In this paper we present the general-purpose simulation infrastructure MAGI, with features and computational strategies particularly relevant for strongly geo-spatially oriented simulations. Its main characteristics are (1) a comprehensive approach to geosimulation modelling, with a flexible underlying meta-model formally generalising a variety of types of models, both from the cellular automata and from the agent-based family of models, (2) tight interoperability between GIS and the modelling environment, (3) computationally efficiency and (4) user-friendliness. Both raster and vector representation of simulated entities are allowed and managed with efficiency, which is obtained through the integration of a geometry engine implementing a core set of operations on spatial data through robust geometric algorithms, and an efficient spatial indexing strategy for moving agents. We furthermore present three test-case applications to discuss its efficiency, to present a standard operational modelling workflow within the simulation environment and to briefly illustrate its look-and-feel. © 2009 Springer-Verlag Berlin Heidelberg.

A general-purpose geosimulation infrastructure for spatial decision support

BLECIC, IVAN;
2009-01-01

Abstract

In this paper we present the general-purpose simulation infrastructure MAGI, with features and computational strategies particularly relevant for strongly geo-spatially oriented simulations. Its main characteristics are (1) a comprehensive approach to geosimulation modelling, with a flexible underlying meta-model formally generalising a variety of types of models, both from the cellular automata and from the agent-based family of models, (2) tight interoperability between GIS and the modelling environment, (3) computationally efficiency and (4) user-friendliness. Both raster and vector representation of simulated entities are allowed and managed with efficiency, which is obtained through the integration of a geometry engine implementing a core set of operations on spatial data through robust geometric algorithms, and an efficient spatial indexing strategy for moving agents. We furthermore present three test-case applications to discuss its efficiency, to present a standard operational modelling workflow within the simulation environment and to briefly illustrate its look-and-feel. © 2009 Springer-Verlag Berlin Heidelberg.
2009
978-3-642-10648-4
Cellular automata; Geosimulation; GIS; Multi-agent systems; Open source; Software; Urban modelling; Computer Science (all); Theoretical Computer Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/198514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact