Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned along a straight line during the deformation process) and assuming perfect bonding between laminae. The in-plane components of the (infinitesimal) strain tensor are interpolated and by making use of the constitutive law, the corresponding in-plane stress distribution is deduced for each layer. Out-of-plane shear stresses are then computed by integrating the equilibrium equations in each lamina, account taken of their continuity requirements. Out-of-plane shear strains are finally obtained via the inverse constitutive law. The resulting global strain field depends on a fixed number of parameters, regardless of the total number of layers; 12 degrees of freedom are for instance assumed for the developed rectangular element. The proposed model does not suffer locking phenomena even in the thin plate limit and provides an accurate description of inter-laminar stresses. Results are compared with both analytical and other finite element solutions.

A four-node hybrid assumed-strain finite element for laminated composite plates

CAZZANI, ANTONIO MARIA;
2007

Abstract

Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned along a straight line during the deformation process) and assuming perfect bonding between laminae. The in-plane components of the (infinitesimal) strain tensor are interpolated and by making use of the constitutive law, the corresponding in-plane stress distribution is deduced for each layer. Out-of-plane shear stresses are then computed by integrating the equilibrium equations in each lamina, account taken of their continuity requirements. Out-of-plane shear strains are finally obtained via the inverse constitutive law. The resulting global strain field depends on a fixed number of parameters, regardless of the total number of layers; 12 degrees of freedom are for instance assumed for the developed rectangular element. The proposed model does not suffer locking phenomena even in the thin plate limit and provides an accurate description of inter-laminar stresses. Results are compared with both analytical and other finite element solutions.
978-0-9717880-3-9
Laminated composite plates; hybrid finite elements; assumed strain methods; shear-locking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/24224
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 29
social impact