24° Convegno Nazionale

In collaborazione con
EAGE - SEG
SEZIONE ITALIANA
5° Convegno Nazionale

Roma
15-17 novembre 2005
Consiglio Nazionale
delle Ricerche
Piazzale Aldo Moro 7

RIASSUNTI ESTESI
DELLE COMUNICAZIONI
24° Convegno Nazionale
Riassunti Estesi delle Comunicazioni

Comitato organizzatore

D. Slejko
A. Akinci
D. Albarello
F. Antonioli
W. Böhm
A. Caporali
E. Cardarelli
F. Chiocci
C. Del Negro
E. Del Pezzo
M. Dragoni
C. Eva
M. Fedi
P. Galli
C. Godano
I. Guerra
F. Mirabella
M. Mucciarelli
M. Pipan
G. Ranieri
A. Rapolla
R. Sabadini
F. Sabetta
L. Sambuelli
R. Scarpa
U. Tinivella
S. Tinti
L. Zanzi

A cura di: D. Slejko e A. Rebez
Con la collaborazione di: M. Santulin
Copertina e impaginazione: Nino Bon
Stampa: Tergeste grafica & stampa, Trieste
Finito di stampare nel mese di novembre 2005
APPLICAZIONE DI METODOLOGIE GEOFISICHE INTEGRATE ALLA CARTOGRAFIA DEI SUOLI

G. Cuozzo, V.A. Marrone, M. Orrù e A. Vacca

Dipartimento di Scienze della Terra, Università degli Studi di Cagliari

Il rilevamento del suolo finalizzato alla produzione di carte pedologiche prevede lo scavo di profili e l’esecuzione di trivellate. La densità delle osservazioni è determinata dalla scala d’indagine, in funzione del livello di dettaglio desiderato (Giordano, 1999). Le metodologie tradizionali utilizzate nel rilevamento del suolo si basano sull’analisi dei fattori della pedogenesis e sulle relazioni suolo-paesaggio (Hudson, 1992). Vengono così determinate delle aree omogenee che indirizzano la scelta dei siti d’osservazione. Nel caso di rilevamenti di grande dettaglio, quali ad esempio quelli per l’agricoltura di precisione, le metodologie tradizionali mal si adattano alla necessità di acquisire un elevato numero di informazioni rilevanti rispetto alle proprietà del suolo. L’insostenibilità economico delle misure dirette, che dovrebbero essere numerosissime, e l’impossibilità di operare un campionamento fitto, che porterebbe alla distruzione dell’oggetto dello studio, hanno determinato una crescente attenzione verso l’utilizzazione di metodi indiretti capaci di produrre, a basso costo, informazioni di elevata qualità sulle proprietà rilevanti del suolo e sulla loro distribuzione spaziale. Recentemente, per la mappatura di variazioni pedologiche, sono stati utilizzati anche alcuni metodi geofisici (Godwin e Miller, 2003; McBratney et al., 2003; Sommer et al., 2003). In particolare, la conducibilità elettrica apparente del suolo (o il suo reciproco) è un dato aggregato influenzato dalla mineralogia, salinità, umidità, tessitura, capacità di scambio cationico, temperatura e profondità del suolo, ed in quanto tale può essere considerata una buona misura composta del suolo stesso. Nel presente lavoro vengono applicate al rilevamento ed alla cartografia del suolo due metodologie di prospezione geofisica: l’elettromagnetismo indotto (EMI) e la geoeletrica.

