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Abstract—Deep learning algorithms have been shown to be
powerful in many communication network design problems,
including that in automatic modulation classification. However,
they are vulnerable to carefully crafted attacks called adversarial
examples. Hence, the reliance of wireless networks on deep
learning algorithms poses a serious threat to the security and
operation of wireless networks. In this letter, we propose for
the first time a countermeasure against adversarial examples
in modulation classification. Our countermeasure is based on
a neural rejection technique, augmented by label smoothing and
Gaussian noise injection, that allows to detect and reject adver-
sarial examples with high accuracy. Our results demonstrate that
the proposed countermeasure can protect deep-learning based
modulation classification systems against adversarial examples.

Index Terms—deep learning, adversarial examples, radio mod-
ulation classification, neural rejection, label smoothing

I. INTRODUCTION

Automatic modulation classification (AMC) is widely used
in both civilian and military communications. For example,
in civilian applications, it is useful for adaptive modulation
and coding schemes, where the modulation and coding will
be changed according to the instantaneous signal to noise
ratio (SNR) and fading. Identification of modulation at the
receiver can simplify the overhead bandwidth required for
informing the receiver of any changes in modulations. AMC
is also used for detection of primary users in cognitive radio
networks, where the aim is to sense active transmitters and
if there is none, the corresponding frequency can be used
by an opportunistic transmitter [1]. In addition, AMC is very
important in military applications for automatic discovery of
modulations used by the adversaries [2].

Historically, radio signal classification relies on carefully
hand-crafting signal features which requires expert knowledge
and experience. As proven to be successful in many other
application domains, deep learning has recently been applied
to radio signal classification [3, 4]. Despite of its potential
benefits, previous work [5] has shown that the deep neural
networks (DNNs) are highly vulnerable to adversarial exam-
ples (attacks), where the original inputs are perturbed with
imperceptible and carefully designed modifications which can
mislead classification outputs of DNNs.

The effect of adversarial examples in modulation classifi-
cation can be viewed differently for the civilian and military
scenarios. In the civilian setup, adversarial perturbation can

be viewed as a jamming strategy where an eavesdropper
closer to the transmitter could decode the signals and transmit
adversarial perturbations on the fly, assuming that the trans-
mitter would continue with the same modulation type for a
reasonable amount of time, i.e., spanning multiple symbols.
At the legitimate receiver, the legitimate transmitted signals
will be corrupted by the addition of perturbation signals which
will lead to misclassifications at the receiver. In the military
domain, one may wish to eavesdrop the communications
of adversaries. Hence automatic discovery of modulation is
required at the receiver. In this case, knowing the possibility
of eavesdroppers, the transmitter of the adversaries could add a
small amount of perturbations so that AMC at the receiver will
fail. The defense technique proposed in this letter is applicable
to both scenarios, however, in order to explain the concepts,
we focus only on one scenario, the military one.

For the military scenario, surveillance and threat analysis
in electronic warfare monitors the radio transmission channels
for communication between the adversary’s units as shown
in Figure 1. Once a communication activity is detected in a
certain frequency band, modulation classification becomes one
of the preliminary processes required for the recovery of the
transmitted signal. Hence, the adversary will try to increase
the difficulty of modulation classification. In short, in this
military scenario, when an adversary transmits signals to its
own receiver, the opponent (military/defender) aims to apply
AMC and decode the signals. In order to deceive the opponent,
the adversary will add a small amount of perturbation, hence
the automatic discovery of the modulation by the opponent
receiver will be unsuccessful. Hence, a countermeasure using a
neural rejection (NR) system is employed at the receiver of the
opponent to defend against adversarial perturbations. In the ab-
sence of a defense based on NR, every misclassifications will
lead to decoding failure. However, in the presence of a defense
based on NR, the aim of the opponent is to either correctly
classify the modulation or to reject adversarial examples. In
the case of rejection of adversarial examples, the opponent will
be able to recognize the existence of adversarial transmissions
and the modulation classification will be deemed unreliable.
Therefore, the opponent can avoid wasting computational
resources with futile attempts of signal decoding.

In this work, we consider a worst-case attack scenario
for the defender, i.e. all attacks correspond to the white-box
attacks [6]. To be specific, there are three assumptions for the
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Fig. 1: A military scenario for the adversarial examples in
modulation classification.

white-box attack. First, the adversary knows the exact input.
Second, the adversary is synchronous with the transmitter
such that each element of the input is perturbed with its
corresponding element of the carefully-designed adversarial
perturbation. These two conditions are satisfied in this threat
scenario as the adversary is the transmitter itself. Third, the
adversary should know the architecture of the opponent’s
classifier, which could come from separate intelligence.

