(12)

United States Patent
Chung et al.

US008225291B2

10) Patent No.: US 8,225,291 B2
(45) Date of Patent: Jul. 17,2012

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

AUTOMATED DETECTION OF
APPLICATION PERFORMANCE
BOTTLENECKS

Inventors: I-Hsin Chung, Yorktown Heights, NY
(US); Guojing Cong, Ossining, NY
(US); David Joseph Klepacki, New
Paltz, NY (US); Simone Sbaraglia,
Miami, FL. (US); Seetharami R.
Seelam, Ossining, NY (US); Hui-Fang
Wen, Yorktown Heights, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1231 days.

Appl. No.: 11/969,331

Filed: Jan. 4, 2008

Prior Publication Data

US 2009/0177642 Al Jul. 9, 2009

Int. CI.

GOGF 9/44 (2006.01)

GOGF 11/00 (2006.01)

US.CL ... 717/125,717/124; 717/127, 717/131,
714/38.1; 714/46; 714/57

Field of Classification Search

See application file for complete search history.
References Cited

U.S. PATENT DOCUMENTS

6,199,199 B1* 3/2001 Johnstonetal. 717/107
6,970,805 Bl 11/2005 Bierma et al.

2002/0013937 Al* 1/2002 Ostanevichetal. 717/9

RECEIVE INITIAL USER
REQUEST TO ANALYZE TARGET
APPLICATION FROM GLI

REQUEST PERFORMANCE DATA
FOR TARGET APPLICATION
FROM HOTSPOT DETECTOR

RECEIVE PERFORMANCE DATA
FOR TARGET APPLICATION
SEND PERFORMANCE DATA

70 GUI FOR USER TO REVIEW

RECEIVE USER SELECTIONS TO
81 O\ ANALYZE SPECIFIC HOTSPOTS.
AND BOTTLENECK DIMENSIONS

FOUND IN PERFORMANCE DATA

i

2003/0061324 Al 3/2003 Atherton et al.
2005/0262386 Al 11/2005 Numanoi
2008/0114806 Al* 5/2008 Kosche 707/104.1

OTHER PUBLICATIONS

Barton P. Miller Mark D. Callaghan Jonathan M. Cargille Jeffrey K.
Hollingsworth R. Bruce Irvin Karen L. Karavanic Krishna
Kunchithapadam Tia Newhall, The ParaDyn Parallel Performance
Measurement Tool, 1995, IEEE, 0018-9162/95, p. 37-46.*

James Kohn Winifred Williams, ATExpert, 1993, Academic Press,
0743-7315/93, pp. 205-222.*

Roland Wimuller, Marian Bubak, Wlodzimierz Funika, Tomasz
Arodz Marcin Kurdziel, Support for User-Defined Metrics in the
Online Performance Analysis Tool G-PM, 2004, Institute of com-
puter science.™

V. Sarkar, Automatic partitioniong of a program dependence graph
into parallel tasks, IBM, vol. 35, No. 5/6, Sep./Nov. 1991.*

Joseph W. H. Liu, A graph Partitioning algorithm by Node seperators,
ACM, vol. 15, No. 3, Sep. 1989, pp. 198-219.*

* cited by examiner

Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Hau H Hoang

(74) Attorney, Agent, or Firm — Yee & Associates, P.C.;
Anne Dougherty

(57) ABSTRACT

Detecting performance bottlenecks in a target application is
provided. In response to receiving hotspot selections from a
user interface, bottleneck rules are extracted from a database.
A hotspot is a region of source code that exceeds a time
threshold to execute in the target application. Metrics needed
to evaluate the bottleneck rules extracted from the database
are identified. The identified metrics are computed. It is deter-
mined whether each bottleneck rule extracted from the data-
base is evaluated to true using the computed metrics for
hotspots in the target application. In response to determining
that a bottleneck rule is evaluated to true using an appropriate
computed metric corresponding to the bottleneck rule, a
bottleneck description is created for the bottleneck rule.
Then, the bottleneck description is sent to the user interface.

18 Claims, 7 Drawing Sheets

RECEIVE COMPUTED
METRICS FROM MODULE
SCHEQULER

SELECT A BOTTLENECK
RULE TO EVALUATE

[
BOTTLENECK RULE
EVALUATED TO
TRUE?

CREATE BOTTLENECK
DESCRIPTION

EXTRACT BOTTLENECK RULES
FROM BDE DATABASE

PARSE EXTRACTED
BOTTLENECK RULES

IDENTIFY ALL METRICS AND
CORRESPONDING PARAMETERS
8161 ‘THAT ARE NEEDED TO
EVALUATE THE EXTRACTED

BOTTLENECK RULES

SEND REQUEST TO MODULE
818 SCHEDULER TO COMPUTE THE
IDENTIFIED METRICS

SEND BOTTLENECK.
DESCRIPTION TO GUI
FOR USER TC REVIEW

ANY MORE

BOTTLENECK RULES TO

BE EVALUATED
?

US 8,225,291 B2

Sheet 1 of 7

Jul. 17, 2012

U.S. Patent

15naoyd
AVHO0Nd LTS -7Z1
¥3LNdWOD 3000 -
9zl | WWHO0Ud |

31avav3y
H31NdNOD

I

Vel
911 147" AN 0Ll
\ \ \ /
1INN NOILO3L3a 1INN 1INN
¥OINTTLLOE LINN AV1dSId INdLNOMNANI | | SNOLLYDINNWNOD
olMav4
SNOILYDINNININOD
<
\
20l
3ISYavLYQ NOILYOIddV AHONIN 1INN #08S300Hd
308 13041 N <
/ / 001 70l
0cl 8Ll [801
LINN 39YHOLS INTLSISHId
WALSAS ONISSIO0Nd V1va

v 1 DId

U.S. Patent Jul. 17, 2012 Sheet 2 of 7 US 8,225,291 B2
BOTTLENECK
DETECTION UNIT
200
208~ on @209
|~ 222
4 y 202
206 CONTROL GUI [UseR
INTERFACE
230~] L~246 248 ~_ COMPONENT
224~] | 232
214
BDE DB
234~ | ~236
Y Y Y
210 BDE
i 4
2267 [™228
! 23871 244 . 204
212 HD BOTTLENECK
DETECTION
. COMPONENT
216" MSCHED
A A
242 242
242 N [™-242
MMOD | o © o | MMOD PEMOD | o o o | PEMOD
218-"1— T — —\-220
218 220
Yyvyy J
’ \
240 240

FIG. 2

U.S. Patent Jul. 17, 2012 Sheet 3 of 7 US 8,225,291 B2

300
FIG. 3 /
302 METRIC MODULE 304
\ /
METRICS BY ESTIMATION METRICS BY EXECUTION
SOURCE OR BINARY
306" SIMULATION MODIFICATION [308
400
FI1G. 4 /
PERFORMANCE ESTIMATION MODULE
402 404
\ /
PERFORMANCE METRICS PERFORMANCE METRICS
BY ESTIMATION BY EXECUTION

SOURCE OR BINARY
406 SIMULATION MODIFICATION [408

US 8,225,291 B2

Sheet 4 of 7

Jul. 17, 2012

U.S. Patent

0001 3710AD Nd 31NdWOD 1S + G ¥IMOd YNAQ-ST 0001
3NVA JIM13AN 10dS10H NOILVHNDIANOD | NOILYDINddVY HIFANN-NNY
379V1 SOH13N NOILNDIXA NOILVYOIddV

\
e o e o e e e wom
3J0OW JAISNTOXA NI
31NAOW HOLINOW JNSNTOXT | gumd wdHmgusn; | gquimd wdy
JONVIAHO4¥3d S3T10AD INON amd wdy | T1OAT A
FHYMAUYH HOSS3D20dd
3d0NW 181
NOILVOO1 JAVN JANYN JANVYN
NOILdI¥OS3d NOILNDO3X3 NOILJIYDS3AA | ¥313AVHvVd
TNAON JTINACW JFINAOW ML JFINACKW DIML3IN
379v1 S3TNAON 378V1 SOIH 1IN FONVYINHO4H3d
/ \
909 ¥0G
d343AISNOD
INTFNIAOHANITIONNN | O<LINIWIAOHLWITIONENN 38 d1NOHS Nd2 dO-T10¥8NN
ONITIOENN 4007
g3any3as3ayd INFWIAOHNI 37Ny NOILdI¥OS3a SNOISNINIA | IWVYN MOINTTLLO4E
379v1L NOILINIA3A ¥O3IN3TLLOS
N
3Svav.iva 3ag 705
-/ ¢ DIA

009

U.S. Patent Jul. 17, 2012 Sheet 5 of 7 US 8,225,291 B2

702~ RECEIVE
CONFIGURATION DATA

!

704 AUGMENT TARGET
600 ™ APPLICATION USING RECEIVED
\‘ FIG. 6 CONFIGURATION DATA

!

CONTROL GUI 706~ EXECUTE TARGET
APPLICATION
602—] SYSTEMSETUP I

708 COLLECT PERFORMANCE DATA
™ FROM TARGET APPLICATION
DURING EXECUTION

!

SOURCE CODE | ANALYZE COLLECTED
6061 DISPLAY 710 PERFORMANCE DATA

!

DETERMINE CODE REGIONS
7121 IN TARGET APPLICATION
THAT ARE HOTSPOTS

!

SEND DETERMINATION
714" RESULT TO BDE

FIG. 7

PERFORMANCE
604-"| DATADISPLAY

U.S. Patent

Jul. 17, 2012

802~

RECEIVE INITIAL USER
REQUEST TO ANALYZE TARGET
APPLICATION FROM GUI

Sheet 6 of 7

FI1G. 8

!

804~

REQUEST PERFORMANCE DATA
FOR TARGET APPLICATION
FROM HOTSPOT DETECTOR

!

806~

RECEIVE PERFORMANCE DATA
FOR TARGET APPLICATION

!

808~

SEND PERFORMANCE DATA
TO GUI FOR USER TO REVIEW

!

810~

RECEIVE USER SELECTIONS TO
ANALYZE SPECIFIC HOTSPOTS
AND BOTTLENECK DIMENSIONS
FOUND IN PERFORMANCE DATA

!

812

EXTRACT BOTTLENECK RULES
FROM BDE DATABASE

!

814"

PARSE EXTRACTED
BOTTLENECK RULES

!

816

IDENTIFY ALL METRICS AND
CORRESPONDING PARAMETERS
THAT ARE NEEDED TO
EVALUATE THE EXTRACTED
BOTTLENECK RULES

!

818"

SEND REQUEST TO MODULE
SCHEDULER TO COMPUTE THE
IDENTIFIED METRICS

v

US 8,225,291 B2

RECEIVE COMPUTED
METRICS FROM MODULE
SCHEDULER

| ~820

!

SELECT A BOTTLENECK
RULE TO EVALUATE

| ~822

-

)

IS
BOTTLENECK RULE
EVALUATED TO
TRUE?

CREATE BOTTLENECK
DESCRIPTION ™ 826
SEND BOTTLENECK
DESCRIPTIONTOGUI I\ gog
FOR USER TO REVIEW

"y

4

ANY MORE
BOTTLENECK RULES TO
BE EVALUATED

SELECT ANOTHER
BOTTLENECK RULE

~-832

U.S. Patent

Jul. 17, 2012

Sheet 7 of 7

902 ~_

OBTAIN BOTTLENECK
RULES FROM DATABASE

Y

904 |

SELECT A RULE

US 8,225,291 B2

FIG. 9

y

Vv

906 ~_

IDENTIFY METRIC ASSOCIATED
WITH SELECTED RULE

v

908 ~_

IDENTIFY ANY DEPENDENCIES
ASSOCIATED WITH IDENTIFIED METRIC

MORE RULES
?

912
/

SELECT NEXT RULE

914 -]

BUILD DEPENDENCY GRAPH FOR
THE IDENTIFIED DEPENDENCIES

Y

916

PARTITION DEPENDENCY GRAPH
INTO DIFFERENT LEVELS

NO

>
AN\
LEVEL LEFT

928
Y /

920

SELECT LOWEST INDEPENDENT LEVEL

COMPILE METRIC

Y

Y

922

IDENTIFY ALL MODULES ASSOCIATED WITH
SELECTED LEVEL FOR COLLECTING METRICS

STORE METRIC IN DATABASE

Y

924 |

EXECUTE ALL MODULES IN AN
APPROPRIATE ORDER AND WAIT
UNTIL EXECUTION COMPLETION

Y

926 -

REMOVE SELECTED LEVEL
FROM DEPENDENCY GRAPH

N\
(_END) 930

US 8,225,291 B2

1
AUTOMATED DETECTION OF
APPLICATION PERFORMANCE
BOTTLENECKS

This invention was made with United States Government
support under Contract No. HR0011-07-9-0002 awarded by
Defense Advanced Research Projects Agency (DARPA). The
Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to an improved data
processing system. More specifically, the present invention is
directed to a computer implemented method, system, and
computer usable program code for an extensible infrastruc-
ture to automate detection of bottlenecks in application per-
formance.

2. Description of the Related Art

To bridge the productivity gap between hardware complex-
ity and software limitations of current and next-generation
high performance computing systems, performance tools
should allow users at any level of experience to conduct
performance analysis and tune scientific applications. Tradi-
tional performance tools, however, offer little support for the
non-expert user. Thus, non-expert users must seek the assis-
tance of performance tuning experts to improve application
performance on their systems. While these tuning experts
may improve application performance and help a few non-
expert users, the number of such experts is very limited.
Consequently, many non-expert users do not have access to
these experts.

Furthermore, traditional performance tools fail to ease the
task of resolving application performance issues for the tun-
ing experts, as well as the non-experts. These traditional
performance tools do not support encoding of solved prob-
lems (i.e., problems that were previously identified and
solved by a user). As a result, these traditional performance
tools cannot detect and solve previously identified and solved
problems in other applications.

Without the support of effective performance tools, users
of these high performance computing systems will see this
productivity gap continue to grow. Performance tools need to
simplify the complexity of performance tuning and apply
automatic, intelligent, and predictive technologies to mitigate
the burden on today’s scientists and programmers. Currently,
no solutions exist that automate and simplify the performance
analysis and tuning cycle. The only known solutions for
determining application performance bottlenecks today are
solutions that involve manual intervention by users.

Therefore, it would be beneficial to have an improved
computer implemented method, system, and computer usable
program code for providing an extensible infrastructure that
automates the detection of performance bottlenecks in any
application on any given system.

SUMMARY OF THE INVENTION

Tlustrative embodiments provide a computer implemented
method, system, and computer usable program code for
detecting performance bottlenecks in a target application. In
response to receiving hotspot selections from a user interface,
bottleneck rules are extracted from a database. A hotspot is a
region of source code that exceeds a time threshold to execute
in the target application. Then, metrics, which are needed to
evaluate the bottleneck rules extracted from the database, are
identified. These identified metrics are then computed. After-

20

25

30

35

40

45

50

55

60

65

2

ward, it is determined whether each bottleneck rule extracted
from the database is evaluated to true using the computed
metrics for hotspots in the target application. In response to
determining that a bottleneck rule is evaluated to true using an
appropriate computed metric corresponding to the bottleneck
rule, a bottleneck description is created for the bottleneck
rule. Then, the bottleneck description is sent to the user inter-
face.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 is a diagram of a data processing system in which
illustrative embodiments may be implemented;

FIG. 2is an exemplary illustration of a bottleneck detection
unit in accordance with an illustrative embodiment;

FIG. 3 is an exemplary illustration of a metric module in
accordance with an illustrative embodiment;

FIG. 4 is an exemplary illustration of a performance esti-
mation module in accordance with an illustrative embodi-
ment;

FIG. 5 is an exemplary illustration of the content of a
bottleneck detection engine database in accordance with an
illustrative embodiment;

FIG. 61is an exemplary block diagram of a control graphical
user interface in accordance with an illustrative embodiment;

FIG. 7 is a flowchart illustrating an exemplary process for
determining hotspots in an application in accordance with an
illustrative embodiment;

FIG. 8 is a flowchart illustrating an exemplary process for
evaluating bottleneck rules on selected hotspots in accor-
dance with an illustrative embodiment; and

FIG. 9 is a flowchart illustrating an exemplary process for
invoking modules to collect metric data in an appropriate
order in accordance with an illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to the figures and in particular with
reference to FIG. 1, an exemplary diagram of a data process-
ing environment is provided in which illustrative embodi-
ments may be implemented. It should be appreciated that
FIG. 1is only exemplary and is not intended to assert or imply
any limitation with regard to data processing environments in
which different illustrative embodiments may be imple-
mented. Many modifications to the depicted environment
may be made.

FIG. 1 depicts a diagram of a data processing system in
which illustrative embodiments may be implemented. In this
illustrative example, data processing system 100 includes
communications fabric 102, which provides communications
between processor unit 104, memory unit 106, persistent
storage unit 108, communications unit 110, input/output
(I/0) unit 112, display unit 114, and bottleneck detection unit
116.

Processor unit 104 serves to execute instructions for soft-
ware that may be loaded into memory unit 106. Processor unit
104 may be a set of one or more processors or may be a
multi-processor core, depending on the particular implemen-
tation. Further, processor unit 104 may be implemented using

US 8,225,291 B2

3

one or more heterogeneous processor systems in which a
main processor is present with secondary processors on a
single chip. As another illustrative example, processor unit
104 may be a symmetric multi-processor system containing
multiple processors of the same type.

Memory unit 106, in these examples, may be, for example,
arandom access memory (RAM). Persistent storage unit 108
may take various forms depending on the particular imple-
mentation. For example, persistent storage unit 108 may con-
tain one or more components or devices, such as a hard drive,
a flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media used
by persistent storage unit 108 also may be removable. For
example, a removable hard drive may be used for persistent
storage unit 108.

Persistent storage unit 108 enables the storage, modifica-
tion, and retrieval of data. Persistent storage unit 108 includes
target application 118 and bottleneck detection engine (BDE)
database 120. Target application 118 is a software application
that a user selects as a target for hotspot analysis by bottleneck
detection unit 116. Target application 118 may be any type of
software application, such as, for example, a high perfor-
mance scientific application. In addition, target application
118 may represent a plurality of software applications within
persistent storage unit 108.

Bottleneck detection unit 116 utilizes BDE database 120 to
store data regarding the hotspot analysis of target application
118. BDE database 120 may store this data in, for example, a
relational or structured format in one or more tables. How-
ever, it should be noted that database 120 may also store this
data in an unstructured format as well. In addition, BDE
database 120 may represent a plurality of databases.

Communications unit 110, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 110 is a
network interface card. Communications unit 110 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 112 allows for input and output of data
with other devices that may be connected to data processing
system 100. For example, input/output unit 112 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 112 may send output to a printer.
Display unit 114 provides a mechanism to display informa-
tion to the user.

Bottleneck detection unit 116 is the component that
enables illustrative embodiments to provide an extensible
infrastructure that automates the detection of performance
bottlenecks in any application on any given system. In par-
ticular, bottleneck detection unit 116 manages the defining of
performance bottlenecks in target application 118 and the
automatic detection of pre-defined hotspots, which are stored
in BDE database 120. In addition, bottleneck detection unit
116 correlates the execution performance data of target appli-
cation 118 with the application’s source code and presents
this correlation information to auser via display unit 114 in an
easily understood, interactively-browsable form to speed up
the process of identifying application performance problems.
Also, bottleneck detection unit 116 provides a user with con-
trol over the granularity of the augmentation or instrumenta-
tion process and the data collection process in order to support
profiling of large high performance applications. Moreover,
bottleneck detection unit 116 provides for performance data
comparisons across multiple application executions and
across multiple granularities.

It should be noted that bottleneck detection unit 116 may be
implemented entirely as software, entirely as hardware, or as

20

25

30

35

40

45

50

55

60

65

4

a combination of both software and hardware. Further, a user,
such as a system administrator, may enable and disable bottle-
neck detection unit 116 independently of other data process-
ing system 100 features and components. Furthermore, it
should be noted that bottleneck detection unit 116 may be
located remotely in another data processing system, such as,
a server or client device, connected to data processing system
100 via a network through communications unit 110.

Instructions for an operating system and applications or
programs, such as target application 118, are located on per-
sistent storage unit 108. These instructions may be loaded
into memory unit 106 for execution by processor unit 104.
The processes of different illustrative embodiments may be
performed by processor unit 104 using computer imple-
mented instructions, which may be located in a memory, such
as memory unit 106. These instructions are referred to as,
program code, computer usable program code, or computer
readable program code that may be read and executed by a
processor in processor unit 104. The program code in the
different illustrative embodiments may be embodied on dif-
ferent physical or tangible computer readable media, such as
memory unit 106 or persistent storage unit 108.

Program code 122 is located in a functional form on com-
puter readable media 124 and may be loaded onto or trans-
ferred to data processing system 100 for execution by proces-
sor unit 104. Program code 122 and computer readable media
124 form computer program product 126 in these examples.
In one example, computer readable media 124 may be in a
tangible form, such as, for example, an optical or magnetic
disc that is inserted or placed into a drive or other device that
is part of persistent storage unit 108 for transfer onto a storage
device, such as a hard drive that is part of persistent storage
unit 108. In a tangible form, computer readable media 124
also may take the form of a persistent storage, such as a hard
drive or a flash memory that is connected to data processing
system 100. The tangible form of computer readable media
124 is also referred to as computer recordable storage media.

Alternatively, program code 122 may be transferred to data
processing system 100 from computer readable media 124
through a communications link to communications unit 110
and/or through a connection to input/output unit 112. The
communications link and/or the connection may be physical
or wireless in the illustrative examples. The computer read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

The different components illustrated for data processing
system 100 are not meant to provide architectural limitations
to the manner in which different illustrative embodiments
may be implemented. The different illustrative embodiments
may be implemented in a data processing system including
components in addition to, or in place of, those illustrated for
data processing system 100. Other components shown in
FIG. 1 may be varied from the illustrative examples shown.

For example, a bus system may be used to implement
communications fabric 102 and may comprise one or more
buses, such as a system bus or an input/output bus. Of course,
the bus system may be implemented using any suitable type
of architecture that provides for a transfer of data between
different components or devices attached to the bus system.
Additionally, a communications unit may include one or
more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory unit 106 or a cache, such as found in an
interface and memory controller hub, which may be present
in communications fabric 102.

US 8,225,291 B2

5

Tlustrative embodiments provide a computer implemented
method, system, and computer usable program code for auto-
matic detection of performance bottlenecks in a target appli-
cation. In response to receiving hotspot and bottleneck
dimension selections from a user interface, a BDE extracts
bottleneck rules, which belong to the selected bottleneck
dimension, from a BDE database. A hotspot is a region of
source code or address space that exceeds a time threshold to
execute in a target application.

Then, the BDE parses the bottleneck rules that were
extracted from the BDE database. Then, the BDE identifies
all metrics, along with their corresponding parameters,
needed to evaluate the extracted bottleneck rules. Subse-
quently, the BDE sends a request to a module scheduler to
compute the identified metrics.

After receiving all the computed metrics from the module
scheduler, the BDE evaluates the extracted bottleneck rules
using the computed metrics. Then, the BDE determines
whether each extracted bottleneck rule is evaluated to true. If
a bottleneck rule is evaluated to true, then the BDE creates a
bottleneck description for the bottleneck rule and sends the
bottleneck description to the user interface for a user to
review.

Thus, illustrative embodiments provide a novel extensible
method for defining and characterizing metrics that allow for
automated quantification of system performance relative to
the corresponding application program organization. Exten-
sible means that a user or developer may expand or add to the
method’s capabilities on an as needed basis. A metric is a
measurement of a particular characteristic of an application’s
performance or efficiency.

The extensibility of this schema provides for the ability to
add new metrics, corresponding modules that abstract the
metric data, and rules for combining the metrics into bottle-
neck definitions. A key concept of illustrative embodiments is
this extensibility and the achievement of an infrastructure
whereby the process of bottleneck discovery and the associ-
ated impact determination on the system is automated. In
addition, illustrative embodiments may suggest performance
improvement if a bottleneck is eliminated from the target
application.

This extensible infrastructure for automated detection of
application performance bottlenecks is based on a unique
classification scheme consisting of modules. Typically, these
modules are correlated to the machine’s subsystems and are
used to abstract the performance data of the target application
into a multi-dimensional space for automated analysis for the
presence of bottlenecks.

Each metric has a corresponding logical module, which is
responsible for computing or estimating the respective met-
ric. The association of the module to the metric is defined in
the BDE database within a table. A module is a program and
may provide more than one metric, depending on the different
parameters the module accepts.

Each module abstracts certain performance characteristics
of the target application, which may be used to define poten-
tial “bottlenecks”. A bottleneck is anything that inhibits the
potential for the target application to execute faster on a given
system and is correctable. Bottleneck rules are defined by
means of logical expressions, which employ metrics that are
combined with arithmetic and logical operators. These bottle-
neck rules may be evaluated to either true or false.

An example of a bottleneck rule is “#.1Misses >100". In
other words, a bottleneck exists when over 100 L1 cache
misses occurs in the system. This exemplary bottleneck rule
involves the metric “#L.1Misses”.

20

25

30

35

40

45

50

55

60

65

6

Another example of a bottleneck rule is “#l.oadStore
Ops >#ArithOps”. This exemplary rule involves the
metric “#LoadStoreOps” and the metric “#ArithOps”. Thus,
ametric may depend on another metric or on a combination of
other metrics. Also, a metric may depend on a parameter. For
example, in the metric “#L.1Misses(Power4)”, “Power4” is
the parameter.

A user may add a new metric to the infrastructure by
plugging in a module that provides the metric and then reg-
istering the association between the metric and the module in
the BDE database. The separation between bottleneck defi-
nition and performance data collection, the abstraction of
performance data collection as modular operations, the abil-
ity to combine performance metrics in arbitrary ways to
define new bottlenecks, and the ease with which new metrics
may be added to the infrastructure make illustrative embodi-
ments a powerful framework for detecting performance
bottlenecks. In addition, as new bottlenecks are identified and
the signatures of these new bottlenecks are added to the BDE
database, the infrastructure of an illustrative embodiment
grows. Furthermore, illustrative embodiments may ask intel-
ligent questions in the form of queries against performance
metric tables within the BDE database.

With reference now to FIG. 2, an exemplary illustration of
a bottleneck detection unit is depicted in accordance with an
illustrative embodiment. Bottleneck detection unit 200 may,
for example, be bottleneck detection unit 116 in FIG. 1 and
may be implemented in a data processing system, such as data
processing system 100 in FIG. 1. Bottleneck detection unit
200 includes user interface component 202 and bottleneck
detection component 204.

User interface component 202 is a component that a user,
such as, user 209, may utilize to interact with bottleneck
detection component 204. User interface component 202
includes control graphical user interface (GUI) 206 and a.out
208. Bottleneck detection component 204 is a component that
detects performance bottlenecks in a target application, such
as target application 118 in FIG. 1. Bottleneck detection
component includes BDE 210, hotspot detector (HD) 212,
BDE database (DB) 214, module scheduler (MSCHED) 216,
metric modules (MMOD) 218, and performance estimation
modules (PEMOD) 220.

Communication between components of bottleneck detec-
tion unit 200 is indicated by arrows, which connect the dif-
ferent components. The direction of information flow is indi-
cated by the direction of each arrow. In addition, associated
with each arrow is a collection of information to be
exchanged, which is called an interface, between the compo-
nents. Each interface is labeled with a reference number for
ease of identification.

Control GUI 206 is a user interaction handler for handling
any interaction with user 209. The primary role of control
GUI 206 is to coordinate the operations of the framework for
bottleneck detection unit 200, request and provide informa-
tion from and to user 209, and display the results to user 209
viaa display unit, such as display unit 114 in FIG. 1. However,
it should be noted that control GUI 206 is by no means
mandatory. In other words, similar functionality may be pro-
vided by a text-only control interface as well.

Initially, control GUI 206 receives a target application in
the form of a binary executable from user 209. In addition, the
source code, such as a.out 208, which is used to produce the
binary executable, may also be present within the system on
a storage unit, such as persistent storage unit 108 in FIG. 1.
After receiving the target application via interface 222 in the
form of binary executables, sources, makefiles, and configu-
rations, control GUI 206 issues a request to BDE 210 via

US 8,225,291 B2

7

interface 224. Interface 224 provides the binary executables
and the executables parameters and locations to BDE 210.

BDE 210 analyzes the target application by collecting per-
formance data during execution of the target application and
detecting any previously defined bottlenecks within the target
application. Further, BDE 210 requests hotspot detector 212,
via interface 226, to profile the target application, provide a
summary of hotspots within the target application, and list all
source code files used to produce the binary executable for the
target application. Hotspot detector 212 returns this requested
information to BDE 210 via interface 228.