L’indagine si è svolta in due aree campione, situate nel territorio comunale di Monastir (Sardegna meridionale) e precedentemente rilevate con tecniche tradizionali per la realizzazione di una carta dei pedopaesaggi in scala 1:10.000 (Orrù e Vacca, 2004), posizionate lungo due troncati che, partendo da un alto morfologico, attraversano diverse unità pedologiche e terminano in corrispondenza di un basso morfologico. L’area campione 1, lunga 300 m e larga 12 m, è situata su depositi alluvionali terrazzati del Pleistocene che ricoprono delle arenarie, talora microconglomeratiche con intercalazioni siltose ed argillose, dell’Eocene medio-Oligocene inferiore (Formazione del Cixerri). Nell’area campione 2, lunga 288 m e larga 12 m, affiorano delle andesiti ologeomiche, poste a contatto per faglia con la Formazione del Cixerri. Quest’ultima non affiora in quanto ricoperta dai coluvi andesitici, il cui spessore aumenta spostandosi verso il basso morfologico. Per l’acquisizione del dato EMI (5 dati al secondo) sono stati utilizzati il GEM300 (Geophysical Survey System) e l’EM38DD (Geonics Ltd.). Il parametro ricavato è la conducibilità elettrica apparente (CEa). Il GEM300 acquisisce in multifrequenza (sono state utilizzate le frequenze 8,5 kHz, 11,3 kHz, 15,0 kHz e 18,2 kHz corrispondenti a profondità teoriche d’indagine pari a circa 3,5 m, 2,5/3,0 m, 2,0 m ed 1,0 m rispettivamente) L’EM38DD è formato da due strumenti EM38
assembleti perpendicolarmente tra loro, ognuno dei quali acquisisce in monofrequenza. Il dipolo orizzontale opera a 17,0 kHz, quello verticale a 14,6 kHz. Le profondità teoriche d’indagine sono, rispettivamente, di circa 0,75 e 1,5 m (McNeill, 1986). Col GEM300 la prospezione è avvenuta, in ciascuna area d’indagine, lungo 4 profili paralleli con interdistanza di 4 metri. Con l’EM38DD l’interdistanza è stata di 2 m; pertanto la prospezione è avvenuta lungo 7 profili paralleli. L’EM38DD è stato interfacciato ad un GPS. La prospezione geoelettrica è stata effettuata solo nell’area campione 1, lungo 3 stendimenti sovrapposti di 23 m, 11,5 m e 6,9 m, utilizzando i 24 elettrodi del georesistivimetro Syscal (Iris Instruments), con interdistanza rispettivamente di 1 m, 0,5 m e 0,3 m. Il parametro ricavato è la resistività elettrica (RE). I dati acquisiti nelle prospezioni EMI sono stati elaborati col programma Surfer 8.0 (Golden Software, Inc., Golden, Colorado), mentre per quelli acquisiti nella prospezione geoelettrica è stato utilizzato il programma Trasform 3.4 (Fortner Software). In entrambi i casi l’approccio geostatistico è quello dell’OK (Ordinary Kriging).

? stato scelto un variogramma lineare, in cui la stima del valore del dato in un punto non campionato è ottenuta come combinazione lineare pesata delle osservazioni ricadenti in un suo intorno. Per verificare le ipotesi emerse durante l’analisi dei dati geofisici, è stata effettuata una campagna pedologica di controllo, con scavo di profili e trivellate.