Previous work has shown that the deep learning (DL) based
modulation classification is extremely vulnerable to adversarial
examples generated using fast gradient method (FGM) [7]. The
perturbation is considered imperceptible if the perturbation-to-
noise ratio (PNR) is less than one as the perturbation is of the
same order as or even below the noise level [7]. However, to
the best of our knowledge, no defense mechanism for adversar-
ial attacks against modulation classification has been proposed
so far. We propose for the first time a defense technique
against adversarial attacks in radio signal classification. To
make clear our contribution to the state of the art and for a fair
comparison, we use the same dataset and the same DNN as in
[7]. In this work, we show that an NR scheme [6] can protect
the modulation classification system considerably as compared
to the performance of an undefended DNN against adversarial
attacks. To enhance the defense further by taking advantage
of the robustness of label smoothing (LS) and Gaussian noise
augmentation (GNA) [8], we propose a new NR system using
LS and GNA, denoted as LS-GNA based NR system. The
main contributions are as follows:
• We are the first to propose a countermeasure against

adversarial attacks in radio signal classification;
• We propose a new defense technique using a rejection

technique augmented by label smoothing and Gaussian
noise injection. We demonstrate through experiments that
the proposed LS-GNA based NR achieves a high classifica-
tion accuracy against adversarial examples and outperforms
both undefended DNNs and defense techniques that do not
use label smoothing and Gaussian noise injection.

II. THE PROPOSED COUNTERMEASURE AGAINST
ADVERSARIAL ATTACKS

A. DNN against FGM Attacks
We first illustrate the undefended DNN against FGM attack,

which is considered as a benchmark. We used the same deep
convolutional neural network (CNN) model VT-CNN2 as that

used in [7]. To train the CNN classifier, we randomly choose
half of the 110000 data samples as the training set and the
rest as the test set. After training, to generate adversarial
examples to evaluate the robustness of undefended VT-CNN2
classifier against FGM attack, we randomly choose 1000
samples from the test dataset corresponding to an SNR of
10dB. We separate these 1000 samples into two sets called set
I and set II, that correspond to the samples that are correctly
classified and misclassified respectively by the trained VT-
CNN2 in the absence of adversarial perturbations. Then we
generate adversarial examples separately for set I and set
II. The rationale is that the data set II has difficult samples
which are misclassified even in the absence of adversarial
perturbations, while data set I consists of data that are correctly
classified. Therefore, it is important to analyze independently
these two data sets, and to evaluate the capability of the
proposed countermeasure to detect adversarial manipulations
of samples from the good data set I.

The FGM attack in our work is adopted from [7]. For all the
possible targeted classes, we first calculate the gradient of the
loss function OxL(x, eclass-index), where L(·) means the cross
entropy loss of the predicted output and the targeted class. Let
rnorm denote the normalized gradient. The perturbation rx
is calculated by multiplying rnorm by the perturbation norm
". For every data sample, the perturbation norm " should be
chosen as the smallest " that leads to misclassification. This
can be obtained using a line search or using a computationally
efficient bisection method. For a given ", the corresponding
PNR is "2(SNR + 1)/ kxk22. Hence, for the analysis of
performance in terms of accuracy against PNR, we can set
" as " =

q
PNR · kxk22 /(SNR+ 1) for a required PNR.

Finally, the adversarial example for a specific targeted class is
obtained by adding the perturbation rx to the original input.

B. Neural Rejection against FGM Attacks
We propose to employ a robust defense called NR system

for modulation classification. The NR system can detect the
adversarial attacks through a simple rejection mechanism [6].
For a given data sample x, the NR system extracts the last
layer outputs of a pre-trained DNN as features and feeds them
into a one-versus-all support vector machine (SVM) classifier
to generate decision scores for all the possible classes. If the
maximum of decision scores associated with all the classes is
less than a specific threshold ⇥, the data sample x would be
deemed an adversarial attack and will be rejected.

The rationale behind the rejection of adversarial examples
is based on the fact that, for adversarial examples, the values
of outputs of neurons of DNN become larger and larger during
the propagation over the layers and the values are much
larger than the values of the outputs related to the “normal”
samples for the last layers. This phenomenon is known as
“amplification” for the outputs of neurons of DNN during the
“propagation” of adversarial examples through the layers of
DNN. This “amplification” depicted in Figure 2 does not exist
for “normal” samples even if they are noisy. To demonstrate
this, we calculated the cosine distance between the samples
at each activation layer, when the input to the DNN was
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the normal signal x and the attack signal ex. The average of
the cosine distance was obtained using all the test samples
corresponding to SNR=10dB. The cosine distance indicates the
dissimilarity between x and ex, and is calculated as 1� x·ex

kxk·kexk
where x · ex is the inner product between the vectors x and
ex. For comparison, we also calculate the cosine distance
between normal and noisy signals for each layer, where noisy
signals indicate the normal samples augmented with random
noise. Both FGM attacks and noisy signals have the same
amount of perturbation. As shown in Figure 2 for the mod-
ulation classification, the dissimilarity between FGM attacks
and normal signals becomes progressively larger during the
propagation over the layers of DNN. The differences between
FGM attacks and benign samples are much larger than that
related to the noisy signals for the last layer. In other words,
there is a sort of “amplification” for the difference between
FGM attacks and benign samples during the “propagation”
of adversarial examples through the layers of DNN. This
amplification phenomenon is significant at the last layer, hence
it is evident that anomalies due to adversarial perturbation of
the radio signal can be detected and rejected at the last layer
DNN output. Hence, our neural rejection technique works
using the input from the last layer of DNN.

Fig. 2: Conceptual explanation of the “amplification” phe-
nomenon of adversarial examples in deep neural networks.

C. LS-GNA based NR System against FGM Attacks
To further enhance our defense, we propose a new LS-

GNA based NR system which obliges the adversary to use
much more perturbation (transmission) power to fool the
defender. The underlying concept of label smoothing and GNA
stems from the fact that overconfidence in prediction can
yield the DNN to be sensitive to adversarial perturbations.
Hence uncertainty is introduced deliberately to the labels
of the training dataset in the form of label smoothing and
to the training data samples by GNA. This helps avoiding
overfitting, but also helps the DNN and the NR system to
be robust to adversarial attacks. LS is traditionally used to
prevent over-fitting in general classification problems [8]. It
converts one-hot encoded label vectors into smoothed vectors
that represent a low-confidence classification [8]. Specifically,
instead of using one-hot encoded labels l to train the CNN,
smoothed labels l̃ as l̃ = l � ↵ ⇥ (l � 1

Nc
) are used, where

Nc is the number of classes, and ↵ 2 [0, 1] is the smoothing

parameter. In this work, we chose ↵ = 0.1. We provide an
example to illustrate the LS technique. Assume that the one-
hot label for the modulation QPSK is (1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0), then the smoothed label for the LS scheme can
be (0.9091, 0.0091, 0.0091, 0.0091, 0.0091, 0.0091, 0.0091,
0.0091, 0.0091, 0.0091, 0.0091). LS helps DNN to have a
better generalization and not being over-confident. A criterion
for analyzing the robustness of defense against adversarial
perturbation is the ratio of the logits difference to the gradient
difference [8]. For the proposed NR system, this can be written
as,

"L >
Sy(x)� Sȳ(x)

kOxSy(x)� OxSȳ(x)k1
(1)

where Sy(x) and Sȳ(x) are the SVM outputs of the NR system
corresponding to the true class y and the nearest competing
false class ȳ, respectively. OxSy(x) and OxSȳ(x) are the
gradients of Sy(x) and Sȳ(x) with respect to the input x,
respectively. The numerator quantifies the distance between
the true class and the nearest competing false class. The
denominator characterizes the sensitivity of the perturbation
to the output of the SVM of the NR system. Hence, a good
defense should maximize the inter-class distance and minimize
the sensitivity of the perturbation to the output of the NR based
classifier. Using the GNU radio dataset used in the simulation
section, we obtained the mean of "L for the NR system with
and without LS-GNA as 0.00167 and 0.00113. Hence, LS-
GNA is able to enhance the robustness of NR system against
adversarial perturbations.

The architecture of the LS-GNA based NR system is shown
in Figure 3. As the first stage of the LS-GNA based NR
system, the VT-CNN2 classifier is trained using LS and GNA.
For GNA, we added zero mean Gaussian random noise into
the data samples during the training of CNN. The variance of
the Gaussian noise is 0.003. After training the VT-CNN2 clas-
sifier, we randomly choose 10000 samples from the training
set and extract the last layer features of these samples from the
pre-trained CNN. These features were used to train the one-vs-
all SVM classifier. The three-fold cross-validation was adopted
to choose the hyper-parameters of the SVM classifier. During
the testing phase, given an input signal x, the outputs of the last
feature layer from VT-CNN2 classifier are extracted as features
f(x) and fed into the connected SVM classifier as shown in
Figure 3. Then the predicted decision scores S1(x), ...SNc(x)
(i.e., the predicted outputs from SVM classifier) for all the
possible classes were generated. The NR will make a decision
in favour of class c⇤ according to the decision function in (2).

c⇤ = arg max
k=1,...,Nc

Sk(x), only if Sc⇤(x) > ⇥ (2)

The input signal x is considered as an adversarial example if
the maximum of the decision scores is less than the predefined
rejection threshold ⇥. The algorithm for generating FGM at-
tacks for the LS-GNA based NR system is shown in Algorithm
1. Compared to generating FGM attacks for the undefended
DNN, there are two main differences in Algorithm 1. The
first one is the stopping criterion. In addition to the condition
that the predicted label of the generated adversarial example
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Fig. 3: The architecture of the LS-GNA based NR system.
The outputs of the last layer of the VT-CNN2 are extracted as
features and fed into the SVM classifier that can detect and
reject adversarial examples.

is unequal to the true label, we have another condition that
the maximum of the decision score of the crafted adversarial
example is larger than the rejection threshold ⇥ as in line 5.
The second difference is that the objective function L (x, ·) is
expressed as Sy(x)�St(x), where y means the true class and
t means the targeted wrong class. Therefore, given an input
signal x, the attacker attempts to minimize the confidence
score of x which belongs to the true label while maximizing
the confidence score of x which belongs to the wrong class in
order to achieve the false classification, i.e. targeted evasion.
To generate FGM attacks for LS-GNA based NR system, the
gradient of the objective function L (x, ·) with respect to x is
expressed as:

OL(x, ·) = OSy(x)� OSt(x) (3)

To calculate OS(x), we first calculate the gradient of the
feature vector f(x) of VT-CNN2 classifier to the input data
@f(x)
@x using automatic differentiation package and calculate

the gradient of RBF-SVM output with respect to the feature
vector @S(x)

@f(x) manually. Then we obtain OS(x) = @S(x)
@f(x) ·

@f(x)
@x .

The gradient of RBF-SVM @S(x)
@f(x) is obtained as follows. Let

f(x) be replaced by ⇠ for notational simplicity. The decision
function of RBF-SVM classifier is expressed as:

S(⇠) =
KX

i=1

↵iyiexp(�� k⇠ � ⇠ik2) + b (4)

where ⇠i are the support vectors, yi is the class label, b is
a bias term, ↵i are dual variables and � is an RBF kernel
parameter. Thus, the gradient of SVM classifier is:

OS(⇠) =
KX

i=1

�2�↵iyiexp(�� k⇠ � ⇠ik2) · (⇠ � ⇠i) (5)

Finally, the gradient for generating FGM attack is obtained by
combining the above two gradients using the chain rule.

III. RESULTS AND DISCUSSION

All the algorithms are written in PyTorch and executed
by NVIDIA GEforce RTX 2080 Ti GPU. The dataset we
used is the same as that used in [7], i.e., the GNU radio
ML dataset RML2016.19a, https://www.deepsig.ai/datasets. It

Algorithm 1 FGM-based Adversarial Examples for LS-GNA
based NR

Input:
• input x, true label y and the number of classes Nc

• the model S(·, ✓) and the rejection threshold ⇥
• allowed perturbation norm ", allowed PNR and SNR

Output: ex: the adversarial examples.

1: " =
q

PNR · kxk22 /(SNR+ 1)
2: for t in range(Nc) do
3: rnorm = �1 · (kOxL(x, et)k2)�1

OxL(x, et)
4: ex = x+ " · rnorm
5: Until arg max(S(ex, ✓)) 6= y and max(S(ex, ✓)) > ⇥
6: return ex

contains 220000 input samples, and each sample corresponds
to one modulation scheme at a specific SNR. There are 11
modulation categories in this dataset including BPSK, QPSK,
8PSK, QAM16, QAM64, CPFSK, GFSK, PAM4, WBFM,
AM-SSB, and AM-DSB. The samples are generated for 20
different SNR levels from -20dB to 18dB with a step size
of 2dB. Each sample has 256 dimensions containing 128 in-
phase and 128 quadrature components. Half of the samples
are training set and the rest are testing set.

