Using Simulation for Understanding and Reproducing Distributed Software Development Processes in the Cloud

M. Ilaria Lunesu¹, Jürgen Münch², Michele Marchesi³, Marco Kuhrmann⁴

¹Department of Electrical and Electronic Engineering, University of Cagliari, Italy

²Herman Hollerith Center, Böblingen & Reutlingen University, Germany

³Department of Mathematics and Computer Science University of Cagliari, Italy

⁴Clausthal University of Technology, Institute for Applied Software Systems Engineering, Germany

Corresponding Contact:
E-Mail: ilaria.lunesu@diee.unica.it

© Elsevier 2018. Preprint. This is the author’s version of the work. The definite version was accepted in Information and Software Technology journal, Issue assignment pending.

The final version is available at
https://www.journals.elsevier.com/information-and-software-technology
Using Simulation for Understanding and Reproducing Distributed Software Development Processes in the Cloud

M. Ilaria Lunesu\textsuperscript{a}, Jürgen Münch\textsuperscript{b}, Michele Marchesi\textsuperscript{c}, Marco Kuhrmann\textsuperscript{d}

\textsuperscript{a}Department of Electrical and Electronic Engineering, University of Cagliari, Italy
\textsuperscript{b}Herman Hollerith Center, Böblingen & Reutlingen University, Germany
\textsuperscript{c}Department of Mathematics and Computer Science University of Cagliari, Italy
\textsuperscript{d}Clausthal University of Technology, Institute for Applied Software Systems Engineering, Germany

Abstract

Context: Organizations increasingly develop software in a distributed manner. The Cloud provides an environment to create and maintain software-based products and services. Currently, it is unknown which software processes are suited for Cloud-based development and what their effects in specific contexts are.

Objective: We aim at better understanding the software process applied to distributed software development using the Cloud as development environment. We further aim at providing an instrument, which helps project managers comparing different solution approaches and to adapt team processes to improve future project activities and outcomes.

Method: We provide a simulation model, which helps analyzing different project parameters and their impact on projects performed in the Cloud. To evaluate the simulation model, we conduct different analyses using a Scrumban process and data from a project executed in Finland and Spain. An extra adaptation of the simulation model for Scrum and Kanban was used to evaluate the suitability of the simulation model to cover further process models.

Results: A comparison of the real project data with the results obtained from the different simulation runs shows the simulation producing results close to the real data, and we could successfully replicate a distributed software project. Furthermore, we could show that the simulation model is suitable to address further process models.

Conclusion: The simulator helps reproducing activities, developers, and events in the project, and it helps analyzing potential tradeoffs, e.g., regarding throughput, total time, project size, team size and work-in-progress limits. Furthermore, the simulation model supports project managers selecting the most suitable planning alternative thus supporting decision-making processes.

Keywords: Scrum, Kanban, Process Simulation, Comparison.

1. Introduction

Being able to collaborate effectively has become a crucial factor in software development and maintenance. Organizations increasingly develop software in a distributed manner by appointing external developers and development teams, who collaboratively work at different sites utilizing a multitude of communication tools (Bird et al., 2009; Portillo-Rodriguez et al., 2012). Literature shows distributed software
development being challenged by many factors, e.g., distance in language, culture, time and location, coordination of distributed (virtual) teams, and lack of trust among developers (Sengupta et al., 2006; Herbsleb and Mockus, 2003). Notably agile software development constitutes a challenge, as agile software development relies on a set of principles and values that put the people and close collaboration and interaction in the spotlight. It is crucial to understand how agile methods “behave” in distributed software development as adapting and deploying an agile method to a project spanning several sites bears some risk (Lous et al., 2017).

A simulation-based approach grounded in statistical data from previous projects can help analyzing risks and evaluating different process variants (Kellner et al., 1999; Wakeland et al., 2004), but also helps evaluating decisions and potential effects on a project (Armbrust et al., 2005). Moreover, a process simulation offers insights faster than a full case study (Fagerholm et al., 2017, pp. 11–13). In particular, a simulation model can be modified and the results quickly provide indication whether or not modified parameters affect a project and how—so-called “what-if” analyses (Zhang et al., 2008). For example, while it is hard to modify the team in a “real” project, in a simulation, modifying the team size parameter helps analyzing the impact, e.g., on work-in-progress (WIP), lead/cycle time, and team productivity. Furthermore, a simulation model provides flexibility to allow for configuring different process models, running simulations on a shared dataset, and to compare and study aspects of interest of different process models. For instance, project managers interested in minimizing cycle times can use a simulation to compare the behavior of Scrum- and Kanban-based processes to pick the process variant promising the best performance. In this regard, a simulation can be utilized to modify parameters, find relations between parameters, and study complex processes over time. According to Kellner et al. (1999) and Armbrust et al. (2005), a simulation used this way can help reproducing a real system, compare variants, identify bottlenecks, and so forth. Hence, a process simulation is a tool to help project managers analyzing different actions, evaluating impact, and eventually selecting those actions best fitting a particular situation (Lunesu et al., 2017).

**Problem Statement.** Even though globally distributed software development (also called Global Software Development; GSD, or Global Software Engineering; GSE) is around for years, still, practitioners struggle with effectively adapting agile methods (Lous et al., 2017). In this context, the Cloud provides a highly flexible environment offering a variety of services. However, little is known which processes are used for distributed development using the Cloud as software development environment, how these processes are used and customized, and how they might differ from other approaches.

**Objective.** Our overall objective is to better understand the software process applied in GSE settings, notably settings using the Cloud as development environment. Based on real project data\(^1\), a simulation-based approach was chosen to improve the understanding of such processes and to support project managers to select and tailor software processes for Cloud-based distributed software development. Hence, an objective of the presented work is also to show feasibility/reliability of using simulation models, e.g., for projects in the Software Factory environment. Finally, we aim at providing an instrument, which helps project managers comparing different solution approaches and to adapt current team processes to improve future project activities and outcomes.

**Contribution.** An event-driven simulator (Anderson et al., 2012) was configured using a Scrumban process with the number of user stories and their effort and priority in the backlog as input. The simulator helps

---

\(^1\)For seven weeks, six developers in Finland and six in Spain, located at three sites (two in Spain and one in Finland) worked on a project developing a SmartGrid system. See Section 4.1 for further details.
reproducing activities, developers, user stories and events in the project, and it generates statistics, e.g., on throughput, total time, and lead and cycle time. The resulting simulation model can be customized to simulate different processes. Specifically, in addition to the Scrumban process, we also modeled “pure” Scrum and Kanban processes to allow for comparing the different processes with regard to project performance thus supporting project managers in selecting the best-fitting development approach for a specific scenario.

Outline. The remainder of the article is organized as follows: Section 2 provides an overview of related work. In Section 3, we describe the research design including research questions, simulation variables, and the specification and implementation of the simulation model. Section 4 presents the results from the different simulations. We conclude this article in Section 5.

2. Related Work

Software Processes and GSE. Globally distributed software development has become commodity, and it was showcased that distributed teams and even outsourced teams can be as productive as small collocated teams (Sutherland et al., 2007), which, however, requires a full implementation of Scrum along with good engineering practices. Paasivaara et al. (2009) state that agile methods can provide a competitive advantage by delivering early, simplifying communication and allowing the business to respond more quickly to the market by changing the software. To support this claim, authors present a multi-case study on the application of Scrum practices to three globally distributed projects discussing challenges and benefits. In this regard, Phalnikar et al. (2009) propose two team structures for implementing Scrum in a distributed setting. However, deploying agile methods to a GSE-setting is challenging for several reasons, such as demanding communication in a distributed setup, challenges related to coordination, and collaboration (Alzoubi et al., 2016; Vallon et al., 2017; Lous et al., 2017), and there is yet no agreement on generalizable solution approaches. For instance, while Vallon et al. (2017) discuss how agile practices can help improving or resolving such issues and found Scrum the most promising/successful development approach, Lous et al. (2017) found GSE challenging Scrum, especially when it comes to scaling the process in the context of (large) distributed settings. Wang et al. (2012) state that using agile methods helps mitigating challenges in co-located as well as in distributed teams, e.g., responding to fast-paced changes that occur in software projects. All the factors above influence the way in which software is defined, built, tested, and delivered. Ramesh et al. (2006) discuss how to integrate and balance agile and distributed development approaches to address such typical challenges in distributed development.

Complementing the “pure” agile approaches, Lean approaches have gained significance in the software industry, and they are used in co-located and distributed settings alike. Such approaches focus on eliminating waste, e.g., (Mujtaba et al., 2010), yet, these approaches are still under study, notably with regards to the question if and how these approaches help mitigating the various challenges in GSE. For instance, Tanner and Dauane (2017) study Kanban and highlight those elements that can help alleviating communication and collaboration issues in GSE. Kanban is a development approach, which applies Lean principles (Ahmad et al., 2013; Ikonen et al., 2011; Ahmad et al., 2016) and is becoming increasingly popular as an effective extension of Scrum and other agile methods. However, even though Kanban’s popularity is increasing, many questions regarding its adoption in software development remain open. Practitioners face serious challenges while implementing Kanban, since clear definitions of its practices, principles, techniques, and tools are missing. In response, distributed teams use a plethora of specific tools to facilitate collaborative work Portillo-Rodriguez et al. (2012). However, different studies suggest the projects’ processes being selected in a pragmatic rather than in a systematic manner (Vijayasarathy and Butler, 2016; Theocharis et al., 2015; Kuhrmann et al., 2017), and studies also suggest agile methods stepping into the background...
When it comes to define proper tool support (Femmer et al., 2014). On the other hand, GSE is a discipline that is maturing, as for instance Smite et al. (2010) show in their discussion of available empirical evidence in the field or Ebert et al. (2016) who discuss the impact of GSE-related research to industry. That is, there is a variety of software processes and support tools used in practice. Such combinations are usually made in response to the respective project context (Kuhrmann et al., 2017), which gives project managers a hard time picking the most efficient process-tool combination for a project.

**Software Process Simulation.** Software Process Modeling Simulation (SPMS) is presented as a promising approach suitable to address various kinds of issues in software engineering (Kellner et al., 1999). Martin and Raffo (2001) present the simulation of a practically used software processes with the purpose of evaluating a potential process change to mitigate risks coming along with process change. Their model simulates discrete activities within the context of an environment described by a system dynamics model. A systematic review by Zhang et al. (2008) showed that especially risk management is one of the key objectives of SPMS. Liu et al. (2009) conducted a systematic review on risk management and SPMS concluding that the number of studies has been increasing gradually and that *discrete-event simulation* and *system dynamics* are the most popular simulation paradigms. For instance, examples for discrete-event simulations of agile practices are presented by (Melis et al., 2006; Turnu et al., 2006). Cao et al. (2010) present an approach based on system dynamics to study the complex interdependencies among the practices used in agile development. However, discrete-event models have to be considered critical as they use simple building blocks and tend to be fairly basic, and such models face problems concerning the discretization of time and insufficient detail of parameters and variables. An analysis of the dynamic behavior of a Scrum and Kanban variant has been conducted by Cocco et al. (2011). Turner et al. (2012) simulate the process performance of shared systems engineering services. They developed a specific Kanban-based process to support software development in rapid response environments, simulated this process using three modeling approaches (system dynamics, discrete events, and agents), and compared it to a simulated traditional process to determine if there were gains in effectiveness and value over time. Their overall goal was to study whether organizing projects as a Kanban-based scheduling system (KSS) leads to a better project performance. Tregubov and Lane (2015) presented a simulation model designed to explore effects of using KSS in multilevel systems. Their model implements a discrete-event simulation of the software-intensive system engineering processes for the purpose of estimating how KSS-scheduling can achieve predicted benefits, i.e., delivered value over time and schedule. Other than in the predictive simulation approach, Ali et al. (2015) use simulation as a tool to support reflections and discussions. They found simulations substantially contributing in identifying opportunities, e.g., reduction of idle times and improvement of the workflow in a process. Simulation was found beneficial in reasoning about and selection of alternative practices to steer process improvements. Finally, the suitability of software process simulation and an agenda for advancing reciprocity among research and industrial practice is presented by Houston (2012), who also shows the hurdles coming along with process simulation.

**Software Process Simulation and GSE.** Globally distributed projects that are conducted in an agile way can be characterized as human-intensive endeavors, yet, simulating humans and their behavior is difficult. However, empirically proven models for simulating complex behaviors exist, e.g., in the field of psychology. While modeling of human behavior is not in the scope of the presented work (and this should be considered when using the models), Armbrust et al. (2005) provide a discussion on human resource modeling in software development. Nevertheless, using process simulation for distributed projects is considered a promising route towards prediction and fast evaluation of process change, as several aspects can be analyzed quickly and without utilizing long-lasting and thus expensive case studies or limited student lab experiments (Fager-
holm et al., 2017). Although contributing to the body of knowledge, case studies describe context-specific approaches and, therefore, transferring the outcomes to another context usually requires setting up a new case study. A process simulation as presented in this article helps improving decision-making processes by constructing a parameterized simulation model, which allows for modeling the intended process (or a set of alternatives), feeding the simulation with (empirical) data from past projects, calibrate the simulation, and eventually conclude a feasible solution; a procedure that was, so far, successfully applied to other fields, e.g., risk management in distributed projects as presented by Lamersdorf et al. (2012).

The work presented in this article emerges from the various difficulties regarding the use of simulation models to reproduce real case studies from China and India (Concas et al., 2013; Anderson et al., 2012, 2011; Lunesu, 2013). This article thus contributes to the body of knowledge by presenting a simulation-based approach that can help reflecting on past projects and selecting and evaluating process alternatives to improve the GSE development approach.

Cloud-based Development and GSE. So far, in literature, few reports on using process simulation of agile methods in GSE using the Cloud as major development environment are available. Due to its economies of scale, Cloud computing has become the norm for consuming computing resources. While the potential for using the Cloud for GSE has been investigated in the literature, Alajrami et al. (2016) go one step further and propose a Cloud-based software process enactment architecture which utilizes the Cloud elasticity, accessibility and availability to facilitate distributed development, and to overcome some of the associated technical and communication challenges. Yara et al. (2009) present a Cloud-based platform that addresses core problems, e.g., computing capacity, bandwidth, storage, security, and outline a generic Cloud architecture and an initial implementation in the context of GSE. Nevertheless, even though companies have implemented GSE, they still face challenges in the development lifecycle. Hashmi et al. (2011) provide a synopsis of Cloud computing, GSE challenges, and discuss the problem that “Cloud” denotes a process and a product alike. Therefore, Hashmi et al. (2011) especially support our motivation to use Cloud technologies in GSE.

This article thus contributes to the body of knowledge by providing a study on the Cloud as development environment for GSE. Our study addresses the issues above by using a simulation-based research approach. Grounded in historical data, we provide a means to model distributed projects and simulating them in order to investigate the various challenges and effects coming along with using agile and Lean software development approaches in GSE.

Previously Published Material. The article at hand is an extended version of Lunesu et al. (2017) in which we compared three process simulations with the original process, Kanban, and Scrum to study the methods’ impact on performance, total time, and throughput. In this extended article, we added a fourth research question (Table 1) to our previously published conference paper with which we extend our analysis by a comparison of the different processes. Accordingly, related work as well as the result presentation and discussion have been extended.

3. Research Design

This section presents the research design for the study. The development of the simulation model and the execution of the simulations followed the approach described in Rus et al. (2003) and Armbrust et al. (2005). The overall research objective and research questions studied are presented in Section 3.1. Section 3.2 describes the goals and requirements. The simulation model as key element of the study is specified in Section 3.3, and its implementation is presented in Section 3.4.
3.1. Research Questions

To study distributed software development in the Cloud and make a comparison among Lean Agile processes using an adapted simulation model, we formulate the research questions in Table 1.

Table 1: Summary of the research questions addressed in the study at hand.

<table>
<thead>
<tr>
<th>Research Question and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ₁ How does the simulation model need to be calibrated, such that it reflects the particularities of the distributed project?</td>
</tr>
<tr>
<td>The first research question aims at extending a previously defined simulation model (Anderson et al., 2012), such that it covers the particularities of distributed software development. For this, different elements of the model need to be adjusted, and several simulation runs need to be performed to tune the model. For each simulation run, only a single parameter varies (e.g., average effort of each user story, project size, and team size). Finally, the total time required and throughput values are examined to understand whether the variations are continuous or non-linear. For this, the following metrics are used: throughput and total_time, for a chosen value of one parameter and for fixed values of the other inputs, the simulator is run once until it stops (the end of the simulation) and the variation of the throughput (and total time) is examined.</td>
</tr>
<tr>
<td>RQ₂ To what extent can the simulation model reproduce the data obtained in the real project?</td>
</tr>
<tr>
<td>Having the calibrated simulation model available, the second research question aims to study whether the simulation model can be used to reproduce the real project. In particular, results (i.e., throughput and total_time) are collected feeding the simulation model with artificial and real project data. Results are used to improve the simulation model and, eventually, a comparison is carried out using the metric distance (between curves) of released user stories.</td>
</tr>
<tr>
<td>RQ₃ How reliable is the simulation model?</td>
</tr>
<tr>
<td>The third research question studies the reliability of the simulation model. In particular, if many simulation runs are performed using the same inputs: Does the model behave as expected? For this, several runs of the simulation model are performed using a list of artificial user stories. As metric, the variation (of average effort) is used to compare the variation in the calculated effort with the real effort from the project data.</td>
</tr>
<tr>
<td>RQ₄ Can a comparison of Scrumban, Kanban, and Scrum processes performance support decision-making?</td>
</tr>
<tr>
<td>The fourth research question studies the adaptability of the simulation model for reproducing Scrumban and Kanban processes in order to compare them. For this, several runs of the simulation model are performed using input data collected from the Software Factory project. As metrics, the average, median, min, max, and the standard deviation of cycle_time are used to compare the performance of the three development processes.</td>
</tr>
</tbody>
</table>

3.2. Simulation Goals and Requirements

The overall goal of this study is to better understand distributed software development in a Cloud context. For this, an existing simulation model (Anderson et al., 2012) is modified to better support decision-making processes concerning planning a distributed development process. The aim of this simulation model is thus to analyze the tradeoffs regarding throughput and total time on varying project size, team size, WIP limits and average effort. Furthermore, the modified simulation model aims to help project managers selecting the most suitable planning alternative. The overall simulation goals setting the scene for the simulation are therefore in Table 2 described using the GQM goal template according to Solingen and Berghout (1999):

The simulation model is purposed to answer the detailed questions collected in Table 3. For this, we define the input and output parameters/variables as summarized in Table 4. The simulation is performed instrumenting five scenarios, which are defined in Table 5.
Table 2: Summary of the simulation goals and context using the GQM goal template.

<table>
<thead>
<tr>
<th>Object</th>
<th>Simulation model of a distributed development process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Support decisions for planning</td>
</tr>
<tr>
<td>Quality Focus</td>
<td>Throughput, total time, cycle time, size of the project, and size of the team</td>
</tr>
<tr>
<td>View Point</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Context</td>
<td>Software Factory Network</td>
</tr>
</tbody>
</table>

Table 3: Simulation-specific questions.

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₁  If the throughput is fixed, how can the other parameters be adjusted?</td>
</tr>
<tr>
<td>Q₂  If the project size varies, but other parameters remain fixed, what is the effect on the throughput and on the total time required?</td>
</tr>
<tr>
<td>Q₃  If the team size varies, but other parameters remain fixed, what is the effect on the throughput and on the total time required?</td>
</tr>
<tr>
<td>Q₄  If the work-in-progress limit (i.e., the maximum number of user stories that can be handled at any given time) varies for different activities, how does the throughput change?</td>
</tr>
<tr>
<td>Q₅  What is the relationship between the average effort for the user stories in the project and the total time required?</td>
</tr>
<tr>
<td>Q₆  Which parameters can be used to best compare process performance?</td>
</tr>
</tbody>
</table>

Table 4: Simulation input and output parameters and variables.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁  Project size (total number of user stories) at time t, it is denoted by ( N_F(t) )</td>
<td>O₁  Throughput</td>
</tr>
<tr>
<td>I₂  Team size (number of developers), it is denoted by ( N_D )</td>
<td>O₂  Total time</td>
</tr>
<tr>
<td>I₃  Average effort</td>
<td>O₃  Duration of simulation ( T )</td>
</tr>
<tr>
<td>I₄  Number of activities, it is denoted by ( N_A )</td>
<td>O₄  Cycle time for a user story(^a)</td>
</tr>
<tr>
<td>I₅  WIP Limits in each activity (the maximum number of user stories that can be handled at any given time), it is denoted by ( M_k ) for the ( k^{th} ) activity</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Time required to complete a user story is collected and computed using actual time, mean, median, and standard deviation.

3.3. Specification of the Simulation Model

In this section, we briefly introduce the Software Factory process, which serves as a blueprint for distributed development projects, and we analyze and explain the modifications required to use this process as input for the simulation model.

3.3.1. The Software Factory Process Model

In the Software Factory (Fagerholm et al., 2013), Scrumban (Kniberg and Skarin, 2010) is used to run the distributed software development projects. In general, a coach combined an agile process (Scrum) with a Kanban board, which visualizes the user story assignment in each process step.

The Scrumban model as shown in Figure 1 comprises the four steps Pregame, Sprint Planning, Sprint, and Review Meeting. In the reported setting, a single sprint takes two weeks. Apart from this, most of the well-known Scrum practices are applied, e.g., the product owner selects user stories, developers estimate the given stories, and daily stand-up meetings are performed. To set up the simulation, we provide a for-
Table 5: Simulation scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td>For a chosen value of the throughput or total time and for fixed values of the other inputs (project and team size), the simulator is run once until it stops and the total time required is examined.</td>
</tr>
<tr>
<td>$S_2$</td>
<td>For a chosen value of the size of the project and for fixed values of the other inputs, the simulator is run once until it stops (the size of the project is reached) and throughput and total time are examined.</td>
</tr>
<tr>
<td>$S_3$</td>
<td>The simulator is run for a chosen value of size of the team, and for the fixed values of the other inputs, the values of the throughput and total time are examined.</td>
</tr>
<tr>
<td>$S_4$</td>
<td>For a chosen value of the WIP limits in each activity and for the fixed values of the other inputs, the values of the throughput and total time are examined.</td>
</tr>
<tr>
<td>$S_5$</td>
<td>For a chosen number of simulation runs, and all parameters remain fixed, and the relation among average effort and total time is examined.</td>
</tr>
<tr>
<td>$S_6$</td>
<td>For a chosen number of simulation runs, and all parameters remain fixed, the comparison of cycle time statistics of three different processes are examined.</td>
</tr>
</tbody>
</table>

Figure 1: Overview of the Scrumban process as used in the Software Factory. This overview illustrates the main steps in the process and the incoming/outgoing artifacts per process step. The thick opaque arrows show the control flow, and the dotted arrows show the product flow.

malization of the process model from Figure 1. Therefore, we need a detailed understanding of the process model and how specific practices are implemented. Table 6 provides a detailed description of the process steps and assigns inputs and outputs.

According to the general Scrum guideline (Schwaber and Beedle, 2002; Kniberg and Skarin, 2010), the three roles Scrum master, product owner, and team are present in a software project. In the Software Factory, these roles are generally present and implemented. However, due to the distributed project setup, the team is spread across three project sites (one team per site). That is, the project is operated as a distributed project and, thus, the team faces several challenges of distributed projects (Lous et al., 2017), such as time loss due to long meetings caused by an inefficient Internet connection, due to the problems with communication tools, due to the dependencies among different user stories, and allocation of work among different sites at which the team members are located.

The Software Factory was used for on-site observations to collect information for modeling the project context of our simulation model appropriately. After each iteration, interviews have been conducted with the development team members. Furthermore, we were involved in the daily meetings and the sprint review meetings to collect extra data for improving the simulation model. For instance, the different teams were composed of practitioners and graduate students each with different skills and work experience. Information about the team members has been used to calibrate the simulation model.
Table 6: Detailed description of the different process elements considered in the process simulation. Implementation of actual practices in the Software Factory are explained.

<table>
<thead>
<tr>
<th>Process Activity</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the <em>Pregame</em>, Epics as input are divided into <em>User Stories</em>. The outcome of this meeting is the (initial) Backlog containing all <em>User Stories</em> to be prioritized in the <em>Sprint Planning</em> activity.</td>
<td>Epics</td>
<td>User Stories</td>
</tr>
<tr>
<td>Based on the Backlog, in the <em>Sprint Planning</em>, each <em>User Story</em> or task (in which some user stories are divided) is prioritized.</td>
<td>User Stories</td>
<td>User Stories (prioritized)</td>
</tr>
<tr>
<td>In the <em>Sprint</em>, the actual development activities (including analysis and coding tasks performed by the developers) are carried out. During the <em>Sprint</em>, daily meetings (10-15 minutes) are held in which the four basic Daily Scrum questions are asked and answered. Eventually, this activity produces the actual systems, i.e., the <em>Code</em> of the system, and a set of <em>Acceptance Criteria</em> (according to a “Definition of Done”: DoD), which are used in later analyses of the goal achievement.</td>
<td>User Stories (prioritized)</td>
<td>Code, Acceptance Criteria</td>
</tr>
<tr>
<td>In the <em>Review Meeting</em>, the team and the Product Owner verify the fulfillment of the <em>Acceptance Criteria</em> defined in the analysis steps of the <em>Sprint</em>. The product-centered <em>Review Meeting</em> is complemented by a more process-oriented retrospective. Depending on the review outcomes, some tasks might be subject to rework, i.e., certain tasks might be repeated, and those tasks are scheduled for the next <em>Sprint</em>. Tasks that are considered done eventually result in released <em>Code</em>.</td>
<td>Acceptance Criteria</td>
<td>Code (released)</td>
</tr>
</tbody>
</table>

3.3.2. General Adaptation of the Simulation Model

The presented simulation model is grounded in a previously developed model by Anderson et al. (2012) for which the Software Factory process served as calibration model. The underlying simulation model was used to reproduce the originally used PSP/TSP (Humphrey, 2000a,b), Scrum, and Lean-Kanban processes by describing process elements such as features, activities, and developers. We analyzed the practical application of the Software Factory process and compared it to the original simulation model to determine those parameters to be used for calibration. In particular, multi-site development and the resulting challenges for collaboration and communication had to be implemented in the simulation model. Specifically, the following changes have been made to the original simulation model to adequately reflect the Software Factory process:

- The *Pregame* activity was added to the simulation model.
- *Rework* was added to the simulation model.
- The simulation model was modified to better reflect productivity in distributed settings.

The implementation of rework in the simulation model allows for repeating those tasks that are not yet finished or that do not fulfill the *acceptance criteria*. Such tasks are scheduled for the next *Sprint* and continue previous activities (from *review meeting* to *Sprint*). The productivity-related modification was performed to better reflect the productivity in terms of the number of hours worked (per developer) and changes of the team size in different phases of the project. For instance, the modification covers changing team setups, such as on-boarding a team, e.g., the core team consists of six developers (begin, end) and in selected phases, another six developers join the team.
3.4. Implementation of the Simulation Model

Figure 2 shows the final implementation of the simulation model as a UML class diagram, which shows the entities of the system and the relationships between the different actors. The classes KanbanSimulator and KanbanSystem represent the simulator’s core system comprising all methods to create the simulation environment. The remaining classes, e.g., user story, Activity, and Developer, reflect the process model entities to be simulated. The entity classes are complemented with some utility classes, e.g., ActivityRecorder, that help recording data for the simulation analysis. This way of implementing the simulation models follows a hybrid approach in which discrete-event and agent-based simulation approaches are combined. The discrete-event simulation part is used to simulate the high-level tasks and the accumulation of value, whereas the agent-based simulation part is used to model the workflow at a lower level, i.e., working teams, Kanban boards, work items, and activities. A more detailed explanation of the (original and unadjusted version of the) simulation model can be found in Anderson et al. (2011).

Figure 2: UML class diagram of the simulation model.

In the simulation presented in the paper at hand, the main actors are the developers of a distributed team working according to the process as shown in Figure 1, whereas each activity requires a certain set of skills. The most important events in the simulation model are: FeatureCreation, FeatureToPull, StartDay, and FeatureWorkEnded. These are used to set the scene for a simulation and to analyze the (potential) need for rework.

To run a simulation using the presented model, the following input is required: The main input is a list of user stories of which each is characterized by an identifier, a report date, an effort characterizing the
amount of work required to complete a user story (in days), and a priority (as a numerical value; the higher
the value the higher the user story’s priority). Furthermore, a set of parameters related to the real process
data, such as number of developers, developer skills, probability of rework, and work-in-progress (WIP)
limits is required. Finally, a script initializes the process (the process variables), e.g., duration of meetings
or sprint length. The script also runs the simulation, collects, and stores data to CSV files. The actual
technical implementation of the project environment and, accordingly, the infrastructure used to realize the
simulation model, which is implemented in Smalltalk, follows the infrastructure setup described in detail
by Fagerholm et al. (2013).

3.4.1. Modification of the Simulation Model for Scrum and Kanban

In addition to the Software Factory process above, we included two more processes in our study: Kanban
and Scrum. Both adaptations of the simulation are explained in the following:

Modification for Simulating Scrum. Scrum is characterized by iterations (so-called sprints) of a maximum
30 work days. Each sprint starts with an iteration planning meeting and ends with a retrospective. The
length of the two meetings should not exceed one day. In a sprint, a daily sprint meeting is held every
day. If one or more user stories from the sprint backlog are not finished in a sprint, they are moved to the
next sprint. The completed user stories are released at the end of the sprint (so-called potentially shippable
product). In the context of our simulation, we considered the similarities of Scrum and Scrumban. Yet,
we ignored the pregame phase and we assumed an already completed sprint backlog containing estimated
user stories. Likewise, we considered the implementation of rework in the simulation model that allows
for repeating those tasks that are not yet finished or that do not fulfill the acceptance criteria. Such tasks
are scheduled for the next sprint and continue previous activities (from review meeting to sprint). The
productivity-related modification was performed to better reflect the productivity in terms of the number of
hours worked (per developer) and changes of the team size in different phases of the project. For instance,
the modification covers changing team setups, such as on-boarding a team, e.g., the core team consists of
six developers (begin, end) and in selected phases, another six developers joint the team. Also the duration
of the sprint has been adapted, since Scrum does not define a pregame phase and WIP-limits as used for a
Kanban board.

Modification for Simulating Kanban. For simulating Kanban, we also assumed a completed backlog. The
Kanban workflow has been modeled for the simulation as follows: in the first activity (analysis), estimated
and prioritized activities are analyzed and pulled from the second activity (implementation), which happens
respecting the WIP-limits set and the skills of available developers. Once the implementation is done, user
stories are pulled from the third activity (test) to evaluate the quality according to the acceptance criteria set.
Finally, completed user stories are either pulled from the deployment activity or sent back to the analysis
phase in case rework is necessary. Same as in the Scrum model, we also implemented rework for Kanban
thus allowing for repeating those tasks that have not been finished or failed the testing phase, and we provide
WIP limits concerning the size of the team and activities such as: analysis, implementation and testing and
deployment. The productivity-related modification was performed to better reflect the productivity in terms
of the number of hours worked (per developer) and changes of the team size in different phases of the project
(see adaptation of the simulation model for Scrum above).

4. Simulation Results

In this section, we present the simulation results. In Section 4.1, we describe the actual simulation setup.
In Section 4.2, we present the outcomes of the simulation runs and a discussion. Finally, in Section 4.3, we
critically discuss our findings regarding the threats to validity.

4.1. Simulation Setup

We observed a project from April 23, 2012 till July 6, 2012 in which a team of six developers (divided into two groups) started working for 3 h/d in Spain. From May 14, 2012 until June 29, 2012, another team of six developers located in Helsinki joined the project and worked for 6 h/d. In these periods, we monitored the processes implemented and collected the raw project data, which has been analyzed and used to create the input for the simulation model. To better reproduce rework on interconnected tasks, we have reduced the 64 user stories (considering user stories and tasks, in which some user stories have been divided,) to 25 user stories. The throughput in the real project was almost three user stories per week with an average effort of 1.3 to 1.5 person days. Eventually, for the initial setup, we considered 25 user stories and tasks stored in the backlog, whereas we expect new user stories coming in after the last review meeting of an iteration, or at the beginning of a new iteration. Furthermore, we assume developers always available to work on and release upcoming user stories.

\[
\text{Figure 3: Percentage of open and closed user stories as used for the different simulated sprints.}
\]

In this simulation we analyzed five sprints, and we performed simulation runs using real and artificial data. Real data has been collected directly from the aforementioned project, and artificial data has been collected by using an algorithm of the simulation model that takes the real data as input. After the data analysis, we calculated the average effort and standard deviation to identify the data distribution and to obtain statistical values for incoming user stories. Having the data required, we built the list of user stories that serve as input for the simulator (Figure 3 shows the resulting user story setup used for the simulation).

\[2\] In this project in the context of a smart grid environment, the system to be implemented had to process and analyze a substantial quantity of data concerned with measurement of data consumption. Data was collected hourly, daily, and monthly. The teams were appointed to implement the different modules that compose the system for the processing data.

\[3\] For the data distribution, we assume a log-Normal distribution. For incoming user stories, however, the distribution is unknown. Therefore and in order to allow for replicating input data in different simulation runs, we use a linear interpolation method.
4.2. Simulation Runs

In this section, we provide insights into the simulations and present and discuss the results. The different simulations address the questions (Table 3) and scenarios (Table 5) as introduced in Section 3.2. The full mapping of simulations, questions, and scenarios is shown in Table 7. For example, question Q₁ is studied using the first simulation for scenario S₁, i.e., for a given throughput, what parameters can be varied. Similarly, simulation two for scenario S₂ helps answering Q₂ and Q₅, i.e., how total time and throughput vary in relation to varying project size. In the following, we first describe the individual simulations before integrating the different outcomes for answering the research questions in Section 4.2.8.

Table 7: Mapping of simulations to questions (Q) and scenarios (S).

<table>
<thead>
<tr>
<th>Q₁</th>
<th>Q₂</th>
<th>Q₃</th>
<th>Q₄</th>
<th>Q₅</th>
<th>Q₆</th>
<th>Simulation</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
<th>S₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>☑</td>
<td>✗</td>
<td>✗</td>
<td>Simulation</td>
<td>☑</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>☑</td>
</tr>
</tbody>
</table>

4.2.1. Simulation 1

The first simulation addresses Q₁ and studies variables that can be modified—and how they can be modified—if the variables team size or project size are fixed. In particular, the variables throughput and total time are of interest, and how they can be modified. For S₁, the throughput is set and time required to complete the simulation is examined.

In the chosen team setup (12 developers, Group 1 has six developers working 6 h/d and Group 2 has six developers working 3 h/d), a project of 25 user stories, each with an effort of 1.3–1.5 person days, was chosen. The overall performance was five to six user stories per day and, eventually, the team could work on about 500 user stories without inflationary growth of the backlog. However, communication issues and dependencies among user stories and/or tasks limited the performance, such that S₁ yielded in an average throughput of only three user stories per day.

4.2.2. Simulation 2

The second simulation studies Q₂, i.e., studying what effect a varying project size has (i.e., keeping the other parameters fixed) on the throughput and the total time required for a project. For a chosen value of project size and fixed values of other inputs, the simulator is run once until it stops (the size of the project is reached) and the values of the variables throughput and total time are evaluated. We assumed that a linear relation among project size, and throughput and total time required exists. Therefore, we re-ran the simulation with a stepwise increasing project size, but kept the other parameters fixed. The number of user stories (with an average effort of 1.3 person days) increases and we checked the differences in throughput and total time as shown in Figure 4.

For a doubled project size the throughput increases in linearly, yet shows a little steep when the size of the project increases from 200 to 400 user stories; and then continues with a linear trend until 500 user stories. Regarding the total time required, the trend is almost linear with slow rise and a steep when the

---

4Which is almost the maximum number of user stories the team can work on without an exceeding growth of the backlog.
projects size increases from 200 to 400 user stories—and then continues with a linear trend until 500 user stories. In Table 8 we tabulated the obtained throughput as the total user stories released during the project. We consider the throughput as the number of user stories released at the end of the project. Table 8 shows that for a project size of 25 user stories, the throughput is approx. three to four user stories per week (48 user stories, including assumed 20% of rework) and a total time of 76.46. For a project size of 50 user stories, the throughput is seven to eight user stories per week, i.e., the throughput equals 82 closed user stories and a total time of 84.21, and so forth. Hence, doubling the project size also doubles the throughput.

Figure 4: Relation of total time (in days) and throughput (user stories released) of the simulated projects with different amounts of user stories (see Table 8).

<table>
<thead>
<tr>
<th>Size</th>
<th>Total Time</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>76.46</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>84.21</td>
<td>82</td>
</tr>
<tr>
<td>100</td>
<td>94.87</td>
<td>172</td>
</tr>
<tr>
<td>200</td>
<td>127.74</td>
<td>336</td>
</tr>
<tr>
<td>400</td>
<td>224.47</td>
<td>766</td>
</tr>
<tr>
<td>500</td>
<td>229.83</td>
<td>812</td>
</tr>
</tbody>
</table>

4.2.3. Simulation 3

In S₃, we study the relationship between team size, throughput and total time to answer Q₃, i.e., what the effect on the throughput and the total time required is if the team size varies, but other parameters are fixed. We assume that no linear relation exists among team size, throughput, and total time. That is, if the number of developers skilled in testing goes to zero, throughput is blocked. If the number of blocked user stories grows, adding new tester does not increase the throughput, due to the bottleneck from
the previous phase. The summary of the simulation results is shown in Table 9 in which the throughput is again represented by the number of user stories released by the end of the project.

Table 9: Team size and throughput (project performances in relation to different team size and skill profiles; skills for activities: 1=analysis, 2=development, 3=testing, and 4=deployment).

<table>
<thead>
<tr>
<th>Team Size</th>
<th>Skills Total Time</th>
<th>Backlog</th>
<th>Pregame</th>
<th>Sprint Planning</th>
<th>Sprint</th>
<th>Review Meeting</th>
<th># of Released User Stories</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>–</td>
<td>83.923</td>
<td>25</td>
<td>25</td>
<td>33</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>85.0125</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>98.0263</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>98.0263</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>76.7853</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>77.4417</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>76.7853</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>96.651</td>
<td>25</td>
<td>25</td>
<td>41</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>X X X X</td>
<td>96.0761</td>
<td>25</td>
<td>25</td>
<td>33</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>96.0761</td>
<td>25</td>
<td>25</td>
<td>33</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>99.2204</td>
<td>25</td>
<td>25</td>
<td>33</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>86.5942</td>
<td>25</td>
<td>25</td>
<td>37</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>X X X</td>
<td>89.6905</td>
<td>25</td>
<td>25</td>
<td>36</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>98.5971</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>98.5971</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>98.5971</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>125.745</td>
<td>25</td>
<td>25</td>
<td>38</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>79.3474</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>105.672</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>104.795</td>
<td>25</td>
<td>25</td>
<td>35</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>77.4448</td>
<td>25</td>
<td>25</td>
<td>33</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>78.2208</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>84.6146</td>
<td>25</td>
<td>25</td>
<td>37</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>95.5282</td>
<td>25</td>
<td>25</td>
<td>34</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>105.672</td>
<td>25</td>
<td>25</td>
<td>39</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>84.7019</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>84.7019</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>X X X</td>
<td>103.79</td>
<td>25</td>
<td>25</td>
<td>36</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

The team size was chosen, in order to study the impact on the throughput when other project parameters remained fixed. For this, we use the number of hours that each developer works. We assume that variations on throughput and total time depend on the developers’ skills, on the number of hours they work, and on the strategy used to assign them to the activities rather than the size of the team. We selected the cases of the whole team, and teams with six and three developers respectively. The results demonstrated that variations in throughput and total time mostly depend on the skills of the developers and their assignment to the different activities. Table 9 shows that if three developers or six developers, that are skilled in all activities, work on the same number of user stories, they may obtain the same throughput and the same total time. Instead, when the number of developers is not high enough to satisfy the effort required for an activity, throughput decreases and the total time increases.

4.2.4. Simulation 4

In S4, we study the relation between the use of WIP limits, throughput and total time to answer Q4, i.e., what the impact on the throughput is if the WIP limit for activities varies. For a given WIP limit,
it is possible to examine the resulting throughput and total_time, if other parameters remain fixed. It is 
required to perform many simulation runs to obtain WIP-limit values, which can yield optimal throughput 
in the minimum time required. For a team setup of 12 developers, we performed several simulation runs 
with different values for the WIP limit, and without limits. For example, at first one may consider a WIP 
limit of 10–12, i.e., 10 in the first and last activity, and 12 in the second and third activity. WIP limits 
tested were also 6–8 and 3–4. We observed that for lower WIP-limit values, throughput decreases and 
the total_time increases—a bottleneck may exist. However, if we consider WIP limits of six to eight or 
higher, results are the same as if there were no limits at all. This could be a result from the small number of 
user stories or the big team size and, thus, WIP limits are not useful (this also hampers generalizability). In 
a nutshell, for low WIP limits, we obtained a low throughput and a longer total_time, yet, higher WIP 
limits have not shown any effect on the throughput.

4.2.5. Simulation 5

In simulation S5, we study the relation between average_effort, throughput, and total_time to 
answer Q5, i.e., whether there is a relation between effort for user stories and the total time required for 
the project. For a given number of simulation runs, all simulation parameters remain fixed. At the end of 
each simulation, values for average_effort, throughput, and total_time are examined to understand 
if variations, as expected, are continuous. Accordingly, two experiments have been conducted: one with 
real data, and another using artificial data. The results obtained show that variations in the effort cause 
variations in throughput and total_time. Furthermore, the relation is almost continuous without major 
gaps. Performing many simulation runs, we found a low correlation between variations in average_effort 
and total_time.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Time</td>
<td>77.26</td>
<td>2.62</td>
</tr>
<tr>
<td>Effort</td>
<td>1.297</td>
<td>0.203</td>
</tr>
<tr>
<td>Corr (effort/time)</td>
<td>0.0888</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Correlation of effort and total time.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>44.19</td>
<td>6.02</td>
</tr>
<tr>
<td>Effort</td>
<td>1.297</td>
<td>0.203</td>
</tr>
<tr>
<td>Corr (effort/throughput)</td>
<td>-0.119</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Correlation of effort and throughput.

Simulations performed using the real project data, did not show any variation for neither variable. Yet, 
simulations using the artificial data showed variations. In total, we performed 100 simulation runs and 
found a low correlation 0.0888 between the variation in average_effort and total_time (Table 10). 
Furthermore, we found a correlation of -0.119 between average_effort and throughput (Table 11). 
Hence, there is no direct relation between average_effort and throughput.

4.2.6. Simulation 6

In S6, we study the relations between average_effort, throughput, and total_time with a partic- 
ular focus on the question to what extent the simulation model can reproduce data from the real project.
The implemented software development model presented in Section 3.3.1 is used to allow for comparing the results (i.e., throughput and total time required to finish the project) obtained from the simulations performed on real and artificial data. In particular, simulations were run using the list of user stories, parametrized with values for the effort taken from the real project. The analysis was carried out on the number of released user stories, in particular by comparing the two performance curves shown in Figure 5. The curves represent the cumulative number of user stories released in the project and, in an optimal case, both curves should overlap. As Figure 5 shows, our experimental results suggest that the presented simulation model produces data that well match, which demonstrates the feasibility of the approach presented.

4.2.7. Simulation 7

In last simulation S7, we compare the cycle time of the three different processes Scrumban (the original Software Factory process), Scrum, and Kanban to improve our ability to choose the right process for the respective context and to adapt other processes in similar cases. Again, we study in how far our simulation model can also reproduce data from the real project.

The Software Factory’s Scrumban model (see Section 3.3.1) and the adaptations of our simulation model for Scrum and Kanban (see Section 3.4.1) are to compare the performance of the different processes, specifically the cycle time. Furthermore, data is used to compare the simulation outcomes with results obtained in the real projects. In this simulation, the different runs used the list of estimated and parametrized user stories from the real case project. Analyses have been performed on the real case data as well as on the
Table 12: Summary of cycle time statistics of the Scrumban, Kanban, and Scrum processes in the real cases compared with the simulation results.

<table>
<thead>
<tr>
<th>Process</th>
<th>Real Case</th>
<th>Simulated Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Median</td>
</tr>
<tr>
<td>Scrumban</td>
<td>7.58</td>
<td>6.82</td>
</tr>
<tr>
<td>Kanban</td>
<td>6.65</td>
<td>5.70</td>
</tr>
<tr>
<td>Scrum</td>
<td>8.42</td>
<td>6.21</td>
</tr>
</tbody>
</table>

simulation results collected from 100 runs for each case. Table 12 shows the results, which suggest that our simulation model produces data that well match the real cases. Hence, we conclude that our simulation model satisfactorily reproduces the real case.

Comparing the three different processes, we see that the results related to each process are very close, in particular Scrum and Scrumban. Yet, our data suggests that—in the current distributed context—Kanban seems to be more efficient. A reason can be the more “sequential” nature of Kanban and its strong focus to limit work-in-progress, i.e., an attempt to improve the effective work assignment. This effect can be observed in the real case and the simulated case alike.

4.2.8. Summary of the Simulation Results

In this section, we briefly summarize our simulation results and answer the research questions (see Section 3.1). To support answering the research questions, in Table 7, we relate the different simulation scenarios shown in Table 5 with the detailed simulation questions shown in Table 3.

Research Question 1. To answer the first research question, we use the simulations S1 - S5. The different outcomes presented in the previous paragraphs show the relationships between the three variables: throughput, total_time, average_effort. The findings further show how the original simulation model by Anderson et al. (2012) can be calibrated in order to reproduce distributed software development (processes). In particular, the simulation for scenario S1 showed that for a given throughput, total_time is the only parameter that can change (gives all other variables are immutable). The simulation for scenario S2 showed a linear relationship between throughput and total_time for a varying project_size, whereas the simulation for scenario S3 found no linear relationship if team_size is the subject of study. The simulation for scenario S4 studied WIP limits and the impact on throughput, finding no effect on the throughput for higher WIP limits.

Research Question 2. The second research question aims at comparing simulation results with real project data (and experience). For this, the simulation for scenario S6 is used. The results are shown in Figure 5, which shows the distance of the two curves as a measure of accuracy. In summary, the adapted simulation model was found feasible to reproduce a real project.

Research Question 3. The third research question aims to study the reliability of the simulation model. For this, the simulation for scenario S5 was used, and the simulation was run several 100 times. The outcomes show the simulation model reliably reproducing results with acceptable variations for throughput, total_time, and average_effort regardless of the input data, i.e., real or artificial data.

Research Question 4. The fourth research question aims at comparing simulation results from three different processes to support project managers in selecting the project-specific development approach. For this, the simulation seven was used, and the simulation was run several 100 times. The outcomes show the
simulation model reliably reproducing results (in our case for the cycle time) from a real case and, thus, providing a means to ground decisions in the simulation results.

4.3. Threats to Validity

In the following, we discuss the threats to validity to be considered when applying the method presented in the paper at hand.

Internal Validity. According to Shadish et al. (2001), an experiment may have unknown and hidden factors that could affect the results. In the presented case, information regarding teams and organization of work originated from the projects. Data used in the simulation model was extracted from systems used by the teams and personal observations, which might influence result quality. Although the model properly simulates skilled developers performing task sequences, still, the simulation model does not fully cover interactions among the developers thus introducing a threat regarding the inclusion of human factors in the simulation.

Construct Validity. Construct validity concerns the degree to which inferences are warranted from the observed phenomena to the constructs that these instances might represent (Wohlin et al., 2012). A first threat to construct validity is that, although in this study we have carefully analyzed and preprocessed the Software Factory data, our results could be affected by the data quality (such as possible noisy data). Another threat related to construct validity is the fact that our work is centered on the study of how the process determines the efficiency of the development activity. However, there are many other human-related factors that could affect the efficiency and productivity of the team, e.g., considering (co-)workers, keeping the team motivated and satisfied, and so on. Just limiting the work-in-progress will not be effective if a team is troubled and dissatisfied. A simulation model can simulate a process, but it is very difficult to explicitly include human factors. To mitigate this threat, data about the Software Factory process (e.g., user stories, effort, and WIP limits) was collected daily by external researchers. Furthermore, at the end of the Software Factory projects, one researcher extracted data from the different tools used in projects, e.g., documentation and code, and interviews with the team members have been performed.

External Validity. If a study possesses external validity, its results will generalize to a larger population not considered in the experiment (Shadish et al., 2001; Wohlin et al., 2012). In this study, we only ran the simulation model on one development project. This project is small, and the number of subjects used in this study is small. This is a clear threat to external validity of our results. However, the simulation methods we proposed are evaluated on large software systems that experienced a long evolution. Furthermore, we extended our simulation in terms of modifying the simulation model to represent further development processes for a comparative study. Since these extra simulations confirmed the study of the Software Factory process, we assume a generalizability of the general simulation model. However, further studies need to be conducted to also confirm the project-related findings and whether these findings can be generalized.

Reliability. The main threat to the reliability of the simulation model and the input data is that only one researcher performed the observation, data collection and initial data analysis. To mitigate this threat, researcher triangulation was implemented for quality assurance of the different procedures applied and the data collected. To improve the data basis for developing the simulation model, in a first step, the data collected from the Software Factory projects was pre-processed by one researcher. During the data collection and the pre-processing phase, researchers and project team members established a continuous communication and result analysis to reduce the risk of misinterpreting (tentative) results. In a second step, using a linear regression algorithm, an artificial list of user stories was created from the actual project data, which allows for testing the reliability of the dataset in the simulation model.
5. Conclusion

In this paper, we presented a simulation process model able to reproduce the process followed in the Software Factory project. We demonstrated the calibration of the simulation model and its implementation. An existing simulation model was modified to reflect the Scrum process as used in the Software Factory. We described the customization of the relevant parameters and aspects to implement the Software Factory process. Eventually, we performed a case study with (real-life) data gathered from Software Factory project.

Summary of Findings. The simulation results in the following major findings: Project teams face problems regarding communication and organization of distributed projects affecting the teams’ productivity and/or increasing the time required to achieve the project goals. The results obtained from our simulation show the influence of decisions in the project planning activities, e.g., in assigning work, when a distributed development is considered for a project. Therefore, our simulation model can be used to model project setups of interest, to elaborate potential pitfalls, and to work out solutions to address those problems. This opportunity was especially shown by a comparative analysis of a simulated case and a real case. We could successfully model and reproduce the Scrum process as used in the Software Factory, and our simulation generated results comparable to the real project data. Hence, the simulation model allows for modeling a distributed project, analyzing and predicting trends, and eventually selecting the most promising (according to the respective project goals) project configuration.

The key advantage of using a simulation is that various project parameters can be evaluated quickly and relatively easy to support the project management in selecting the most promising process alternative to positively influence the project performance. In our previous work, we could also show that project managers could improve their knowledge about the issues critical to the project and, thus, adapt the process for next iteration or for future projects. Hence, project managers get a tool to early analyze project configurations, to better understand the development process and variations thereof and, in future, to apply the most suitable planning alternatives for the respective context. Beyond the analysis of the Software Factory process, we also analyzed the general adaptability of our simulation and therefore evaluated the suitability of the simulation model for further process models. For this, we tailored the simulation model to support “pure” Scrum and Kanban and conducted a comparative analysis of the processes’ cycle time. Again, we could see that the simulation model adequately reproduces the real case data.

Companies doing this kind of simulation projects can use the presented simulation model for identifying and better understanding factors (e.g., communication, work assignments) that could have an impact on the planning and operation of projects. These factors might need a specific consideration. The simulation models might also help to better understand the mechanics and dynamic relationships inside such projects or lead to important questions to be posed before starting a project. However, the models are not aimed at generating precise point estimates or supporting decision making at a micro level. This would require a very careful customization of the models to a company’s context and a respective calibration.

Limitations. The model presented only partially addresses the (quantitative) relationship of different actions, which introduces some conceptual issues (e.g., human factors) in the model. Hence, the simulation capabilities of the model are limited to only those project aspects that can be sufficiently measured. Therefore, the results obtained in the presented simulation are limited for specific cases and can only serve as indication, but do not yet allow for generalization. However, such a generalization would be very helpful to have “standard” process customizations at disposal, which could be used to calibrate an organization- or project-specific simulation model.
**Future Work.** Future work thus comprises gathering data from further *Software Factory* projects and from other industrial projects from different contexts. These steps will enhance the data bases and they will support the model’s validation to improve its reliability. Furthermore, the present model is expected to be extended to allow for simulating and reproducing further processes, i.e., to be generalized and then customized for application to further domains. We demonstrated this by providing an initial simulation and comparison of the *Software Factory*’s Scrumban process and the “pure” Scrum and Kanban processes. Yet, a transfer to other processes and process combinations in different application domains remains subject to future work. Another aspect that is worth consideration is the improvement of the presented simulation model towards a prediction tool. So far, we could increase understanding of the relationships, e.g., project size and work-in-progress, and we could reproduce real project data, i.e., the model is primarily used as analysis tool. Therefore, given a sufficient dataset as a basis and a sufficiently validated model, the approach presented in this paper could also serve as prediction tool to proactively improve the decision-making process of project managers. In this regard, an updated work-in-progress version of the simulator could directly access issue tracking systems such as Jira or Redmine. This extended simulation tool would collect data about the project such as, e.g., number and list of issues, estimated time and time spent for resolving issues, priority of issues, team size, and the process followed as a workflow (number of steps and connection among the steps). Furthermore, this extended simulator could be quickly adapted for a particular project to reproduce and/or simulate the project providing the total time needed to finish the project and some statistics, e.g., concerning the number of issues per day, developer productivity, and so forth. Using MonteCarlo simulations and variations of project parameters such as developer availability or error in effort estimation, such and updated simulator would also allow for risk analyses.

**References**