Subsequent to receiving the requested information from
hotspot detector 212, BDE 210 sends this information, via
interface 230, to control GUT206 for user 209 to review. After
reviewing the profile data, the summary of hotspots, and the
list of all source code files used to produce the binary execut-
able for the target application, user 209 then has the option to
guide BDE 210, via control GUI 206, with regard to which
source code regions and which hotspots to analyze. For
example, user 209 may examine the profile data and option-
ally choose to narrow the analysis of the target application to
only user-selected hotspots. This is opposed to the default
behavior of analyzing all hotspots within the entire target
application. Also, after reviewing the source code regions
associated with each of the hotspots, user 209 may only select
specific contiguous regions of source statements for analysis.

Also, performance bottlenecks may be classified as
belonging to a particular dimension, such as, for example, a
CPU bottleneck dimension, a memory bottleneck dimension,
an I/O bottleneck dimension, a communication bottleneck
dimension, or a thread bottleneck dimension. However, it
should be noted that illustrative embodiments are not limited
to the above-listed bottleneck dimensions. Illustrative
embodiments may include more or fewer bottleneck dimen-
sions as needed.

User 209 may instruct bottleneck detection component 204
to look for bottlenecks in only user-selected dimensions.
However, bottleneck detection component 204 may be con-
figured to check for bottlenecks in all dimensions by default.

Then, control GUI 206 again invokes BDE 210, via inter-
face 232, and requests that BDE 210 perform the performance
analysis on the selected regions of the source code and the
selected bottleneck dimensions. A bottleneck may have an
associated performance improvement metric. This perfor-
mance improvement metric represents an expected improve-
ment in performance when the bottleneck is removed. A
bottleneck is removed when the application or the system is
changed in such a way that the rule associated with the bottle-
neck evaluates to false.

It should be noted that a performance improvement metric
must also have an associated module, such as performance
estimation module 220, which is responsible for computing
the performance improvement metric. The association
between the performance improvement metric and corre-
sponding performance estimation module 220 is recorded in
BDE database 214. All the bottleneck, module, and metric
data are stored in BDE database 214, which is represented by
interface 234.

After receiving the user-specified hotspot information
from control GUI 206, via interface 232, BDE 210 consults
BDE database 214, via interface 234, and extracts a list of all
bottlenecks that correspond to one of the dimensions selected
by the user. Then, BDE 210 parses the bottleneck rules asso-
ciated with the selected dimension. Subsequent to parsing the
rules, BDE 210 extracts a list of all metrics, along with their
corresponding parameters, which are needed to evaluate the
bottleneck rules. Afterward, BDE 210 issues a request to

10

20

25

30

35

40

45

50

55

60

8

module scheduler 216, via interface 238, for module sched-
uler 216 to pass to BDE 210 a list of all metrics that need to be
computed.

Module scheduler 216 is responsible for executing metric
modules 218 and performance estimation modules 220,
which correspond to the specific metrics requested by BDE
210. In addition, module scheduler 216 is responsible for
collecting and returning these requested metrics, which also
include performance estimation metrics, to BDE 210. The
information regarding the association between a metric and a
corresponding metric module or performance estimation
module is transmitted to module scheduler 216 via interface
238.

Module scheduler 216 uses the association information to
direct the appropriate modules to compute the requested met-
rics via interface 240. Metric modules 218 and performance
estimation modules 220 may individually specify a mode of
execution. This specified mode of execution prescribes
whether a module may run in parallel with other modules or
must run exclusively by itself.

Module scheduler 216 analyzes the dependencies between
metrics (i.e., one metric may depend on other metrics and,
therefore, one module may need to run before the others) and
the specified mode of execution for each module. Then, mod-
ule scheduler 216 appropriately schedules the appropriate
modules to run, exploiting as much parallelism as possible,
while preserving metric dependency and module mode of
execution specifications.

Each directed metric module 218 and performance estima-
tion module 220 returns its respective computed metric to
module scheduler 216 via interface 242. After module sched-
uler 216 collects all the requested metrics, module scheduler
216 sends these requested metrics to BDE 210 via interface
244.

Subsequently, BDE 210 evaluates the bottleneck rules and
composes a bottleneck description for all bottlenecks whose
rule evaluates to true. This bottleneck description includes the
name of the bottleneck, the region of the source code where
the bottleneck was detected, and the estimated percentage of
performance improvement when the bottleneck is removed.
BDE 210 sends this bottleneck description information to
control GUI 206 via interface 246 for user 209 to review.

After reviewing the bottleneck description information,
user 209 then has the option to add new bottleneck definitions
to BDE database 214 and/or modify or delete previously
identified and stored bottleneck definitions in BDE database
214 via interface 248. Furthermore, user 209 may add newly
created modules, such as metric or performance estimation
modules, and/or modity or delete previously stored modules
in BDE database 214 via interface 248. Moreover, user 209
may query database 214 via interface 248 to retrieve and
review desired data.

After placing a newly created module in BDE database
214, user 209 should register this newly created module with
BDE 210. User 209 may manually perform registration of this
newly created module with BDE 210 or may perform regis-
tration by using another tool. User 209 may also register the
corresponding metric(s) computed or estimated by the newly
created module with BDE 210. In addition, these correspond-
ing metrics may take optional arguments. As a result, these
optional argument metrics may be registered with BDE 210
as well.

Hotspot detector 212 instruments or augments the target
application and potentially the target application’s environ-
ment, which includes entities that interact with the target
application, such as the operating system, with probe libraries
for performance data collection. Afterward, hotspot detector

US 8,225,291 B2

9

212 executes the target application. Then, hotspot detector
212 profiles the target application during execution to find the
most time-consuming regions of source code or address
space. These regions of source code that consume significant
amounts of time for execution are identified as hotspots.
These hotspots may be determined by, for example, the use of
default execution time thresholds or by user-defined thresh-
olds. Also, these identified hotspots may or may not suggest
performance problems. For example, some of these hotspot
regions make full and efficient use of system resources and
further tuning will not improve performance. In contrast,
other hotspot regions are caused by inefficient use of system
resources and further tuning will improve performance.

Hotspot detector 212 may perform this profiling in several
ways depending on how the target application is augmented
and executed. The target application may be augmented at the
source code level, the binary level, or at the runtime level. In
addition, this profiling may also be done in several bottleneck
dimensions, such as, for example, the computation or CPU
dimension, the communication dimension, or the I/O dimen-
sion.

One option for detecting a computation or CPU dimension
bottleneck is to use the compiler profiling capability, which is
the gprof approach. Using this gprof approach profiling
option, the source code may be compiled in such a way that
the necessary probes and runtime sampling libraries are
inserted into the binary executable. This now augmented
application may then run on the target system such that a
distribution of execution time over the memory address
spaces or program constructs is obtained. Depending on the
threshold, which may be a preset threshold or a user-defined
threshold, the source code regions that exceed the threshold
time period to execute are considered hotspots. Hotspots may
have different granularity, such as function level, statement
level, basic block level, and instruction level.

One option for detecting a communication dimension
bottleneck in message passing interface (MPI) applications is
to use the PMPI profiling interface and library. MPI applica-
tions allow clusters of computers to communicate with one
another. Finally, one option for detecting an I/O dimension
bottleneck is to use 1/O tracing.

With reference now to FIG. 3, an exemplary illustration of
a metric module is depicted in accordance with an illustrative
embodiment. Metric module 300 may, for example, be metric
module 218 in FIG. 2. Metric module 300 includes sub-
modules, such as metrics by estimation sub-module 302 and
metrics by execution sub-module 304. However, it should be
noted that metric module 300 is only intended as an exem-
plary metric module and, therefore, may include more or
fewer sub-modules as needed by processes of illustrative
embodiments.

Furthermore, metrics by estimation sub-module 302 and
metrics by execution sub-module 304 may also include sub-
modules, such as simulation sub-module 306 and source or
binary modification sub-module 308, respectively. Metrics
by estimation sub-module 302 may, for example, compute or
estimate its respective metric(s) by utilizing information pro-
vided by simulation sub-module 306. Simulation sub-module
306 may, for example, parse and/or analyze the source code of
a detected hotspot in a simulation and provide the necessary
information to metrics by estimation sub-module 302 so that
metrics by estimation sub-module 302 may compute or esti-
mate its respective metric(s).

Similarly, metrics by execution sub-module 304 may, for
example, compute or estimate its respective metric(s) by uti-
lizing information provided by source or binary modification
sub-module 308. Source or binary modification sub-module

20

25

30

35

40

45

50

55

60

65

10

308 may, for example, modify the source code or the binary
executable of a target application and provide the modified
code or executable to metrics by execution sub-module 304
so that metrics by execution sub-module 304 may compute or
estimate its respective metric(s).

It should be noted that each sub-module may return one or
more types of metrics. In addition, only some of the metrics
may be requested by the module scheduler, such as module
scheduler 216 in FIG. 2. Other metrics, which may represent
performance improvements or other aspects of performance,
may optionally be requested by another module or sub-mod-
ule.

In an illustrative embodiment, modules may take input
arguments in the form of a file. However, other input methods
are possible. Similarly, output from a module may also be
stored in a file. In another illustrative embodiment, the mod-
ule output may be passed to another module for processing or
the output may be communicated to the BDE framework in
other forms.

Also, it should be noted that a typical module is often a
binary executable, which implements a template provided by
the BDE framework. However, other implementations, such
as in the form of a shell script, are possible.

With reference now to FIG. 4, an exemplary illustration of
a performance estimation module is depicted in accordance
with an illustrative embodiment. Performance estimation
module 400 may, for example, be performance estimation
module 220 in FIG. 2. Performance estimation module 400
includes sub-modules, such as performance metrics by esti-
mation sub-module 402 and performance metrics by execu-
tion sub-module 404. However, it should be noted that per-
formance estimation module 400 is only intended as an
exemplary performance estimation module and, therefore,
may include more or fewer sub-modules as needed by pro-
cesses of illustrative embodiments.

Furthermore, performance metrics by estimation sub-mod-
ule 402 and performance metrics by execution sub-module
404 may also include sub-modules, such as simulation sub-
module 406 and source or binary modification sub-module
408, respectively. Performance metrics by estimation sub-
module 402 may, for example, compute or estimate its respec-
tive metric(s) by utilizing information provided by simulation
sub-module 406. Simulation sub-module 406 may, for
example, parse and/or analyze the source code of a detected
hotspot in a simulation and provide the necessary information
to performance metrics by estimation sub-module 402 so that
performance metrics by estimation sub-module 402 may
compute or estimate its respective metric(s).

Similarly, performance metrics by execution sub-module
404 may, for example, compute or estimate its respective
metric(s) by utilizing information provided by source or
binary modification sub-module 408. Source or binary modi-
fication sub-module 408 may, for example, modify the source
code or the binary executable of a target application and
provide the modified code or executable to performance met-
rics by execution sub-module 404 so that performance met-
rics by execution sub-module 404 may compute or estimate
its respective metric(s).

In addition, performance metrics by execution sub-module
404, as well as source or binary modification sub-module
408, may transform the source code of the target application
or the binary executable of the target application or may
compile a runtime context of the target application in arbi-
trary ways. Loop unrolling and vectorizations of long latency
floating point operations are just some examples of such
transformations.

US 8,225,291 B2

11

With reference now to FIG. 5, an exemplary illustration of
the content of a bottleneck detection engine database is
depicted in accordance with an illustrative embodiment. BDE
database 500 may, for example, be BDE database 214 in FIG.
2. BDE database 500 includes bottleneck definition table 502,
performance metrics table 504, modules table 506, and appli-
cation execution metrics table 508. However, it should be
noted that BDE database 500 is only shown as an example
and, therefore, may include more or fewer tables as needed by
processes of illustrative embodiments. Further, each table
may, for example, reside in its own database.

Bottleneck definition table 502 contains the bottleneck rule
definitions. Each entry in bottleneck definition table 502
includes: the name of the bottleneck; the name of the dimen-
sion(s) that are involved with the bottleneck; a description of
the bottleneck; the rule or logical expression to be evaluated;
the estimated performance improvement when this bottle-
neck is removed; and a reserved field that may contain bottle-
neck-specific information.

In this example, bottleneck definition table 502 defines an
“unroll-op” bottleneck. This definition is provided by a mod-
ule that checks for an unrolling opportunity that the compiler
neglected. This type of bottleneck is a CPU dimension bottle-
neck. To evaluate the presence of this bottleneck in the sys-
tem, the module calculates the metric “unrollimprovement”.
Ifthis “unrollimprovement” metric is greater than a specified
threshold, then the BDE determines that this bottleneck
exists. Also, the BDE returns the metric for the estimate of
performance improvement if the bottleneck is removed.

Performance metrics table 504 contains the metric defini-
tions. In addition, performance metrics table 504 includes the
names of the respective modules responsible for collecting
these metrics. Each entry in performance metrics table 504
includes: the name of the metric; the name of the module that
collects this metric; the input parameter to this metric; and a
description of this metric.

In this example, performance metrics table 504 defines a
metric named “PM_CYCLE”. This “PM_CYCLE” metric is
collected by the module named “hpm_pwr5”. This metric
measures the number of processor cycles taken for a certain
program. Also in this example, no parameter exists for this
metric.

Modules table 506 specifies the program to invoke. Mod-
ules table 506 contains the module definitions. Each entry in
modules table 506 includes: the name of the module; the
location of the module; the execution mode of the module;
and a description of the module.

In this example, modules table 506 defines a module
named “hpm_pwr5”. This “hpm_pwr5” module corresponds
to a binary executable, which is located in “/usr/bin/hp-
m_pwr5”. In addition, this module is described as a hardware
performance monitor. The “/ust/bin‘hpm_pwr5” program is
run in an exclusive mode.

Bottleneck definition table 502, performance metrics table
504, and modules table 506 are collectively called BDE data-
base 500. An expert user or system administrator, such as user
209 in FIG. 2, may edit BDE database 500 by adding new
rules, metrics, and modules to their respective tables and
modifying or deleting existing ones. A user interface interac-
tion handler, such as control GUI 206 in FIG. 2, provides
interfaces for the user to access BDE database 500.

In general, illustrative embodiments provide an extensible
infrastructure for the BDE by allowing the user to add new
metrics, bottleneck rules, and modules, which are responsible
for collecting the added metrics and for estimating the impact
of the added solutions, to BDE database 500 as needed. By
providing this extensible infrastructure, illustrative embodi-

20

25

30

35

40

45

50

55

60

65

12

ments expand the capability of the BDE to detect perfor-
mance bottlenecks in other high performance computing
applications.

BDE database 500 includes one additional table, which is
application execution metrics table 508, to record all appli-
cation execution performance data. Each entry in application
execution metrics table 508 includes: the run number of the
target application; the name of the target application; the
configuration of the target application; hotspot(s) in the target
application; the corresponding metric(s); and the associated
metric threshold value(s).

In this example, application execution metrics table 508
records a run number of “1000” for a target application named
“LS-DYNA”, which is configured as a “POWER 5+SMT”
application. In addition, a possible hotspot is detected in this
target application by the “PM_CYCLE” metric, which
exceeded the “1000” value threshold, in the “COMPUTE” or
CPU dimension. The user interface interaction handler may
facilitate queries from the user into the history of target appli-
cation runs in order for the user to retrieve and review this type
of recorded information.

With reference now to FIG. 6, an exemplary block diagram
of'a control graphical user interface is depicted in accordance
with an illustrative embodiment. Control GUI 600 may, for
example, be control GUI 206 in FIG. 2. Control GUI 600
includes system setup 602, performance data display 604, and
source code display 606. However, it should be noted that
control GUI 600 is only intended as an example and, there-
fore, may include more or fewer components as needed by
processes of illustrative embodiments.

System setup 602 allows a user, such as user 209 in FIG. 2,
to configure the information necessary to operate the BDE
framework, such as, for example, machine name, application
name, application location, and environment variables. Per-
formance data display 604 presents execution performance
data for a target application, such as, for example, function
location within the source code, time spent in a function, and
hotspot evaluation results. Source code display 606 shows the
source code for the target application for a given function
location. Source code display 606 may work in conjunction
with performance data display 604.

The functionality of control GUI 600 may, for example,
include: accepting an input binary executable for a target
application; making an initial request to a BDE, such as BDE
210 in FIG. 2, to perform target application profiling; receiv-
ing the profiling data and a list of source files; displaying the
profiling data and source file list to the user; accepting user
selections of specific hotspots or code regions for evaluation;
accepting user selections of specific bottleneck dimensions;
invoking the BDE; and displaying returned bottleneck
descriptions to the user.

With reference now to FIG. 7, a flowchart illustrating an
exemplary process for determining hotspots in an application
is shown in accordance with an illustrative embodiment. The
process shown in FIG. 7 may be implemented in a hotspot
detector, such as hotspot detector 212 in FIG. 2.

The process begins when the hotspot detector receives
configuration data from a BDE, such as BDE 210 in FIG. 2
(step 702). The configuration data may, for example, include
hotspot granularity, augmentation or instrumentation
method, input parameters, profiling dimensions, and the tar-
get application, such as target application 118 in FIG. 1,
which is to be analyzed. Then, the hotspot detector augments
or instruments the target application using the received con-
figuration data (step 704). Subsequent to augmenting the
target application in step 704, the hotspot detector executes
the target application (step 706) and collects performance or

