whose size
(in pixel) is relatively small. Moreover, since the ground truth for CNN-based
models consists in pedestrians’ head positions, they tend to locate heads in
testing images (see Fig. 4 as an example) which makes them less sensitive to
pedestrian appearance, including pose and height.

6. Conclusions

We proposed a simple method for building scene-specific crowd counting models,
focusing on challenging application scenarios where a suitable set of representa-
tive crowd images from the target camera is not available, not even unlabelled,
for model training or fine-tuning. In such scenarios, the usual cross-scene so-
lution based on training images from other scenes (i.e., benchmark data sets)
can significantly reduce the performance of existing models, including state-of-
the-art CNN-based ones, up to the one of early regression-based methods. Our
method generates synthetic training images of the target scene characterised by
the same background, scale and perspective. To this aim, a background image
of the target scene is required, together with its perspective map and region
of interest; these three components can be obtained in practice during camera
set-up, using different techniques, at the cost of a minimal effort from end-users
(e.g., LEA operators). In particular, no collection nor manual annotation of
images of the target scene is required. Additionally, the proposed method can
be applied to any regression-based crowd counting model.

Experiments carried out on several benchmark data sets provided evidence
that our solution can improve the effectiveness of existing crowd counting meth-
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Figure 7: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using
synthetic training data for different rescaling factors of pedestrians with respect to the original
PMAP (from 0.5 to 2). Best viewed in colour.

ods, especially on target scenes whose background, scale and perspective sig-
nificantly differ from the ones of training images. This is a relevant result for
real-world applications such as the one mentioned above, where an “out of the
box” crowd counting functionality embedded into a video surveillance software
suite has to be deployed at several, different target cameras. We showed that
synthetic training images can also improve the quality of crowd density maps,
which are estimated by most CNN-based models as an intermediate step, in
terms of pedestrian localisation; in particular, this can occur even if the corre-
sponding crowd count accuracy does not improve.

Possible limitations to the effectiveness of the proposed method can arise
from an inaccurate estimation of the perspective map, as pointed out in our
experiments. Robust techniques are therefore recommended to estimate it. A
further and well-known issue could arise from variations in weather conditions
and daytime lighting, affecting image illumination and colours. Nevertheless,
synthetic images can be an effective solution to mitigate this issue: for instance,
synthetic images simulating lighting and colour variations and specific weather
conditions can be generated, and different models can be trained for specific
conditions, which can then be easily selected by end-users depending on the
particular environmental conditions [30]. Another interesting issue for future
investigations is to improve the realism of synthetic images using computer
graphics tools or GANs [11], to transfer the style of the target cameras to
pedestrian images in the gallery.
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Figure 8: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using
synthetic training data, as a function of the number of pedestrian images in the gallery. Best
viewed in colour.
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