Dynamical systems are mathematical structures whose aim is to describe the evolution of an arbitrary deterministic system through time, which is typically modeled as (a subset of) the integers or the real numbers. We show that it is possible to generalize the standard notion of a dynamical system, so that its time dimension is only required to possess the algebraic structure of a monoid: first, we endow any dynamical system with an associated graph and, second, we prove that such a graph is a category if and only if the time model of the dynamical system is a monoid. In addition, we show that the general notion of a dynamical system allows us not only to define a family of meaningful dynamical concepts, but also to distinguish among a cluster of otherwise tangled notions of reversibility, whose logical relationships are finally analyzed.

Dynamical systems on monoids: Toward a general theory of deterministic systems and motion

GIUNTI, MARCO;
2012

Abstract

Dynamical systems are mathematical structures whose aim is to describe the evolution of an arbitrary deterministic system through time, which is typically modeled as (a subset of) the integers or the real numbers. We show that it is possible to generalize the standard notion of a dynamical system, so that its time dimension is only required to possess the algebraic structure of a monoid: first, we endow any dynamical system with an associated graph and, second, we prove that such a graph is a category if and only if the time model of the dynamical system is a monoid. In addition, we show that the general notion of a dynamical system allows us not only to define a family of meaningful dynamical concepts, but also to distinguish among a cluster of otherwise tangled notions of reversibility, whose logical relationships are finally analyzed.
978-981-4383-32-5
Dynamical system; Reversibility; Irreversibility; Category theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/27585
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact