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A B S T R A C T
 Carotid intima-media thickness (cIMT) and carotid plaque (CP) currently act as risk predictors for CVD/Stroke 
risk assessment. Over 2000 articles have been published that cover either use cIMT/CP or alterations of cIMT/
CP and additional image-based phenotypes to associate cIMT related markers with CVD/Stroke risk. These 
articles have shown variable results, which likely reflect a lack of standardization in the tools for measurement, 
risk stratification, and risk assessment. Guidelines for cIMT/CP measurement are influenced by major factors 
like the atherosclerosis disease itself, conventional risk factors, 10-year measurement tools, types of CVD/
Stroke risk calculators, incomplete validation of measurement tools, and the fast pace of computer technology 
advancements. This review discusses the following major points: 1) the American Society of Echocardiography 
and Mannheim guidelines for cIMT/CP measurements; 2) forces that influence the guidelines; and 3) calculators 
for risk stratification and assessment under the influence of advanced intelligence methods. The review also 
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artery (CCA), without considering the plaque in the bulb 
and internal carotid artery.29 Ruijter et al.28 indicated mini-
mal improvement in the 10-year risk of CVD after adding 
cIMT (as measured in the 10 mm region, free of plaque) to 
the Framingham risk score (FRS).30 They also noted that 
the improvement was of little clinical importance. This 
study presented by Ruijter et al.28 had a strong impact in 
modifying the CVD/stroke risk assessment guidelines rec-
ommended by ACC/AHA which reported against the use 
of cIMT for routine risk assessment.31 It should be noted 
that atherosclerotic plaques are uncommon in the CCA and 
practically start at the carotid bifurcation i.e., the origins 
of the internal and external carotid arteries. This may also 
be the reason for little improvement in the CVD risk when 
cIMT was considered with FRS.

In the past decade, with the advancement in technol-
ogy, full-length measurement of cIMT, i.e., measurement 
of cIMT all along the length of CUS scans of three arterial 
segments (CCA, carotid bulb, and ICA) have been used 
for CVD and stroke risk stratification.32-35 The automated 
full-length measurements have also been used as covari-
ates in a CVD/stroke risk prediction model to estimate the 
10-year risk of patients.36-38 Such types of full-length mea-
surements were not considered while framing the guide-
lines.19, 24, 25 These studies demonstrated that plaque thick-
ness had a stronger association with future CVD/stroke 
events. Recently, the European Society of Cardiology/Eu-
ropean Atherosclerosis Society guidelines stated that the 
presence of coronary calcium on CT or carotid plaque on 
ultrasound unequivocally identifies individuals at high risk 
of myocardial infarction or stroke.39

Our efforts in this review are to understand various 
forces (or factors) that link and impact the guidelines and 
potentially be considered in future guidelines. Figure 1 
shows the influencing factors on the American Society of 
Echocardiography (ASE)/Mannheim measurement guide-

Cardiovascular diseases (CVD) including myocardial 
infarction (MI) and stroke are the leading causes of 

both regional and global mortalities.1 Atherosclerosis is 
the prominent contributor of such mortalities.2, 3 Thus, 
there is a need to develop a set of preventive tools that can 
monitor atherosclerosis. In the last four decades, carotid 
intima-media thickness (cIMT) and carotid plaque (CP) 
measured using the B-mode carotid ultrasound (CUS) 
imaging technique has been considered as non-invasive, 
quantitative, and preventive tools for the assessment of 
CVD and stroke risk.4-6 There exists a plethora of evi-
dence that indicates a strong association between these 
CUS image-based phenotypes (CUSIP) and cardiovas-
cular (CV)/stroke events.7-20 Furthermore, cIMT acts as 
a cost-effective surrogate endpoint of CVD and stroke in 
situations when the accurate CV and stroke endpoints need 
longitudinal trials.5, 21, 22 Despite all this, the use of CU-
SIP for routine CVD/stroke risk assessment still remains 
a debatable topic23 due to several reasons such as varia-
tions in the measurement protocols, types of measurement 
tools, different ways of 10-year risk computation, specific 
carotid segment to be analyzed (common, bulb or inter-
nal), scientific validation protocols used, and the type of 
the study utilized.23

In order to maintain uniformity in the measurement 
protocols of CUSIP, several guidelines have been report-
ed.19, 24, 25 Based on these guidelines, in 2010, the American 
College of Cardiology (ACC)/American Heart Association 
(AHA) supported the use of cIMT for CVD/stroke risk as-
sessment. Similarly, the National Cholesterol Education 
Program-Adults Treatment Panel (NCEP-ATP) III26 and 
the European Society of Hypertension27 had also recom-
mended the use of cIMT for CVD/stroke risk assessment. 
However, in 2012, Ruijter et al.28 presented a meta-analysis 
with 11 years of follow-up that measured the cIMT within 
the 10 mm distance of the far wall of the common carotid 

presents the knowledge-based learning strategies such as machine and deep learning which may play a future 
role in CVD/stroke risk assessment. We conclude that both machine learning and non-machine learning 
strategies will flourish for current and 10-year CVD/Stroke risk prediction as long as they integrate image-
based phenotypes with conventional risk factors.
(Cite this article as: Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, et al. Global perspec-
tive on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited? Int 
Angiol 2019;38:451-65. DOI: 10.23736/S0392-9590.19.04267-6)
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the carotid artery using automated tools is a wider topic 
and has already been discussed in detail in the previous 
literature published by our group.51-54

