The functional GABAB receptors (GABABRs) are formed by obligate heteromers composed of two principal subunits named GABAB1 and GABAB2. In Drosophila melanogaster three GABAB subunits have been identified: GB1, GB2 and GB3. The GB1 and GB2 subunits need to be co-expressed in Xenopus oocytes or in mammalian cell lines to produce functional GABABRs. A subfamily of potassium channel tetramerization domain-containing (KCTD8, 12, 12b, and 16) proteins that are constituents of native GABABRs were recently identified. KCTDs show a temporal and spatial distribution pattern that may contribute to the heterogeneity of native GABABRs and their pharmacological properties. Of several isoforms of the GABAB1 subunit identified to date, the most abundant in the brain are the isoforms 1a and 1b; they are co-expressed with the subunit GABAB2 and their expression differs across brain and neuronal populations. GABAB1a localizes to glutamatergic terminals and is necessary for hetero-receptor function. Both isoforms 1a and 1b are detected in dendrites, but only GABAB1b in spine heads. Electron microscopy studies show that in the central nervous system (CNS), GABAB1 and GABAB2 are both pre and postsynaptic, but mostly localize to postsynaptic sites. The GABAB1(a/b) and GABAB2 subunits show an overlapping pattern of distribution throughout the CNS with certain exceptions (i.e. caudate-putamen and cerebellum). GABABRs are also detected in Schwann cells, in several peripheral tissues, and in non-neuronal cells (cardiomyocytes and airway smooth muscle). The widespread distribution of GABABRs in the CNS and the periphery reflects their physiological, pathophysiological, and pharmacological relevance.

Distribution and localization of the GABAB receptor

CASTELLI, MARIA PAOLA
Writing – Review & Editing
;
2016-01-01

Abstract

The functional GABAB receptors (GABABRs) are formed by obligate heteromers composed of two principal subunits named GABAB1 and GABAB2. In Drosophila melanogaster three GABAB subunits have been identified: GB1, GB2 and GB3. The GB1 and GB2 subunits need to be co-expressed in Xenopus oocytes or in mammalian cell lines to produce functional GABABRs. A subfamily of potassium channel tetramerization domain-containing (KCTD8, 12, 12b, and 16) proteins that are constituents of native GABABRs were recently identified. KCTDs show a temporal and spatial distribution pattern that may contribute to the heterogeneity of native GABABRs and their pharmacological properties. Of several isoforms of the GABAB1 subunit identified to date, the most abundant in the brain are the isoforms 1a and 1b; they are co-expressed with the subunit GABAB2 and their expression differs across brain and neuronal populations. GABAB1a localizes to glutamatergic terminals and is necessary for hetero-receptor function. Both isoforms 1a and 1b are detected in dendrites, but only GABAB1b in spine heads. Electron microscopy studies show that in the central nervous system (CNS), GABAB1 and GABAB2 are both pre and postsynaptic, but mostly localize to postsynaptic sites. The GABAB1(a/b) and GABAB2 subunits show an overlapping pattern of distribution throughout the CNS with certain exceptions (i.e. caudate-putamen and cerebellum). GABABRs are also detected in Schwann cells, in several peripheral tissues, and in non-neuronal cells (cardiomyocytes and airway smooth muscle). The widespread distribution of GABABRs in the CNS and the periphery reflects their physiological, pathophysiological, and pharmacological relevance.
2016
978-3-319-46042-0
GABA B1 and GABAB2 receptors subunits; Central nervous system; Peripheral nervous system; mRNA distribution; Immunohistochemical distribution
File in questo prodotto:
File Dimensione Formato  
Castelli&Gessa2017GABABBooks.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 6.12 MB
Formato Adobe PDF
6.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/207456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact