We investigate the theoretical links between a regression ensemble and a linearly combined classification ensemble. First, we reformulate the Tumer & Ghosh model for linear combiners in a regression context; we then exploit this new formulation to generalise the concept of the “Ambiguity decomposition”, previously defined only for regression tasks, to classification problems. Finally, we propose a new algorithm, based on the Negative Correlation Learning framework, which applies to ensembles of linearly combined classifiers.
Ensemble Learning in Linearly Combined Classifiers via Negative Correlation / ZANDA M; BROWN G; FUMERA G; ROLI F. - LNCS 4472(2007), pp. 440-449. ((Intervento presentato al convegno 7th Int. Workshop on Multiple Classifier Systems (MCS 2007) tenutosi a Prague, Czech Republic nel May 23-25 2007.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Ensemble Learning in Linearly Combined Classifiers via Negative Correlation | |
Autori: | ||
Data di pubblicazione: | 2007 | |
Rivista: | ||
Citazione: | Ensemble Learning in Linearly Combined Classifiers via Negative Correlation / ZANDA M; BROWN G; FUMERA G; ROLI F. - LNCS 4472(2007), pp. 440-449. ((Intervento presentato al convegno 7th Int. Workshop on Multiple Classifier Systems (MCS 2007) tenutosi a Prague, Czech Republic nel May 23-25 2007. | |
Handle: | http://hdl.handle.net/11584/25815 | |
ISBN: | 978-3-540-72481-0 | |
Tipologia: | 2.1 Contributo in volume (Capitolo o Saggio) |