In Figure 4, we compare the performance against FGM
attacks of the undefended DNN (the same used in [7])
with the ones of the DNN protected with the ordinary NR
countermeasure of [6], and the ones of our LS-GNA based
NR countermeasure. Similar to the case for DNN, we have
separated the test data set into set I and set II based on the
correct and incorrect classifications by the LS-GNA based
NR system. Then the data samples from set I and set II
are used to generate adversarial examples respectively. The
value of rejection threshold was set so that the rejection
rate is 10% when the original benign data samples from
set I are applied. In the absence of adversarial perturbation
(i.e., for " = 0), classification accuracy is computed as
usual, but considering rejects as errors; In the presence of
adversarial perturbation (i.e., for " > 0), all test samples
become adversarial examples, and we consider them correctly
classified if they are assigned either to the rejection class
or to their original class (which typically happens when the
perturbation is too small to cause a misclassification). It can
be observed that for both the datasets I and II, our LS-GNA
based NR defense outperforms the unprotected DNN and the
simple NR defense. The accuracy of NR defense is also higher
than that of the unprotected DNN. We conclude that in terms
of the robustness against the FGM attack, both NR and LS-
GNA based NR countermeasures outperform a DNN without
any countermeasure, i.e., both countermeasures oblige the
adversary to use much more perturbation (transmission) power
to fool the defender. Furthermore, the performance of DNN,
NR, and LS-GNA based NR countermeasure against jamming
attacks is compared with that of FGM attacks for the complete
dataset (i.e., set I and set II) in Figure 5. In our jamming
attacks, the normal signals are augmented with the random
Gaussian noise. As seen in Figure 5, the proposed NR and LS-
GNA based NR countermeasures are robust against jamming

https://www.deepsig.ai/datasets


5

attacks, in addition to its superior performance against FGM
based adversarial attacks. Finally, we provide the accuracy
(for the complete dataset) of the proposed LS-GNA based
NR system against FGM attacks for different modulation
schemes in Table I. Due to low number of samples for each
modulations, we have averaged accuracy performance using
10 repetitions of the training of DNN and LS-GNA based NR
system. We present the performance of modulation schemes
for which the normal accuracy (i.e., the accuracy without
perturbation) is higher than 40%. This is because when the
normal accuracy of certain modulation scheme is very low,
most of the samples are wrongly classified and can be regarded
as adversarial examples even without perturbation. Hence, it
is more appropriate to analyze the performance of modulation
schemes for which the normal accuracy is high. We observe
from Table I that the proposed LS-GNA based NR system can
defend all the modulations better than the undefended DNN
except for PAM4 scheme when PNR = �10dB. For all
other modulation schemes, LS-GNA based NR outperforms
the undefended DNN significantly.

Fig. 4: Results of the undefended DNN, the DNN protected
with the ordinary NR countermeasure, and the proposed LS-
GNA based NR countermeasure.

Fig. 5: Results of the undefended DNN, the DNN protected
with the ordinary NR countermeasure, and the proposed LS-
GNA based NR countermeasure against jamming attack.

IV. CONCLUSIONS

We have proposed for the first time a defense mechanism
against adversarial attacks for automatic modulation classi-
fication. Using real radio signals, we have shown that our

TABLE I: Accuracy of LS-GNA based NR system against
FGM attacks for different modulation schemes.

Modulation
Scheme

DNN
(PNR=-10dB)

LS-GNA based NR
(PNR=-10dB)

DNN
(PNR=0dB)

LS-GNA based NR
(PNR=0dB)

8PSK 1.23 54.35 0.0 5.94
AM-DSB 61.03 85.91 21.01 61.26
AM-SSB 16.48 98.49 0.12 59.22

BPSK 64.41 65.51 0.18 6.96
CPFSK 65.66 97.83 1.57 34.46
GFSK 74.46 89.46 1.33 36.27
PAM4 86.33 82.85 36.97 46.23

QAM64 12.67 59.05 0.35 34.44
QPSK 1.91 31.0 0.0 2.11

countermeasure based on a rejection technique, augmented
by label smoothing and Gaussian noise injection, has the
capability to defend DNN networks against adversarial per-
turbations. As a consequence of this, adversaries will be
forced to increase perturbation (transmission) power to fool
the defender. The proposed countermeasures are applicable to
the jamming attack scenarios as well. Our future work will
extend these techniques to black box and grey box attacks.
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