I consider whether or not a discrete dynamical system has two isomorphic representations, one recursive and the other non-recursive; if it does not, the system can be said to be an intrinsic computational system. I prove that intrinsic computational systems exist, as well as non-intrinsic ones, and I finally argue that some representation of a non-intrinsic computational system is not effective with respect to the state-space structure of the system.

Is Being Computational an Intrinsic Property of a Dynamical System?

GIUNTI, MARCO
2006

Abstract

I consider whether or not a discrete dynamical system has two isomorphic representations, one recursive and the other non-recursive; if it does not, the system can be said to be an intrinsic computational system. I prove that intrinsic computational systems exist, as well as non-intrinsic ones, and I finally argue that some representation of a non-intrinsic computational system is not effective with respect to the state-space structure of the system.
0-387-28899-6
dynamical system; discrete system; computation; effective procedure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/25563
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact