Metropolis and Wang-Landau algorithms are described and illustrated on the base two-dimensional Ising model. The influence of the ferroelectric film thickness and the depolarizing field on the spontaneous polarization and the order parameter of the film has been investigated by means of the Monte-Carlo method. Dependences of the polarization of the thin film on the temperature are calculated at different values of its thickness and the potential well depth of the Lennard-Jones potential. To investigate the geometrical and optical properties of textured coatings the anisotropic three-dimensional model based on the fractal plurality of Julia is used. The developed method allows to determine the values of the model parameters for a number of coating samples of steel sheet obtained under different conditions of their formation. The fractal dimension of the objects obtained on the base of this model is determined.
Simulation of the surface structure of ferroelectric thin films
Eremeyev V. A.;
2019-01-01
Abstract
Metropolis and Wang-Landau algorithms are described and illustrated on the base two-dimensional Ising model. The influence of the ferroelectric film thickness and the depolarizing field on the spontaneous polarization and the order parameter of the film has been investigated by means of the Monte-Carlo method. Dependences of the polarization of the thin film on the temperature are calculated at different values of its thickness and the potential well depth of the Lennard-Jones potential. To investigate the geometrical and optical properties of textured coatings the anisotropic three-dimensional model based on the fractal plurality of Julia is used. The developed method allows to determine the values of the model parameters for a number of coating samples of steel sheet obtained under different conditions of their formation. The fractal dimension of the objects obtained on the base of this model is determined.File | Dimensione | Formato | |
---|---|---|---|
Maksimova2019_Chapter_SimulationOfTheSurfaceStructur (1).pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.