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Abstract: One of the still-debated topics regarding the olfactory function concerns the presence
or absence of sex-related differences in individuals. In this study, we checked for a relationship
between the olfactory function of females and males and their ability to perceive single molecules,
and researched how this can influence the intensity with which the complex odor formed by a set of
single molecules is perceived. First, females and males were classified as normosmic or hyposmic
based on the TDI olfactory score obtained using the Sniffin’ Sticks test. Subsequently, the headspace
of roasted coffee beans, as a complex olfactory stimulus, was broken down into single molecules by
means of a chromatographic column; these were simultaneously conveyed to a mass spectrometer
(for their subsequent classification) and to the human nose, which acts as a chemical sensor by
means of an olfactometer port. The results obtained with this gas chromatography–olfactometry
approach show both qualitative and quantitative differences between females and males, with females
performing better than males. In addition, the odor intensity reported by females when sniffing
pen #10, containing coffee aroma, is significantly higher than that reported by males. In conclusion,
these data highlight that the human ability to perceive both single compounds and complex odors is
strongly conditioned, not only by the olfactory function of individuals, but also by their sex.

Keywords: smell; GC-O technique; VARUs intensity; gender; individual variability

1. Introduction

The information coming from the external environment, which is captured and con-
veyed by the olfactory system towards the higher brain centers, plays an important role for
all living organisms. The functions of the sense of smell can be grouped into three broad cat-
egories, as follows: alertness for environmental dangers (smoke, gas, toxic and/or harmful
substances, presence of predators), influence on social relationships (mother–child recogni-
tion, selection of a partner for mating) and conditioning of eating behavior (it contributes
to the location and choice of foods, both in qualitative and quantitative terms) [1–12]. In
particular, individuals with smell disorders tend to isolate themselves socially, are subject
to a greater number of household incidents and report preferring foods with high energy
content, such as fats and sugars, adding flavor enhancers such as salt and spices, to the
detriment of foods such as fruits and vegetables [13–20]. The choice of tastier, but also
more caloric foods seems to compensate for the reduced gratification during a meal due to
reduced olfactory stimulation. Additionally, these individuals tend to reach sensory satiety
late, resulting in increased meal duration and intake of highly caloric foods [21–27].

Food and drink odors are generally made up of a mixture of molecules, and only some
of them are sensorially relevant and considered odor-active compounds [21–33]. Therefore,
it is important to understand which and how many molecules are sensorially active within
a complex mixture, and how these can influence the intensity with which the smell of
food and drinks is perceived. The coupled technique of gas chromatography–olfactometry
(GC-O) allows for the separation of the single molecules that make up a mixture and, at the
same time, allows for the use of the human nose as their sensory evaluator [34–38].
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We have previously found that the ability to perceive the single molecules that make
up a complex mixture, as they are eluted from the chromatographic column and conveyed
to an evaluator via an olfactometric port, is directly related to the olfactory function of
individuals. In fact, the higher the olfactory score obtained by each participant during the
olfactory tests, the higher the number of molecules perceived [39–41]. As it is commonly
accepted, on the basis of the scores obtained during olfactory tests, individuals can be
classified as normosmic (normal olfactory function), hyposmic (reduced olfactory function)
or functionally anosmic (general or specific inability to perceive odors) [3,19,42–45]. The rea-
sons for this variability are multiple and can be of an environmental/behavioral nature (e.g.,
habitual smokers, sedentary lifestyle, polluted habitats), genetic (expression and functionality
of OBPs, ORs, Kv1.3 channels, etc.) and physiological (age and sex) [40,42,46–63].

Based on these considerations, the main objective of this study was to evaluate the
presence of any sex-related differences in the ability of individuals to perceive the single
molecules that make up the complex odor of coffee, as they are eluted from the chro-
matographic column, both in qualitative (type of molecules smelled) and quantitative
(number of molecules smelled) terms. In fact, one of the topics still under debate is related
to the presence of differences in the olfactory function between females and males. Sev-
eral studies have shown that females tend to perform better than males in their olfactory
abilities, but none of them evaluated differences related to the ability to perceive single
molecules [52,63–65]. This is of particular importance when considering that it has been
suggested that odor-active compounds are those which contribute strongly to the aroma
of the mixture [33,66]. The second objective was to confirm the relationship between ol-
factory function and the ability to perceive the single molecules as they are eluted from
the chromatographic column. Finally, we assessed whether any differences in the number
of odor-active compounds could also determine differences in the intensity with which
females and males reported perceiving the odor of coffee contained in pen #10 of the
identification test (one of the subtests of the Sniffin’ Sticks battery).

2. Materials and Methods
2.1. Subjects

The sixty-seven Caucasian volunteers who participated in this study (34 F, 33 M; age
29.19 ± 2.59 y; BMI 18.5–24.99 kg/m2) were recruited in the metropolitan area of Cagliari
(Sardinia, Italy). Healthy, non-smoking subjects who reported having a good sense of smell,
familiarity with the aroma of coffee and with a history of COVID-19 infection that ended at
least 12 months before were included in the study. The exclusion criteria were as follows:
presence of chronic pathologies such as metabolic (diabetes, obesity, dysglycemia, dyslipi-
demia, metabolic syndrome, circulating levels of peptide), inflammatory/autoimmune
(inflammatory bowel diseases, Sjögren’s syndrome, rheumatoid arthritis, psoriasis, myas-
thenia gravis) and neurodegenerative disorders (Parkinson’s disease, Alzheimer’s disease,
autism, mild cognitive impairment) [67–89].

Evaluation of the individual ability to perceive single molecules during the gas
chromatography–olfactometry experiments was carried out using the detection frequency
method. This method has the following two advantages: it does not require qualified
evaluators and the results obtained are representative of interindividual variability [90–94].

On the day of the experiment, all participants had fasted for at least 90 min prior to
testing and wore no perfume. Before starting the olfactory tests, each volunteer was read
the experimental protocol that was previously approved by the local Ethics Committee and
was asked to sign an informed consent form (Prot. PG/2018/22 of 2 January 2018).

2.2. Olfactory Sensitivity Screening

The TDI olfactory score, given by the sum of the scores obtained using the tests
of threshold (T-test; score 0–16, obtained as the average of the last 4 reversals of 7),
discrimination (D-test; score 0–16, given by the number of correct discriminations) and
identification (I-test; score 0–16, given by the number of correct identifications), was
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used to evaluate the olfactory function of each individual. T-test, D-test and I-test rep-
resent the three subtests of the Sniffin’ Sticks test (Burghart Instruments, Wedel, Ger-
many), based on odor-containing felt-tip pens, internationally recognized and widely
used for olfactory screening [95] (for details, visit: https://www.uniklinikum-dresden.
de/de/das-klinikum/kliniken-polikliniken-institute/hno/forschung/interdisziplinaeres-
zentrum-fuer-riechen-und-schmecken/neuigkeiten/downloads). The reference values
reported by Hummel et al. [96] were used to classify each participant as normosmic, hy-
posmic or functionally anosmic, based on the TDI olfactory score obtained and according
to sex and age.

During the I-test, each participant also had to give their own assessment of the intensity
with which the smell of coffee contained in pen #10 was perceived (from here on referred
to as the coffee-odor pen), marking a sign on the “Visual Analogue Rating Units” scale
(VARUs; ranging from 0–20) [97].

2.3. Dynamic Headspace Sampling

The volatiles were collected by means of the dynamic headspace method [37,98]. The
headspace method is considered the most appropriate to obtain, in terms of volatiles, an
extract whose composition is closely linked to the quality of the scent assessed by the
consumer [99]. Additionally, it allows us to obtain both extracts for mass spectrometry–gas
chromatography (MS-GC) and a sensory evaluation by a human subject, by means of GC-O
analysis [37].

About 100 g of roasted coffee beans were placed inside a 0.5 L airtight glass vessel with
a flow-through mechanism [39]. The air impregnated with the volatiles was then conveyed
towards a glass tube (5 mm Ø) inserted in the collection port at the top of the vessel,
containing a Porapak Q filter (150/75 mg, 50/80; Supelco, Bellefonte, PA, USA). By flushing
the system with purified air for three hours at a rate of 30 L/h (500 mL/min), volatiles were
recovered at room temperature. Using 1.5 mL of 1-hexane, trapped volatiles were released
from the Porapak Q tube, resulting in a solution containing the isolated volatile chemicals.
Samples were then stored at −20 ◦C until used. To verify the effectiveness of the extract
obtained and the reproducibility of the chromatogram, three GC runs were conducted 24 h
after sample preparation. The obtained chemical profile was identical to that obtained in
the previous study [39] and comparable to that of other studies, providing evidence of its
validity [100–108]. Before each experimental section, a GC analysis was also performed to
verify that the sample was not altered.

2.4. Mass Spectrometry/Gas Chromatography–Olfactometry (MS/GC-O) Analysis

To perform the GC-O analyses, 1 µL of coffee extract volume was injected in the HP-
INNOWax column (30 m × 0.25 mm × 0.50 µm; Agilent 19091N-233; Agilent technologies,
Santa Clara, CA, USA) of the gas chromatograph (GC; Agilent 6890N). The injection volume,
conveyed by a constant flow of 1.2 mL/min of He (carrier gas), was split 1:1 between the
olfactometry detection port (Gerstel ODP3; Mülheim an der Ruhr, Germany) and the mass
spectrometer (MS) detector (Agilent 5973; Santa Clara, CA, USA) coupled to the GC [41].

The injector temperature was set at 250 ◦C and the MS interface temperature was set
at 260 ◦C. The oven temperature was maintained at 40 ◦C (0.2 min), 40 ◦C/min to 90 ◦C
(0.50 min), 2 ◦C/min to 150 ◦C and 30 ◦C/min to 230 ◦C (12 min). The injector mode was
splitless; 230 ◦C and 150 ◦C were, respectively, the temperatures for the ion source and
the quadrupole mass filter. Chromatograms were recorded by monitoring the total ion
current in a 40–550 mass range. The transfer line of the GC-ODP3 sniffing port was held at
220 ◦C [41].

The mass spectrum found in the MS Standard Library NIST2014 (US National Institute
of Standards and Technology; Gaithersburg, MD, USA) was used to identify the volatiles
obtained from the roasted coffee beans by means of the dynamic headspace method [39].
As previously reported [39], we found 50 different volatiles, and the information regarding
“odor type” (i.e., roasted, bready, nutty, etc.) and “odor descriptors” (i.e., coffee, spicy,
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cheese, wood, etc.) were obtained from the Good Scents Company Information System
(www.thegoodscentscompany.com), according to Gonzales-Kristeller and co-workers [109].

Every time the participant detected an odor, they had to record it on a PC, using a
digital recording and reporting system (GERSTEL ODP 3 for Windows 7), as well as their
own subjective evaluation of the odor-active compound perceived, such as the following:
intensity, duration, hedonic value and identification [37,38]. The participants recorded
their evaluation by pressing one of the 4 keys present in the reporting system, which
also provided information on the perceived intensity on a 1–4 scale, as follows: 1 = weak
odor, 2 = distinct odor, 3 = intense odor, 4 = very intense smell. The aromagrams were
superimposed on the chromatograms by means of automatic recording of the retention and
sniffing times of each odor-active compound. To avoid preconditioning, the samples were
presented blindly.

2.5. Statistical Analysis

Fisher’s Exact Test was used to analyze differences in the perception of some odor-
active compounds between females and males.

The Pearson’s correlation test was applied to examine the relationship between the
following: (a) the TDI olfactory score and the total number of odor-active compounds
(hereafter, total-molecules) or the number of odor-active compounds smelling of coffee
(hereafter, coffee-molecules), smelled by each subject, considering females and males both
together and separately; (b) the TDI olfactory score and the intensity perceived by each
subject for the pen of the identification test containing the coffee aroma (hereafter, coffee-
odor pen), considering females and males both together and separately; (c) the intensity
perceived for the coffee-odor pen and the number of total- and coffee-molecules smelled
by each subject, considering females and males both together and separately. Statistical
analyses were performed using GraphPad Prism 6 (GraphPad Software, San Diego, CA,
USA). A statistically significant correlation was defined with a p-value < 0.05.

One-way ANOVA was used to evaluate the effect of the TDI olfactory status of the
subjects on their ability to smell single molecules during the GC-O tests and on the intensity
perceived for the coffee-odor pen.

Two-way ANOVA was used to test for a significant interaction between TDI olfactory
status × sex on the ability to detect individual molecules, both in the case of total- and
coffee-molecules.

Fisher’s test of least significant difference (LSD) was used for post hoc comparisons.
Statistical analyses were performed using STATISTICA for WINDOWS (version 7.0; StatSoft
Inc., Tulsa, OK, USA). p values < 0.05 were considered significant.

3. Results

Table 1 shows that 48 of the 50 compounds found in the headspace of roasted coffee
beans were odor-active for at least two of the participants; in fact, the “ethylbenzene”
(signed as n. 5 in Table 1) was active for just one individual, while the “2-Butanone,
1-(acetyloxy)” (signed as n. 33 in Table 1) was not perceived by any participant. Fur-
thermore, panelists perceived 23 of the 48 odor-active compounds as smelling of coffee,
indicated by numbers 3, 8, 11–12, 14–16, 20–21, 23–24, 26–28, 30, 34, 37, 39–42 and 49–50 in
Table 1. However, only the odor-active compounds written in red in Table 1 are defined in
the literature as coffee odorants. This means that participants correctly identified 18 of the
21 molecules as smelling of coffee.

Table 2 shows the distribution of females and males in relation to their ability to
perceive some odor-active compounds as they are eluted from the chromatographic col-
umn. In particular, a greater number of females than males were able to perceive the
following volatiles: toluene (χ2 = 4.229, p = 0.039), pyridine (χ2 = 9.205, p = 0.003), fur-
fural (χ2 = 5.230, p = 0.022), 2-furanmethanol acetate (χ2 = 5.380, p = 0.020), furan,2,2-
methylenebis- (χ2 = 5.380, p = 0.020) and 2-furanmethanol (χ2 = 5.380, p = 0.020), belonging
to coffee-molecules, and pyrazine 2-methyl-6-(2-propenyl) (χ2 = 6.052, p = 0.014) and 2-

www.thegoodscentscompany.com
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acetylpyrrole (χ2 = 5.490, p = 0.019), belonging to total-molecules. Instead, a greater number
of males than females were able to perceive the following volatiles: D-limonene (χ2 = 4.16,
p = 0.041), 2-propanone 1-hydroxy (χ2 = 4.695, p = 0.030) and pyrazine 3,5-diethyl-2-methyl-
(χ2 = 5.380, p = 0.020), all belonging to total-molecules. No other differences in the percep-
tion of volatiles during GC-O experiments between females and males were found.

Table 1. GC-O analysis of volatile compounds found in the headspace of roasted coffee beans:
odor-active compounds and odor descriptions by subjects.

N. Odor-Active Compound Odor Description df
(F-M)

1 Octane, 3,5-dimethyl- Woody, burnt, unknown 0-3

2 Oxalic acid, isobutyl nonyl ester Burnt, unknown 2-1

3 Toluene Coffee, smoked, solvent, roasted, fruit 14-6

4 β-Pinene Sweet, floral, vanilla, herbs, incense, sulfur, pungent 6-6

5 Ethylbenzene Petrol 0-1

6 p-Xylene Vanilla, medicinal, floral, gas, pungent 4-5

7 Oxalic acid, isobutyl pentyl ester Floral, fruity, vanilla, sweet 5-3

8 Pyridine * Coffee, smoked, roasted, cheese 14-3

9 D-Limonene * Sweet, sour, citrus 1-6

10 Furan, 2-pentyl- * Smoked, plastic, herbs 3-3

11 Pyrazine, methyl- * Coffee, nutty, roasted, smoke, caramellic 3-5

12 Acetoin Coffee, sweet, roasted, parfum, woody, caramellic 10-10

13 2-Propanone, 1-hydroxy- Sweet, pungent, fish, solvent, wet, feet, medicinal 7-15