Relativamente all’area campione 1, le quattro mappe di CEa, una per ogni frequenza utilizzata, realizzate con i dati acquisiti dal GEM300, hanno consentito l’identificazione di tre zone sufficientemente omogenee, comprese tra 0 e 65 m, tra 65 e 248 m, e tra 248 e 300 m. All’aumentare della frequenza utilizzata, e quindi al diminuire della profondità d’indagine, i valori di CEa aumentano, pur rimanendo invariata la zonazione. Ciò è stato messo in relazione alla maggiore influenza esercitata dal suolo, più conduttivo del substrato geologico, col diminuire della profondità d’indagine. Infatti, comunemente i materiali non consolidati presentano, a causa di una più elevata porosità, un maggiore contenuto d’umidità rispetto ai materiali consolidati e sono di conseguenza più conduttivi (McNeill, 1980). Le mappe realizzate con i dati acquisiti dall’EM38DD presentano una zonazione simile a quella precedentemente descritta. Il confronto tra le due mappe ottenute con l’EM38DD evidenzia valori assoluti di CEa maggiori per la frequenza più bassa (14,6 kHz) e quindi per una maggiore profondità d’indagine (1,5 m). Anche il rilevamento tradizionale effettuato nell’area aveva identificato tre diverse unità pedologiche. Le differenze sostanziali tra i suoli, per quanto concerne la loro risposta all’indagine EMI, sono principalmente dovute al contenuto in scheletro (frammenti >2 mm), alla profondità degli orizzonti con struttura massiva, alla presenza di condizioni aquicche (sensu Soil Survey Staff, 2003), ed al contenuto in CaCO₃. I valori medio-alti di CEa della zona omogenea compresa tra 65 e 248 m sono da imputare alla elevata profondità dell’orizzonte massivo (115 cm) ed al ridotto contenuto in scheletro (10% nei primi 40 cm, assente oltre). La minore profondità del limite superiore dell’orizzonte massivo ed il maggiore contenuto in scheletro dei suoli presenti nelle altre due zone omogenee determinano una riduzione dei valori di CEa. Dal confronto tra la carta pedologica tradizionale e le mappe EMI emerge una sostanziale corrispondenza del limite individuato a 65 m, ma non di quello a 248 m. La successiva campagna pedologica di controllo ha evidenziato come quest’ultimo limite geofisico rappresenti in effetti il passaggio tra due unità pedologiche distinte. Pertanto, l’iniziale rilevamento in scala 1:10.000, effettuato con tecniche
tradizionali, aveva comportato un errore nella posizione del limite pedologico. La prospezione geoelettrica è stata effettuata tra i 250 ed i 273 m. Le sezioni di RE corrispondenti ad una profondità d’indagine di 4,5 e 2,2 m hanno consentito l’individuazione di due zone ben distinte: una superficialé ed una profonda. La sezione di RE corrispondente ad una profondità d’indagine di 1,25 m ha messo in evidenza solo la zona più superficialé. I valori medio-alti di RE della porzione tra 0 e - 1,20/1,80 m sono ascrivibili alla presenza dei depositi terrazzati del Pleistocene medio, contenenti un’elevata quantità di scheletro (25-70%). I valori medio-bassi di RE della zona più profonda (tra -1,20/1,80 e - 4,50 m) sono attribuibili alla presenza della Formazione del Cixerri, caratterizzata dall’assenza di scheletro. I risultati conseguiti concordano con quanto apparso dall’analisi delle mappe realizzate con i dati acquisiti nella prospezione EMI.

Per quanto concerne l’area campione 2, le quattro mappe di CEa realizzate con i dati acquisiti dal GEM300 evidenziano la tendenza ad una diminuzione progressiva dei valori, da livelli medio-alti a livelli bassi, nel tratto compreso tra 0 e 160 m, con un aumento del gradiente a circa 100 m. I valori di CEa aumentano progressivamente a partire da 160 m, assestandosi su livelli medi nel tratto compreso tra 180 e 262 m, per poi riassumere livelli medio-bassi nella porzione finale del transetto. Anche in quest’area, si è registrato un aumento dei valori assoluti di CEa all’aumentare della frequenza utilizzata, ma la zonazione è rimasta invariata. Il confronto tra le due mappe ottenute con l’EM38DD evidenzia valori assoluti di CEa maggiori per la frequenza più alta (17,0 kHz) e quindi per una minore profondità d’indagine (0,75 m). I caratteri morfologici ed analitici dei suoli presenti nell’area campione 2 consentono di interpretare tale differenza solo per la porzione centrale e finale dell’area d’indagine, dove lo spessore dei sola è sempre inferiore a 0,75 m. L’iniziale rilevamento del suolo in scala 1:10.000 aveva identificato quattro unità pedologiche differenti. Un ampio tratto dell’area campione 2 presenta suoli sviluppatisi su un colluvio andesitico che ricopre, con spessori crescenti verso la parte bassa del versante, la Formazione del Cixerri. La progressiva diminuzione dello spessore del colluvio, e conseguentemente dei suoli, nel risalire il versante d’indagine ha determinato la progressiva riduzione dei valori di CEa. La successiva campagna pedologica di controllo ha evidenziato come il passaggio tra i suoli su colluvio e quelli su andesite, originariamente posto a circa 188 m, avvenga in effetti a circa 200 m, esattamente in corrispondenza del limite identificato dalle mappe di CEa ottenute con i dati dell’EM38DD. Tale limite non è invece identificabile nelle mappe di CEa realizzate con i dati del GEM300 ma, almeno per le frequenze meno elevate, è possibile che la faglia, presente al contatto andesiti-Formazione del Cixerri, influenzi notevolmente i valori di CEa (McNeill, 1980). Il limite tra le due unità cartografiche corrispondenti ai Tipic Haploxererts ed ai Vertic Calcixerepts, posto a circa 88 m, è chiaramente indicativo, in quanto suddivide quello che in realtà è un continuum. Dall’analisi delle varie mappe geofisiche, molto probabilmente tale limite dovrebbe essere posizionato tra i 100 ed i 130 m. Nella porzione superiore dell’area campione 2 sono presenti suoli sottili su andesite in alterazione. Nel tratto finale dell’area tal suoli assumono carattere litico (sensu Soil Survey Staff, 2003) e sono associati ad ampi tratti di roccia affiorante. In presenza di suoli sottili, la minore resistività delle andesiti rispetto alla Formazione del Cixerri determina un aumento dei valori di CEa nelle mappe realizzate con i dati acquisiti dall’EM38DD. Come già sotto-lineato, nelle mappe di CEa realizzate con i dati del GEM 300 l’aumento comincia a circa
160 m, forse per effetto della suddetta faglia. Tra 270 e 288 m, nell’ultimo tratto dell’area campione 2, le mappe di CEa realizzate con i dati dell’EM38DD presentano una diminuzione dei valori. Tale diminuzione viene invece identificata a partire da 262 m nelle mappe di CEa relative al GEM300. La successiva campagna pedologica di controllo ha evidenziato come il limite tra l’unità cartografica caratterizzata dai Typic Xerorthents e quella caratterizzata da ampi tratti di roccia affiorante associati a suoli molto sottili con profilo di tipo A-R, originariamente posto a circa 245 m, sia in effetti a circa 270 m, esattamente in corrispondenza del limite identificato dalle mappe di CEa relative all’EM38DD.

Nei due casi studio affrontati, l’impiego dell’EMI ha consentito, attraverso un’indagine speditiva, non invasiva ed economicamente sostenibile, di ottenere mappe di CEa facilmente interpretabili in termini di variazioni pedologiche. I risultati conseguiti dimostrano come l’EMI possa trovare applicazione in una fase preliminare a quella di rilevamento di campagna, particolarmente nelle aree pianeggianti, fornendo una zonazione areale atta ad indirizzare opportunamente la scelta dei punti di osservazione del rilevamento tradizionale, limitando così il numero di osservazioni necessarie per caratterizzare una data area ed aumentando enormemente la precisione di carte pedologiche di dettaglio, contribuendo alla maggiore accuratezza delle delineazioni cartografiche ed alla individuazione di ulteriori unità in queste incluse. Nel complesso, l’EM38DD è risultato più adatto del GEM300. La geoelettrica può contribuire alla definizione geometrica di eventuali zone anomale.

Ringraziamenti. Lavoro realizzato nell’ambito del progetto PRIN “Metodologie innovative per lo studio della variabilità spaziale dei suoli”, finanziato dal MIUR col bando 2003, dall’Unità di Ricerca di Cagliari, il cui specifico programma di ricerca ha come titolo “Metodologie geofisiche per l’analisi della variabilità spaziale dei suoli”.

Bibliografia