Search strategy
The cIMT and CP have received significant attention from 
the research communities which reflects the total number 
of studies published in the last four decades, depicted in 
Figure 2. Our review is the outcome of searches in PubMed 
to investigate various relevant articles published in peer-
reviewed journals. Figure 3 shows the flow diagram for 
the search strategy followed in this review. Articles pub-
lished within the last 15 years were given greater prefer-
ence. The initial search in PubMed was started by using 
the keywords such as: “carotid intima-media thickness,” 
“intima-media thickness variability,” “carotid wall mo-
tion,” “carotid plaque,” “Consensus” AND “Intima-media 
thickness,” “Consensus” AND “carotid plaque,” “Carotid-
intima Media thickness” AND “cardiovascular risk predic-
tion,” total carotid plaque area, “carotid plaque burden,” 
“carotid plaque characterization,” “automated cIMT,” 
“carotid artery calcium,” “Cardiovascular risk stratifica-
tion,” “Cardiovascular risk assessment,” “vascular ultra-
sound,” “Cardiovascular risk calculators,” small vessel 
disease AND “atherosclerosis,” “neurological diseases,” 
“large vessel disease” AND “atherosclerosis,” “neurologi-
cal diseases” AND “atherosclerosis” “vascular disease and 
atherosclerosis,” “preventive cardiology,” “carotid artery 
disease” AND “management,” machine learning AND Ca-
rotid Artery, “deep learning and carotid artery,” “carotid 
intima media thickness progression,” and “carotid intima 

lines (from here on we will use the word “guidelines” 
implying the “ASE/Mannheim measurement guidelines”- 
represented as the central circle). Figure 1 shows six el-
liptical petals representing the factors which are directly 
linked to the guidelines. This includes the diseases that af-
fect atherosclerosis,22, 40-42 conventional risk factors (CRF) 
which affects the atherosclerosis disease,43-47 current and 
10-year image-based phenotypes for quantifying the ath-
erosclerosis disease,37 measurements tools and techniques 
for risk stratification,32-35 scientific validation,48-50 and ef-
fect of technology changes. The intent of this review is 
to summarize improvements made in the area of CUSIP 
measurement and to identify the factors which can impact 
the measurement guidelines in the future. It is important to 
note that the focus of this paper is to investigate the tools 
and techniques solely dedicated to 2D carotid longitudinal 
scans. Since 90% of the adaptability for atherosclerotic 
risk assessment uses 2D ultrasound, we, therefore, focus 
on the key advantages and further, the pitfalls, challenges 
for CVD/stroke risk assessment. As a result, this review 
does not focus on 3D imaging for the carotid artery. Mea-
surement of 3-D ultrasound image-based phenotypes from 

Figure 1.—Various forces that interact and influence the guidelines.
ASE: American Society of Echocardiography; TPA: Total Plaque Area; 
CRS: Composite Risk Score; cIMTave: Average Carotid Intima-Media 
Thickness; cIMTmax: Maximum Carotid Intima-Media Thickness; 
cIMTV: Variability in Carotid Intima-Media Thickness; cIMTmin: Min-
imum Carotid Intima-Media Thickness.

Figure 2.—The overall trend of publications on cIMT and on CP in the 
past four decades.
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Touboul et al.24, 25 recommended the measurement of 
cIMT in the 10 mm plaque-free segment of CCA or ICA 
or carotid bifurcation (and sinus bulb). The idea behind 
considering the plaque-free region was to perform a re-
producible measurement of the cIMT. The definitions of 
CP were also quite similar to the ASE guidelines.19 Stein 
et al.19 defined CP as the focal wall thickening of 50% 
greater than surrounding cIMT of the vessel wall or a focal 
region with cIMT greater than 1.5 mm protruding into the 
lumen. In addition, Touboul et al.24, 25 added one additional 
measure for the CP measurement and defined the CP as 
a focal thickening region encroaching into the lumen by 
at least 0.5 mm or 50% of surrounding cIMT or a focal 
thickening region with cIMT value greater than 1.5 mm. 
The type of cIMT measurement is another point reported 
in both guidelines. Different types of cIMT measurement 
include: 1) mean of cIMT values along the 10 mm segment 
of CCA; 2) maximum of cIMT values along the 10 mm 
segment of CCA; 3) mean of mean measurement in which 
first mean of cIMT values along the 10 mm length of both 
left and right CCA is computed. The average of these two 
mean cIMT values provides the final cIMT measurement. 
Besides these, a composite measurement of cIMT along 
with all three segments (CCA, bulb, and ICA) and for both 
sides of the neck can also be considered as a type of mea-
surement.

The guidelines discussed above19, 24, 25 have tried to 
bring all the aspects of CUSIP measurements on a single 
platform. However, in the majority of routine practice, the 
CUSIP measurement protocols or the recommendations 
provided in the guidelines are followed to a limited extent 
and with great diversity. In the last decade, the research-
ers have identified multiple loose-endpoints in the current 
guidelines and have suggested several improvements in 
the CUSIP measurements to consider such unanswered 
issues. Figure 1 indicates the missing links between the 
current guidelines and several factors that influence the 
guidelines. All such missing links between the current 
guidelines and the influential forces that affect the guide-
lines will be discussed in the following sections.

Factors that affect the central guidelines

Figure 1 shows various factors that influence the current 
guidelines. The first elliptical petal of Figure 1 indicates 
three categories of diseases that primarily impact the com-
plex nature of atherosclerosis: 1) conventional systemic 
diseases; 2) local arterial vascular diseases; and 3) neuro-
logical diseases. Conventional diseases are further divided 

media thickness regression.” The citations from the pub-
lished articles were also shortlisted for the design of this 
review. This review is the outcome of 107 articles which 
were scrutinized using four exclusion criteria depicted in 
Figure 3.

Guidelines for cIMT and CP measurement
In the last decade, Touboul et al.24, 25 and Stein et al.19 
presented the CUS-based guidelines that provided recom-
mendations for the measurement of cIMT and CP. Further-
more, these guidelines presented the clinical use of cIMT 
and CP for the risk assessment of CVD/stroke events. In 
order to perform the risk assessment, Stein et al.19 recom-
mended a two-step process: 1) identification of CP by thor-
ough scanning of the carotid artery; and 2) measurement 
of the cIMT within the 10 mm plaque-free segment in the 
far wall of the CCA. It has also been reported that the ma-
jority of CP lies within the distal end of the common ca-
rotid artery, carotid bulb (sinus and flow divider area) and 
the internal carotid artery.19 For this reason, the guideline 
mentions scanning of the carotid bifurcation thoroughly.

Figure 3.—Fundamental flow-diagram for the search strategy.
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little emphasis was given on the association between CU-
SIP and the CRF. In Figure 1, the second ellipse titled 
“Conventional Risk Factors” indicates a direct link to 
the guidelines for risk assessment. Since almost 90% of 
patients with CVD/Stroke mortalities have at least one 
type of CRF,68, 69 it is essential to investigate the behav-
ior of CUSIP in conjunction with CRF when making a 
determination of CVD risk. Annual progression CUSIP 
is influenced by the traditional risk factors such as age,45 
gender,43 smoking,44 Body Mass Index,47 diabetes,46 low-
density lipoprotein cholesterol,46 and hypertension.46 It 
should be noted that it is extremely important to track the 
increase in CUSIP since it increases the risk of stroke.70 
Furthermore, as discussed in the previous section (i.e., in 
section link between cIMT and atherosclerosis in other 
vascular beds) the increase in cIMT is also associated 
with abnormalities in other vascular beds that result in 
endothelial dysfunction, renal diseases, coronary heart 
diseases, and erectile dysfunction.71 Recommendations 
of CUSIP measurement provide vital information about 
the morphology and growth of atherosclerotic plaque. 
This may support the physician while recommending 
the treatment plans to prevent the onset of CVD/stroke 
events. The association of CUSIP measurement with 
CRF also enables researchers to predict the long-term 
variations in cIMT and CP. Using this information one 
can reliably execute the prevention plans for controlling 
and managing the CRF.

Current and 10-year image-based phenotypes as risk 
factors

Figure 1 shows the third elliptical petal indicating the 
measurement of current image-based phenotypes and 
prediction of 10-year image-based phenotypes. In the 
current of CUSIP measurement guidelines, the average 
measurement of cIMT has been proposed within a 10 mm 
segment of the CCA.19, 24, 25 However, in the past decade, 
five types of CUSIP were used to capture plaque varia-
tions in the carotid wall. The set of five CUSIP included 
four different types of full-length cIMT measurements 
(average cIMT or cIMTavecurr, maximum cIMT or cIM-
Tmaxcurr, minimum cIMT or cIMTmincurr, and variability 
in cIMT or cIMTVcurr) and a total area of CP which was 
also termed as total plaque area or TPAcurr.18, 72, 73 Here, 
“full-length” indicates the measurement of cIMT or TPA-
curr all along the length CUS scan of CCA (Figure 4A-D 
for CCA). The full-length measurement for CCA was 
performed from the edge of the bulb or flow dividers. A 
set of 100 sample equidistant points (or vertices) were 

into diabetes,55 hypertension, hyperlipidemia, obesity, and 
autoimmune diseases such as rheumatoid arthritis and 
systemic lupus erythematosus. All these diseases exhibit 
a higher risk of CVD and stroke. Vascular diseases are fur-
ther divided into carotid artery diseases, coronary artery 
diseases,42 renal artery diseases,40 aortic diseases,56 periph-
eral artery diseases,41 and brachial artery diseases. These 
are further divided into small vessel diseases, large vessel 
diseases, leukoaraiosis, Alzheimer’s disease,57 thyroid dis-
ease,58 and erectile dysfunction59 since all are accelerated 
by the atherosclerotic process leading to the formation of 
more calcium, fibrin, fibrosis, and macrophages.2, 3

The second set of factors that influence the guidelines 
includes CRF which includes age, height, and weight of 
the patient, serum and lipid biomarkers.43-47 The third set 
of factors influencing the guidelines includes the current 
measurements of the image-based phenotypes and 10-year 
prediction of the image-based phenotypes.18, 37 Recently, 
five types of current and five types of 10-year CUSIP have 
been proposed based on the morphological variations in 
the atherosclerotic plaque.18, 37 These image-based phe-
notypes are average cIMT, maximum cIMT, minimum 
cIMT, variations in cIMT, and morphological plaque area, 
responsible for the progression of plaque. Khanna et al.37 
computed the 10-year predictions of these five current CU-
SIP. Furthermore, a composite risk score (CRS) has been 
proposed recently by Godia et al.17 that combines the ef-
fect of five current CUSIP to provide a real-valued per-
centage risk in patients.

Figure 1 explicitly shows the tools and techniques for CP 
burden measurements and 10-year risk calculators for risk 
stratification.32-35 This includes centerline, polyline, short-
est distance, Mahalanobis distances.60 Tools also include 
the calculators like Framingham Risk Score (FRS),30 Unit-
ed Kingdom Prospective Diabetes Study (UKPDS),56, 61 
UKPDS60,62 Reynolds’s Risk Score (RRS),63 Systemic 
coronary risk evaluation (SCORE),64 NIPPON,65 a World 
Health Organization (WHO) calculator,66 QRISK3,67 and 
the ACC/AHA ASCVD risk score. Note that all the above 
interacting factors are affected by the evolution of technol-
ogies such as automated method, machine learning (ML) 
methods, or deep learning (DL) methods.

Conventional risk factors 
and image-based phenotypes

Conventional risk factors

Both of the CRF and CUSIP are strongly associated with 
each other.43-45, 47 However, in the current guidelines, a 



SaBa  gloBal PerSPeCtIVe oN CarotID INtIMa-MeDIa tHICKNeSS aND PlaQUe

456 INterNatIoNal aNgIology December 2019 

The TPAcurr included the focal thickening region which 
was above the one mm average baseline distance between 
LI and MA interfaces.78, 79 In order to compute the TPAcurr, 
all the pixels within the focal thickening region were ac-
cumulated and further converted into a square millimeter 
(mm2) scale.78, 79 The subscript ‘curr’ indicated the current 
measurement of CUSIP. All five CUSIP depicted the ma-

collected throughout the length of the CUS scan for the 
measurement of cIMT or TPAcurr. Figure 4B, D show the 
variation in carotid wall thickness throughout the length 
of the CUS scan for the far wall of the left and right CCA. 
If the CUS scan is for bulb or an ICA scan, then full-
length still implies a measurement of cIMT in the bulb’s 
eye and its surrounding far wall region (Figure 5A-D for 
bulb and Figure 6A-D for ICA).

cIMTavecurr is the average distance between two sets 
of observation points measured on the lumen-intima (LI) 
and media-adventitia (MA) interfaces when the patient 
visits the radiological ultrasound laboratory, and the read-
ings are taken instantaneously.74, 75 Similarly, cIMTmaxcurr 
and cIMTmincurr were the maximum and minimum values 
computed within the full-length scan of cIMT values. Suri 
et al.76 proposed another important phenotype called cIM-
TVcurr. Variability in the carotid artery wall (cIMTVcurr), 
is associated with cerebrovascular events76 and thus has a 
bearing on the guideline. The atherosclerotic plaque can 
cause inflammation in both directions (towards the lumen 
region and towards the adventitia region) of the carotid 
artery wall as it does not follow any defined morphology. 
This indicates that the atherosclerotic plaque of the media 
wall can protrude in both the lumen zone and the adven-
titia zone forming a balloon-like structure. Thus, there is 
a need to quantify this bidirectional morphological varia-
tion in the carotid wall. Recently developed CUS image-
based phenotype called IMT variability (IMTV) measures 
the variation in carotid wall thickness in both directions 
and has been successfully tested for risk stratification in 
patients.72, 76, 77

Figure 5.—Full-length scanning of the carotid ultrasound image in the 
far wall of the carotid ICA segment. A) Original image and (B) pro-
cessed image using AtheroEdge™ 2.0 for the left side of the neck; C) 
original image and (D) processed image using AtheroEdge™ 2.0 for the 
right side of the neck.

Figure 6.—Full-length scanning of the carotid ultrasound image in the 
far wall of the carotid bulb segment. A) Original image and (B) pro-
cessed image using AtheroEdge™ 2.0 for the left side of the neck; C) 
original image and (D) processed image using AtheroEdge™ 2.0 for the 
right side of the neck.
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Figure 4.—Full-length scanning of the carotid ultrasound image in the 
far wall of the CCA segment. (A) Original Image and (B) processed 
image using AtheroEdge™ 2.0 for the left side of the neck; (C) original 
Image and (D) processed image using AtheroEdge™ 2.0 for the right 
side of the neck.
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guidelines.19, 24, 25 Thus, by restricting the wall thickness 
measurement within the confined 10 mm carotid artery 
segment is not viable in explaining the CVD/stroke risk. 
One must, therefore, look for the measurements to be 
taken all along the length of the carotid artery segment 
or bifurcation segment in the CUS scans (or full-length 
cIMT)48, 73 during the routine mode measurements. Note 
that during the measurement of the segments, the neigh-
boring region of the segment may also be present in the 
CUS scan. For example, during the plaque measure-
ment in the bulb’s eye, the distal end of the CCA seg-
ment might also be present in the CUS scan, hence it is 
part of the full-length measurement. By undergoing the 
full-length measurements, it gives further advantage to 
the neuroradiologist while capturing the morphological 
changes in the atherosclerotic plaque due to the shape of 
the artery (convex, concave, down-slope, and up-slope). 
Since the system is fully automated and reproducible, the 
results are unbiased.

Along with the full-length cIMT measurement, a suf-
ficiently large number of equidistant sample points (or 
vertices of the line) on both LI and MA interface needs 
to be considered for providing an accurate measurement 
of the mean cIMT. This is because atherosclerotic plaque 
does not have any specific distribution, thus, the true 
morphological variations in cIMT may not be captured if 
limited observations are considered. The current guide-
lines provide little attention towards the total number of 
equidistant observation points on the LI and MA interfac-
es. However, the approach of measuring the full-length 
cIMT with a large number of equidistant sample points 
has been recently demonstrated32-35 for the stroke risk as-
sessment. Recently, Saba et al.60, 81 and Suri et al.82, 83 
followed a well-known polyline distance measurement 
method for the accurate computation of cIMT. Further-
more, Suri and his team have used an equidistant B-
spline interpolation technique to smooth-out both the LI 
and MA borders giving equidistant points normalized to 
100.83 This equidistant protocol was beneficial in com-
puting perpendicular distances from the LI border point 
to MA polyline and vice-versa.32 Instead of using the 
manual or semi-automated approach (which was fol-
lowed by guidelines), Suri and his team have employed 
fully automated methods for measuring the full-length 
cIMT.49

Morphologic total plaque area

Computation of total plaque area (TPA) as suggested by 
the some conventional studies16, 78, 79, 84 includes follow-

jority of morphological variations within the carotid wall. 
Furthermore, these phenotypes had also been used for the 
risk stratification in patients.18 Thus, it would be more in-
teresting to consider all the five CUSIP while assessing the 
risk of CVD/Stroke in future measurement protocols. The 
association between CRF and the progression of cIMT 
has already been discussed in the previous section. Based 
on this, Khanna et al.37 modeled the five 10-year CUSIP 
(cIMTave10yr, cIMTmax10yr, cIMTmin10yr, cIMTV10yr, and 
TPA10yr) by using the well-established annual progression 
rates of cIMT and CP. The 10-year predictions of CUSIP 
are important because they provide the extent by which 
the CUSIP can be increased if the corresponding CRF are 
well-controlled. The subscript ‘10yr’ indicated the 10-year 
prediction of the CUSIP.

Measurements and risk stratification

Full-length measurement of cIMT with equidistant 
points

The variations in the LI and MA interfaces of the ca-
rotid wall can happen due to morphological changes in 
the artery, the so-called Glagov phenomenon.80 These 
morphological variations can extend outside the 10 mm 
length of the carotid artery segment and typically missed 
in routine mode during real-time screening. Figure 4, 5, 
6, 7 showed variations in carotid wall thickness through-
out the length of the grayscale region in the CUS scan 
(i.e., in the region beyond the 10 mm region indicated 
by the current guidelines). Figure 7A-D indicates the 
variations in cIMT and CP in the carotid bifurcation re-
gion and ICA region. The elevated wall thickness at the 
eye of the carotid bulb is shown in Figure 7D may not 
be captured using the recommendations by the current 

Figure 7.—Full-length scanning of the carotid ultrasound image in the 
far wall of the carotid bulb and ICA segments. A) Original image and 
(B) processed image using AtheroEdge™ 2.0 without the CP at the en-
trance of bulb/ICA lesion; C) original image and (D) processed image 
using AtheroEdge™ 2.0 with the CP at the entrance of bulb/ICA lesion.

A

D

B

C
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lution and meets all the above-mentioned criteria, then the 
question of inter- and intra-operator reproducibility does 
not arise.32, 85, 86 This is because the automated algorithms 
are very successful as demonstrated in the recent studies 
by our group.32, 85, 86 Recent studies have also shown inter-
and intra-operator reproducibility analysis to measure the 
cIMT along both the far and near the wall of the carotid 
artery.32, 50 Due to such recent advancements, cIMT can 
also be measured from the near wall with a high degree of 
reproducibility.

cIMT threshold for risk stratification

Currently, there exists a lack of concurrence between mul-
tiple studies to decide the cIMT and CP cut-off values for 
risk stratification.87 Clinical studies have adopted a wide 
variety of cIMT thresholds ranging from 0.7 mm to 1.2 
mm. It has been observed that the risk stratification cut-off 
points for cIMT depend upon the baseline characteristics 
of the patients. This cut-off value affects the area-under-
the-curve when computing the performance of the sys-
tem using receiver operating characteristics curve analy-
sis.28, 87, 88

From the above discussions, it is clear that there is a 
set of points that have been answered by the recently pub-
lished studies that directly link to the guidelines, and there-
fore can potentially reshape the design of the next set of 
guidelines for CUSIP measurements.

Scientific validation

Validation is the most crucial part of any kind of clinical 
parameter measurement and risk assessment system. Fig-
ure 1 shows ellipse number 5 that represents the essential 
link between scientific validation and the CUSIP measure-
ment guidelines. Measurement of CUSIP such as cIMT 
and CP from any automated or semi-automated algorithms 
needs to be validated against the gold standard. The defini-
tion of the gold standard varies with the type of study. In 
general three types of gold standards have been used in 
the clinical settings: 1) manual tracings from expert physi-
cians who have spent a sufficiently large amount of time in 
the relevant medical domain; 2) the histological findings 
to validate the CUSIP measurements values; and 3) events 
(such as cerebrovascular or cardiovascular) obtained from 
longitudinal clinical trials.

Several studies have used the manual tracings made by 
an expert physician as a gold standard to validate the LI 
and MA interfaces, lumen diameters (LD), cIMT values, 
and CP area.73, 89 Manual analysis is the most feasible 

ing steps: 1) identification of the CP lesion with focal 
thickening region >1 mm; 2) counting all the pixels within 
the manually traced region-of-interest; 3) converting the 
count of all the pixels to millimeter domain by multiply-
ing with image-resolution factor; and 4) finally, repeating 
step (1) to (2) throughout the carotid scan and accumulat-
ing all the areas to obtain TPA. The common challenge 
in measuring the TPA in all these studies is the involve-
ment of manual analysis of plaque region17, 18 which fur-
ther leads to the intra- or inter-operator variability.17, 18 
In order to avoid this variability, recently, an automated 
method of TPA computation has been proposed.17, 18 In 
automated TPA measurement, the first step was to iden-
tify the LI and MA borders using a fully-automated 
measurement tool.73 Then, the envelope between the LI 
and MA borders which follows the morphology of ath-
erosclerotic plaque was delineated. Finally, all the pixels 
within an envelope were accumulated and converted into 
the millimeter domain to obtain the TPA. Since this TPA 
follows the morphology of atherosclerotic plaque, it was 
also termed as the morphologic TPA or mTPA. It is an in-
teresting point to note that, the mTPA is not only the area 
within the LI and MA borders but also the area above 
the baseline, which is along with the guidelines, how-
ever completely automated. Note that, both cIMT region 
and focal thickening as recommended by previous stud-
ies have been considered, hence TPA fully covers the CP 
area. These automated plaque area measurements have 
been associated with patients with CVD outcomes.17, 18 
Thus, such advanced metrics can be useful for the design 
of future guidelines.

Far and near wall measurements

Another major focus of the current guidelines was to as-
sess the cIMT in the far wall of the carotid artery. The main 
idea behind considering the far wall of the CCA was to 
provide reproducible results. Both the inter- and intra-op-
erator reproducibility of cIMT measurements is a crucial 
task. One of the main factors which cause the challenge in 
the inter- and intra-operator reproducibility is the image 
resolution or image quality in conjunction with the type of 
delineation method (auto vs. semi-auto). Low-resolution 
images (having low signal to noise ratio), not meeting the 
criteria such as: 1) bright (hyper-echoic) adventitia; 2) 
dark gray media wall; 3) bright gray intima wall; 4) dark 
(hypo-echoic) lumen region; and 5) automated measure-
ment technique, increases the inter- and intra-operator 
error which further poses a challenge in reproducibility 
analysis.32, 85, 86 Furthermore, if the image is of high-reso-
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operator) are considered as inter-operator variability 73. 
Since the CUSIP measurements are computed only for 
one patient at a time, the error in measurements by both 
operators must be less.86 Similarly, there should be a high 
degree of correlation between the CUSIP measurements 
of both the operators.73

Besides all the validation methods, different results 
derived from performance evaluation metrics such as ac-
curacy, figure-of-merit, and precision-of-merit needs to be 
highlighted.32, 50 All such performance evaluation metrics 
indicate the closeness or preciseness between the observed 
readings and ground truth readings. Apart from all the 
techniques for the validation and performance evaluation, 
it is also interesting to finalize the results by benchmark-
ing the measurements against some previously established 
automated software.50

Effect of technology changes

The advancements in the technology have assisted in 
generating more accurate and consistent measurements 
of the image-based phenotypes. Computation intelli-
gence technologies such as machine learning (ML) and 
deep learning (DL) approaches have been widely ad-
opted for the CVD/stroke risk assessment.33, 35, 101-106 In 
terms of the measurement of cIMT, both the ML and DL 
techniques have shown efficient and reliable results com-
pared to statistical conventional techniques or manual 
approaches.107-110 Furthermore, such intelligence-based 
paradigms have facilitated the assessment in CUS im-
ages to provide the risk stratification with higher accura-
cy.33, 35, 101-106 The ML algorithms are generally used for 
risk prediction or risk stratification.111 Such algorithms 
need prior input labels to train the ML system by per-
forming the CVD/stroke risk stratification.111 The input 
labels can be derived from an expert physician or as an 
endpoint during the longitudinal trials.111 In the last de-
cade, multiple cohort studies were used in the ML sys-
tems to perform the CVD and stroke risk assessment 
using cIMT and CP as the surrogate markers.33, 35, 101-106 
Looking at the wide scope of the ML systems, the newer 
measurement guidelines can also take the aid of such de-
veloped techniques that can provide reliable and accurate 
information for performing the CVD/stroke risk assess-
ment using CUS.

Conclusions

This review is the first of its kind which elaborates on the 
role of various factors that influences the atherosclerotic 

and economical process, however tedious. Furthermore, 
it compares the measurements against human knowl-
edge which is always considered superior compared to 
the automated systems. Although histological analysis 
is costly and not feasible, few studies have performed 
histological validations that reported the high-degree of 
correlation between CUS measurements and histological 
findings.90, 91

The CUS measurements validated using the longitu-
dinal trials with considerable follow-up time has proved 
to be a better choice amongst the physicians. In the last 
decade, multiple longitudinal studies have been used to 
validate the measurements of cIMT and CP against the 
events resulted in the longitudinal follow-up.8-14 A total 
of 17 follow-up studies (in chronological order) from 
the 10 most popular longitudinal trials (column C2) are 
presented in Table I7-14, 28, 70, 92-96, 98 that indicate the sig-
nificant association between both cIMT and CP with the 
onset of CV and stroke events. Out of 17 follow-up stud-
ies in Table I, 9 studies were in targeted the patients with 
middle age group (~ 40 to 60 years), 6 studies were tar-
geted for higher age-group patients (>60 years), and re-
maining two studies by Lorenz et al.11, 96 (rows R10 and 
R14) considered all the three categories of the age groups 
(younger age, middle age, and older age). Irrespective 
of the varying age-groups, the cIMT and CP were indi-
cated to show a significant association with the onset of 
CV and stroke events.8, 9, 11-14, 28, 70, 96-99 Although there is 
variation in cIMT measurement protocol followed by all 
these studies, nearly all of them indicated a significant 
association between CUSIP and the vascular events (col-
umn C10).

Another type of validation method is to analyze and 
compare the composition of the atherosclerotic plaque us-
ing multiple imaging modalities. That means the plaque 
composition observed using CUS can be validated using 
CT or MRI. Recently, Saba et al.100 showed a multimodal-
ity validation approach where the authors used pairs of CT 
and CUS images.

Another important component of scientific validation 
is to not overlook the intra- and inter-operator variability 
analysis.86 Readings taken by the same operator at dif-
ferent times is considered as intra-operator variability 
analysis. Another way of evaluating the intra-operator 
performance is to take multiple images of the same pa-
tient at different orientations (anterior, posterior and an-
terolateral) and then measure cIMT in all orientations. 
The readings (or CUSIP measurements) taken between 
two different operators (novice operator or experienced 
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ibility follow-up study with a multi-ethnicity database of 
the CUSIP measurements must be warranted in the future 
for low contrast carotid scans, that use the semi-automated 
methods.”

Several non-communicable diseases which are more 
prevalent causes the atherosclerosis disease to accelerate, 
therefore segments like bulb and ICA must be taken into 
consideration. Further, the risk prediction can be more ac-
curately measured using integrated calculators and in the 
future, we anticipate the role of artificial intelligence-base 
techniques for penetrating CV risk prediction.

We conclude that both ML and non-ML strategies will 
flourish for current and 10-year CVD/Stroke risk predic-
tion as long as they integrate image-based phenotypes 
with CRF. We believe that it will be important for new 
and evolving evidence to continue to influence clinical 
practice guidelines for CVD/stroke risk to improve patient 
outcomes.

measurement guidelines. It examines important factors 
influencing guideline design. They are atherosclerosis dis-
ease itself, conventional risk factors, 10-year CUSIP pre-
diction tools, types of CVD/stroke risk calculators, incom-
plete validation of measurement tools, and the fast pace of 
computer technology advancements.

The technological advances in software and hardware 
engineering have prompted new methods for the measure-
ments of cIMT and CP. As a result, one can now detect the 
full-length measurements along the carotid artery, which 
detects both subclinical atherosclerosis and CP. This eases 
the measurement process.

Reproducibility of the CUSIP measurements has al-
ways been a challenging task in low-resolution images. 
Recent advancements in software technology (i.e. Ath-
eroEdge, AtheroPoint™, Roseville, USA) has shown a 
high inter-and intra-operator reproducibility in moderate 
to high-resolution carotid scans. Still, a large reproduc-

Table I.— Studies that indicate the association between carotid ultrasound image-based phenotypes and CVD/stroke risk assessment.

author (year) Study/trial FU (years) ethnicity #Patients Image phenotype at age (years) endpoints #events Main findings

Salonen et al.7 (1991) the KIHD Study - Finnish 1288 cIMt and CP CCa and Carotid bulb 40 to 60 CHD - a strong association exists between carotid artery 
wall morphology and coronary heart disease.

Bots et al.8 (1997) the rotterdam Study 2.7 Dutch 7983 cIMt and CP CCa >55 MI and Strokes MI: 98
Stroke: 95

Increased common cIMt is associated with an 
increased risk of MI and stroke.

Chambless et al.9 (1997) the arIC Study 5.2 american 12841 cIMt CCa, ICa, and bifurcation 45 to 60 CHD CHD:290 Mean of mean cIMt has a strong association with 
CHD events

o’leary et al.12 (1999) the CHS Study 6.2 american 5858 cIMt CCa and ICa >65 MI and stroke MI: 267
Stroke: 284

cIMt of CCa and ICa have strong predictive power 
of MI.

Chambless et al.10 (2000) the arIC Study 7.2 american 14214 cIMt CCa,
ICa, and bifurcation

45 to 64 Stroke Stroke:199 Mean of mean cIMt has a strong association with 
stroke events.

Iglesias et al.92 (2002) the rotterdam Study 4.6 Dutch 5854 cIMt CCa,
ICa, and bifurcation

70 to 72 MI MI: 194 cIMts from all segments of the carotid artery are 
predictors of MI.

Hollender et al.93 (2003) the rotterdam Study 6.1 Dutch 6913 cIMt and CP CCa ≥55 Stroke Stroke: 378 cIMT and aortic calcification is a strong predictor 
of stroke events.

Kitamura et al.94 (2004) - 4.5 Japanese 1289 cIMt and CP CCa and ICa 60 to 74 Stroke Stroke: 34 CCa IMt and ICa plaque are important phenotype 
of stroke events.

rosvall et al.14 (2005) the MDCS Study 7 Finnish 5163 cIMt and CP CCa and Carotid plaque 57.4 - - Common cIMt is associated with coronary events.
lorenz et al.11 (2006) CaPS Study 4.2 german 5056 cIMt CCa, ICa, Bifurcation 19 to 90 MI, stroke, and deaths MI: 228

Stroke: 107
cIMt is biomarker of vascular events even at 

younger age.
Nambi et al.95 (2010) the arIC Study 15.1 american 13145 cIMt and CP CCa,

ICa, and bifurcation
45 to 64 CHD CHD events: 1812 addition of cIMt and CP to CrF improve the CHD 

event prediction
Polak et al.13 (2011) FHS 7.2 Non-Hispanic white 2965 cIMt and CP CCa and ICa 57.3±9.5 (ave) CV event Deaths: 296 Maximum ICa has been considered as the gold 

standard.
Polak et al.70 (2011) MeSa 3.22 White, black, Hispanic, and Chinese 5028 cIMt CCa 64.2 (ave) Stroke Stroke: 42 CCa IMt progression is strongly associated with 

stroke.
lorenz et al.96 (2012) Prog-IMt Study 7 White, afric-an american, Hispanic 36984 cIMt CCa,

ICa, and bifurcation
15 to 95 MI, stroke, and Deaths MI: 1519

Stroke: 1339
Deaths: 2028

association between cIMt progression and CVD 
risk remains unproven

ruijter et al.28 (2012) the USe-IMt study 11 - 45858 cIMt CCa 45 to 75 MI and stroke MI and stroke: 4007 addition of common cIMt resulted in less 
improvement in 10-year risk of MI.

ruijter et al.97 (2013) the USe-IMt study 8.7 - 4220 cIMt CCa 45 to 75 MI and stroke MI and stroke: 684 less improvement in 10-year risk prediction while 
adding the common cIMt for diabetes patients.

Bots et al.98 (2014) the USe-IMt study 9.9 - 17254 cIMt CCa 45 to 75 MI and Stroke MI and Stroke: 2014 addition of common cIMt resulted in less 
improvement in the 10-year risk of MI.
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