14 Pyrazine, 2,5-dimethyl- * Coffee, citrus, medicinal, sweet, cocoa, shoes 7-10

15 Pyrazine, ethyl- * Coffee, nutty, egg, pungent, shoes 4-2

16 Pyrazine, 2,3-dimethyl- * Coffee, burnt, caramellic, fruity 4-3

17 DL-2,3-Butanediol * Sweet, caramellic, rose, wet 2-4

18 Vinyl butyrate Floral, parfum, bitter, solvent, pungent, plastic 5-4

19 Hex-4-yn-3-one, 2,2-dimethyl- Sweet, solvent, pungent 2-3

20 Pyrazine, 2-ethyl-6-methyl- * Coffee, sweet, smoked, medicinal, solvent, parfum, roasted,
balsamic, fruit 19-25

21 Pyrazine, 2-ethyl-3-methyl- * Coffee, cocoa, solvent, bitter, nutty, roasted, burnt, medicinal,
solvent, herbs 24-22

22 Pyrazine, 2-(n-propyl)- * Green, musty, woody, earthy, wet, herbs, floral, fruit 18-16

23 Pyrazine, 2,6-diethyl- * Coffee, roasted, earthy, musty, burnt, mushrooms, vegetable 23-21

24 Pyrazine, 3-ethyl-2,5-dimethyl- * Coffee, nutty, roasted, floral, bitter, woody, solvent, wet 18-16

25 2-Propanone, 1-(acetyloxy)- Pungent, parfum, wet 6-3

26 Pyrazine, 2-ethyl-3,5-dimethyl- * Coffee, musty, roasted, wet, herbs, musty 17-19

27 Furfural * Coffee, sweet, solvent, floral, pungent 15-6

28 Pyrazine, tetramethyl- Coffee, roasted, burnt, vanilla, bitter, solvent 13-13

29 Pyrazine, 3,5-diethyl-2-methyl- * Floral, musty, wet, solvent, fresh 11-20

30 Pyrazine, 2-ethenyl-5-methyl- Coffee, nutty, bitter, plastic, earthy, musty 15-11

31 Furan, 2-acetyl- * Parfum 2-0

32 2,3-Pentanedione * Floral, earthy, sweat, musk, cheese, pungent, woody 26-24

33 2-Butanone, 1-(acetyloxy)- ---------- 0-0

34 2-Furanmethanol, acetate * Roasted, fruit, herb, woody, coffee, vegetable, fish 22-12

35 Pyrazine, 2-methyl-6-(2-propenyl)- Pungent, sour, bitter, herbs, spicy 8-1

36 2-Cyclopenten-1-one, 2,3-dimethyl- Sweet, floral, lavender 3-1

37 Acetic acid, diethyl- * Roasted, solvent, rotten, musty, wet earth, coffee 20-13
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Table 1. Cont.

N. Odor-Active Compound Odor Description df
(F-M)

38 Pentanoic acid, 4-oxo-, methyl ester Sweet, nutty 5-2

39 2-Furancarboxaldehyde, 5-methyl- * Coffee, sweet, parfum, solvent 5-4

40 2-Furanmethanol, propanoate * Coffee, pungent, floral, musty, herb, sweet, burnt, vegetable 14-9

41 Furan, 2,2′-methylenebis- * Coffee, nutty, popcorn, roasted, fish, sour, plastic, smoke 22-12

42 2-Furanmethanol * Coffee, smoke, popcorn, nutty, roasted, sweet 22-12

43 Butanoic acid, 3-methyl- * Cheese, smoke, stinky feet, acidic, fruity, putrid 14-19

44 Furan, 2-(2-furanylmethyl)-5-methyl- * Nutty, plastic, unknown 1-2

45 Pyrazine, 2-acetyl-6-methyl Putrid, musty, cheese, medicinal 4-6

46 4(H)-Pyridine, N-acetyl- * Shoes, wet, sweat, plastic, cheese 9-7

47 Octaethylene glycol monododecyl ether Sweat, acidic 2-2

48 2-Hexadecanol Cheese, musty, putrid, plastic, shoes, burnt 24-23

49 N-Furfurylpyrrole * Solvent, cheese, musty, coffee, caramellic, smoked 16-20

50 2-Acetylpyrrole * Coffee, roasted, almond, sweet, burnt, parfum, fresh, popcorn 25-15

Odor-active compounds: list of compounds eluted by the chromatographic column during GC-O experiments
and smelled by at least two subjects who participated in the study. Odor description: specific description that
each subject gave of the odor smelled during the GC-O experiment. df = detection frequency; number of females
and males who smelled the compound. Volatile compounds described in the literature as molecules smelling of
coffee are listed in red print. Asterisk indicates molecules commonly found in the headspace of roasted coffee
beans [100–108].

Table 2. GC-O analysis: sex-related differences for some odor-active compounds.

Molecule Perception Ability F
n (%)

M
n (%) p-Value

Toluene
Yes 14 6

0.039No 20 27

Pyridine Yes 14 3
0.003No 20 30

D-limonene
Yes 1 6

0.041No 33 27

2-Propanone, 1-hydroxy- Yes 7 15
0.030No 27 18

Furfural
Yes 15 6

0.022No 19 27

Pyrazine, 3,5-diethyl-2-methyl- Yes 11 20
0.020No 23 13

2-Furanmethanol, acetate
Yes 22 12

0.020No 12 21

Pyrazine, 2-methyl-6-(2-propenyl)- Yes 8 1
0.014No 26 32

Furan,2,2-methylenebis- Yes 22 12
0.020No 12 21

2-Furanmethanol
Yes 22 12

0.020No 12 21

2-Acetylpyrrole Yes 25 15
0.019No 9 18

Different distribution between females (F) and males (M) in their ability to perceive some molecules from the
headspace of roasted coffee beans. p-value derived from Fisher’s Exact Test. Females (n = 34), males (n = 33).
Volatile compounds described in the literature as molecules smelling of coffee are listed in red print.
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Figure 1A shows the mean values ± SE of the number of odor-active compounds for
individuals with normosmia or hyposmia. One-way ANOVA revealed that normosmic
individuals detected a higher number of total-molecules (F (1,65) = 40.15; p < 0.0001)
and coffee-molecules (F (1,65) = 32.54; p < 0.0001) than hyposmic ones. Figure 1B shows
the same data according to sex. Post hoc comparisons, subsequent to two-way ANOVA
(F (1,63) = 1.2162; p = 0.27), showed that normosmic individuals perceive a larger number
of both total- and coffee-molecules, even when females (p < 0.0001; Fisher’s LSD test)
and males (p ≤ 0.0077; Fisher’s LSD test) are considered separately. Furthermore, among
normosmic individuals, the results show that females perceive a larger number of both
total- (p = 0.0087; Fisher’s LSD test) and coffee-molecules (p = 0.0116; Fisher’s LSD test)
than males.
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Figure 1. Effect of the TDI olfactory status on the ability to perceive single molecules. (A) Mean
values ± SE of the number of total- and coffee-molecules smelled during the GC-O experiments
by subjects, according to their TDI olfactory status. * Indicates significant differences between
individuals with normosmia or hyposmia (p < 0.0001; Fisher’s LSD test subsequent to one-way
ANOVA). (B) Mean values ± SE of the number of total- and coffee-molecules smelled during the
GC-O experiments by females and males, according to their TDI olfactory status. Different letters
indicate significant differences between individuals with normosmia or hyposmia (females: a-ai;
males: b-bi; p < 0.01; Fisher’s LSD test subsequent to one-way ANOVA). * Indicates significant
differences between females and males within the same TDI olfactory status (p ≤ 0.012; Fisher’s LSD
test subsequent to one-way ANOVA).

The results of Pearson’s correlation test, shown in Figure 2A, indicate that the TDI
olfactory score was positively correlated with both the number of total-molecules (Pearson’s
r = 0.62, p < 0.0001) and that of coffee-molecules smelled by each subject (Pearson’s r = 0.52,
p < 0.0001). Positive correlations between TDI olfactory score and the number of both
total and coffee odor-active compounds were also found when females (Total: Pearson’s
r = 0.58, p = 0.0004; Coffee: Pearson’s r = 0.65, p < 0.0001; Figure 2B) and males (Total:
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Pearson’s r = 0.71, p < 0.0001; Coffee: Pearson’s r = 0.48, p = 0.0047; Figure 2C) were
considered separately.
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tion analyses between TDI olfactory score and the number of total- and coffee-molecules smelled by
subjects of both sexes together (A), only females (B) or only males (C).

The mean values ± SE of the intensity perceived for the coffee-odor pen by panelists
classified by their TDI olfactory status are shown in Figure 3A. One-way ANOVA revealed
that the intensity perceived by normosmic individuals was significantly higher than that
of hyposmic individuals (F (1,65) = 10.40, p = 0.0019). Figure 3B shows the same data
according to sex. Post hoc analyses subsequent to two-way ANOVA (F (1,63) = 0.03;
p = 0.87) highlighted that both normosmic females and males reported perceiving the
coffee-odor pen with higher intensity than females (p = 0.0057; Fisher’s LSD test) and
males (p = 0.0072; Fisher’s LSD test) with hyposmia. In addition, females perceived the
coffee-odor pen more intensely than males, both among normosmic (p = 0.001; Fisher’s
LSD test) and hyposmic (p = 0.0267; Fisher’s LSD test) individuals.
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Pearson’s correlation analyses also revealed that the coffee-odor pen intensity reported
by each individual was positively correlated with their TDI olfactory score, in both females
(Pearson’s r = 0.56, p = 0.0005; Figure 4A) and males (Pearson’s r = 0.52, p = 0.0019;
Figure 4B).
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In addition, we found a significant positive correlation between coffee-odor pen
intensity and number of total- and coffee-molecules perceived by each female (Total:
Pearson’s r = 0.63, p = 0.0005; Coffee: Pearson’s r = 0.59, p = 0.0003; Figure 5A) and male
(Total: Pearson’s r = 0.64, p < 0.0001; Coffee: Pearson’s r = 0.54, p = 0.0012; Figure 5B).
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4. Discussion

The olfactory system provides information both on the composition of the external
environment—signaling the presence of dangers, influencing interindividual relationships
and eating behavior—and on the composition of the internal environment, acting as a
metabolic sensor [1–7,11,12,110,111]. Although the number of genes coding for functional
olfactory receptors is approximately 350, it is known that the human nose, through a com-
binatorial code, is capable of perceiving and recognizing thousands of molecules [112–119].
Considering that the odor of foods and drinks is generally represented by a combination
of several chemical molecules, that the sensorially active molecules are those that con-
tribute most to determining the odor of the mixture and that the odor-active compounds
differ between individuals, this may explain why the intensity and pleasantness with
which a complex odor is perceived can vary greatly between individuals and be extremely
personal [33,35,39,41,90].

Based on these considerations, as a first objective of this study we evaluated the ability
of individuals to perceive single molecules as they are separated and eluted from a chro-
matographic column and conveyed, via an olfactometric port, to the nose of participants.
The results obtained with the GC-O experiments show that the number of molecules, both
total or having the coffee-odor, smelled by normosmic participants is significantly higher
than the number of molecules perceived by the hyposmic participants, both when females
and males are considered together and separately. On the basis of the positive correlations
found between the number of molecules perceived and the TDI olfactory score obtained
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by each female and male, these results confirm, on the one hand, the close relationship
between the ability to perceive single molecules and the olfactory function of individuals,
and, on the other hand, that this also applies to females and males separately [39,41]. In fact,
considering that one of the topics still-debated is whether the olfactory function of females
differs from that of males, the main objective of this study was to evaluate the presence
of differences, both qualitative (type of molecules perceived) and quantitative (number of
molecules perceived), in the ability of females and males to perceive the single molecules
that make up a complex mixture. The results show that females perceive a larger number
of both total- and coffee-molecules than males, which is in agreement with previous studies
on sex-related differences in olfactory function, which report that females perform better
than males [52,63,120]. The reasons for this difference may be linked to cognitive, social
and/or genetic factors. Previous studies have shown that females perform better than
males in episodic olfactory memory, appear to be more interested in olfactory stimuli and
are more familiar with odors [54,120–122]; in accordance, the frequency detection method
used in this study to evaluate the ability to perceive single molecules, validated when using
inexperienced evaluators, and especially when the mixture is unknown, requires good
concentration and an ability to recall information from olfactory memory [92,93,123,124].
Regarding genetic factors, recent studies have shown that the expression and functionality
of Kv1.3 channels, abundantly expressed in the olfactory epithelium and olfactory bulb, can
play an important role in influencing the olfactory function of individuals [52,125–127]. In
particular, one major T allele may protect females from olfactory dysfunction, while males
need two T alleles for an olfactory performance that is comparable to that of females [52].

Another interesting aspect highlighted by our results is that females differ from males
not only in the number of molecules perceived, but also in the type. In fact, we found that
for six of the eighteen coffee-molecules, among participants who correctly identified them,
the number of females was significantly higher than that of males. Even among the total-
molecules, i.e., those belonging to the mixture but not classified as coffee odorants, we found
sex-related differences among the participants who smelled them. In detail, two molecules
were perceived by a larger number of females, while three others were perceived by a
larger number of males. Finally, our results showed that females reported perceiving
the coffee-odor pen with a significantly higher intensity than males, although, for both
sexes, the correlation analyses showed that the intensity perceived by each participant was
significantly correlated with their TDI olfactory score. This result can be partly explained by
the fact that females not only perceive a larger number of both total- and coffee-molecules,
but among the participants who smelled some of the coffee-molecules, the larger number
is represented by females. Taken together, these findings support previous studies that
highlight a better olfactory performance of females compared to males, but also the idea that
each individual has their own sensory idea of a complex odor, despite everyone defining it
as the same thing.

In this study, the olfactory function of individuals was assigned by means of the TDI
olfactory score obtained from each participant. Since the TDI score is given by the sum
of the score obtained with the olfactory threshold test (T-test), discrimination (D-test) and
identification (I-test) of odors, the state of hyposmia can be determined by the reduced
ability to perceive and/or discriminate and/or identify odors. We have previously found
that in healthy subjects the main determinant of the TDI score is T-score, followed by D-
score and finally by I-score [59]. This aspect has particular importance if we consider that, in
GC-O experiments, the ability to perceive and discriminate odors is fundamental. First, the
lower the olfactory threshold, the larger the number of molecules that can be perceived; in
fact, even molecules that are subthreshold for individuals with reduced olfactory perception
could instead be suprathreshold for those who show a better olfactory threshold. Second, a
reduced ability to discriminate odors could cause similar odors to be perceived as the same,
thus reducing the number of odor-active compounds. In agreement with this, a previous
study highlighted that the ability to perceive single molecules was associated with the
threshold olfactory score obtained by participants [41]. Furthermore, the differences found
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between sexes are also in agreement with recent findings on the differences between the
TDI olfactory score of females and males, due to differences between the olfactory threshold
and discrimination scores [52].

5. Conclusions

By considering that the olfactory function plays an important role in food choices,
the ability to perceive odors, both simple and complex, as well as the type of molecules
that are perceived, it is of particular importance for the state of health of individuals. In
fact, the number, type and intensity with which the molecules are perceived can influence
the quality and quantity of a meal. Consequently, if this is unbalanced towards foods
with high energy content, we observe an increase in body weight and the appearance of
unhealthy conditions such as dysglycemia and/or dyslipidemia, just to name a couple. A
good olfactory function, on the other hand, favors both less abundant meals and meals rich
in healthier foods such as fruit and vegetables.

The considerations emerging from the results of this study provide the basis for
evaluating the following factors in future studies with a larger sample: (a) further dif-
ferences, especially qualitative, between females and males in their ability to perceive
single molecules as they are eluted from a chromatographic column; (b) the relationships
between number and/or type of molecules perceived, and the olfactory threshold and
discrimination in females and males separately and (c) the role of polymorphisms of some
genes involved in the olfactory function of individuals.
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