This paper reports the results of an experimental campaign performed at the University of Tokyo on cross-laminated timber (CLT) panels subjected to lateral loads. Analytical and numerical interpretations are provided as well, comparing the experimental analysis results with two methods: firstly, an analytical method to preliminarily evaluate the ultimate strength of the four panels, based on the geometrical dimensions of the openings and of the panel; secondly, a finite element model has been developed in order to provide some guidelines for calculating the stiffness and elastic behaviour of CLT panels subjected to lateral loads. The experimental tests showed that the CLT panels are as more brittle and stiffer as more the difference between the total panel area and the fenestrated area is high. The presence of large openings determined stress concentration at the corners where failure occurred for the attainment of the maximum tension strength in the inner layer. The proposed analytical formulation was shown to fairly closely predict the ultimate strength of panels with same geometry, characteristics and boundary condition, allowing preliminary information of this relevant parameter.

Experimental Analyses and Numerical Models of CLT Shear Walls under Cyclic Loading

Puppio, Mario Lucio;Sassu, Mauro
2017-01-01

Abstract

This paper reports the results of an experimental campaign performed at the University of Tokyo on cross-laminated timber (CLT) panels subjected to lateral loads. Analytical and numerical interpretations are provided as well, comparing the experimental analysis results with two methods: firstly, an analytical method to preliminarily evaluate the ultimate strength of the four panels, based on the geometrical dimensions of the openings and of the panel; secondly, a finite element model has been developed in order to provide some guidelines for calculating the stiffness and elastic behaviour of CLT panels subjected to lateral loads. The experimental tests showed that the CLT panels are as more brittle and stiffer as more the difference between the total panel area and the fenestrated area is high. The presence of large openings determined stress concentration at the corners where failure occurred for the attainment of the maximum tension strength in the inner layer. The proposed analytical formulation was shown to fairly closely predict the ultimate strength of panels with same geometry, characteristics and boundary condition, allowing preliminary information of this relevant parameter.
2017
978-953-51-2985-1
978-953-51-2986-8
cross-laminated timber, CLT, cyclic tests, shear walls, cut-out openings, FE model
File in questo prodotto:
File Dimensione Formato  
52332.pdf

accesso aperto

Dimensione 11.98 MB
Formato Adobe PDF
11.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/230767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact