I consider whether or not a discrete dynamical system has two isomorphic representations, one recursive and the other non-recursive; if it does not, the system can be said to be an intrinsic computational system. I prove that intrinsic computational systems exist, as well as non-intrinsic ones, and I finally argue that some representation of a non-intrinsic computational system is not effective with respect to the state-space structure of the system.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Is Being Computational an Intrinsic Property of a Dynamical System? | |
Autori: | ||
Data di pubblicazione: | 2006 | |
Abstract: | I consider whether or not a discrete dynamical system has two isomorphic representations, one recursive and the other non-recursive; if it does not, the system can be said to be an intrinsic computational system. I prove that intrinsic computational systems exist, as well as non-intrinsic ones, and I finally argue that some representation of a non-intrinsic computational system is not effective with respect to the state-space structure of the system. | |
Handle: | http://hdl.handle.net/11584/25563 | |
ISBN: | 0-387-28899-6 | |
Tipologia: | 2.1 Contributo in volume (Capitolo o Saggio) |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.