One of the biggest problem that many data analysis techniques have to deal with nowadays is Combinatorial Optimization that, in the past, has led many methods to be taken apart. Actually, the (still not enough!) higher computing power available makes it possible to apply such techniques within certain bounds. Since other research fields like Artificial Intelligence have been (and still are) dealing with such problems, their contribute to statistics has been very significant. This chapter tries to cast the Combinatorial Optimization methods into the Artificial Intelligence framework, particularly with respect Decision Tree Induction, which is considered a powerful instrument for the knowledge extraction and the decision making support. When the exhaustive enumeration and evaluation of all the possible candidate solution to a Tree-based Induction problem is not computationally affordable, the use of Nature Inspired Optimization Algorithms, which have been proven to be powerful instruments for attacking many combinatorial optimization problems, can be of great help. In this respect, the attention is focused on three main problems involving Decision Tree Induction by mainly focusing the attention on the Classification and Regression Tree-CART (Breiman et al., 1984) algorithm. First, the problem of splitting complex predictors such a multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the possibility of growing “optimal” exploratory trees is also investigated by making use of Ant Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees for modelling multi-attribute response on the basis of a data-driven heuristic is also described. The proposed approaches might be useful for knowledge extraction from large databases as well as for data mining applications. The solution they offer for complicated data modelling and data analysis problems might be considered for a possible implementation in a Decision Support System (DSS). The remainder of the chapter is as follows. Section 2 describes the main features and the recent developments of Decision Tree Induction. An overview of Combinatorial Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization is presented in section 3. The use of these two algorithms within the Decision Tree Induction Framework is described in section 4, together with the description of the algorithm for modelling multi-attribute response. Section 5 summarizes the results of the proposed method on real and simulated datasets. Concluding remarks are presented in section 6. The chapter also includes an appendix that presents J-Fast, a Java-based software for Decision Tree that currently implements Genetic Algorithms and Ant Colony Optimization.

Evolutionary Algorithms in Decision Tree Induction

MOLA, F.;CONVERSANO, C.
2009-01-01

Abstract

One of the biggest problem that many data analysis techniques have to deal with nowadays is Combinatorial Optimization that, in the past, has led many methods to be taken apart. Actually, the (still not enough!) higher computing power available makes it possible to apply such techniques within certain bounds. Since other research fields like Artificial Intelligence have been (and still are) dealing with such problems, their contribute to statistics has been very significant. This chapter tries to cast the Combinatorial Optimization methods into the Artificial Intelligence framework, particularly with respect Decision Tree Induction, which is considered a powerful instrument for the knowledge extraction and the decision making support. When the exhaustive enumeration and evaluation of all the possible candidate solution to a Tree-based Induction problem is not computationally affordable, the use of Nature Inspired Optimization Algorithms, which have been proven to be powerful instruments for attacking many combinatorial optimization problems, can be of great help. In this respect, the attention is focused on three main problems involving Decision Tree Induction by mainly focusing the attention on the Classification and Regression Tree-CART (Breiman et al., 1984) algorithm. First, the problem of splitting complex predictors such a multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the possibility of growing “optimal” exploratory trees is also investigated by making use of Ant Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees for modelling multi-attribute response on the basis of a data-driven heuristic is also described. The proposed approaches might be useful for knowledge extraction from large databases as well as for data mining applications. The solution they offer for complicated data modelling and data analysis problems might be considered for a possible implementation in a Decision Support System (DSS). The remainder of the chapter is as follows. Section 2 describes the main features and the recent developments of Decision Tree Induction. An overview of Combinatorial Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization is presented in section 3. The use of these two algorithms within the Decision Tree Induction Framework is described in section 4, together with the description of the algorithm for modelling multi-attribute response. Section 5 summarizes the results of the proposed method on real and simulated datasets. Concluding remarks are presented in section 6. The chapter also includes an appendix that presents J-Fast, a Java-based software for Decision Tree that currently implements Genetic Algorithms and Ant Colony Optimization.
2009
9783902613325
9789537619114
File in questo prodotto:
File Dimensione Formato  
InTech-Evolutionary_algorithms_in_decision_tree_induction.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 661.78 kB
Formato Adobe PDF
661.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact