In this chapter, we provide a synoptic review of the theoretical/computational approaches currently used to characterize thermal transport at the nanoscale, a topic of paramount importance for several applications and technological thermal management requirements. We focus in particular on the description of the atomistic techniques based on equilibrium (EMD), non-equilibrium (NEMD), and approach to equilibrium (AEMD) molecular dynamics (MD), which allow to efficiently describe relatively large and structurally complex systems with a reduced computational cost as compared to fully "ab-initio" techniques. We describe the theoretical background for each simulation strategy, as well as their implementation in state-of-the-art MD codes by underlying their intrinsic limitations and providing strategies to control some of them. We finally perform a series of benchmark calculations on bulk crystalline silicon by showing that the estimated thermal conductivity is weakly dependent on the specific strategy actually employed, while the overall computational cost is largely dependent on it.

Molecular Dynamics Simulations of Thermal Transport in Solid State Systems

Cappai, Antonio
Primo
Methodology
;
Melis, Claudio
Secondo
Conceptualization
;
Colombo, Luciano
Penultimo
Conceptualization
;
Dettori, Riccardo
Ultimo
Methodology
2023-01-01

Abstract

In this chapter, we provide a synoptic review of the theoretical/computational approaches currently used to characterize thermal transport at the nanoscale, a topic of paramount importance for several applications and technological thermal management requirements. We focus in particular on the description of the atomistic techniques based on equilibrium (EMD), non-equilibrium (NEMD), and approach to equilibrium (AEMD) molecular dynamics (MD), which allow to efficiently describe relatively large and structurally complex systems with a reduced computational cost as compared to fully "ab-initio" techniques. We describe the theoretical background for each simulation strategy, as well as their implementation in state-of-the-art MD codes by underlying their intrinsic limitations and providing strategies to control some of them. We finally perform a series of benchmark calculations on bulk crystalline silicon by showing that the estimated thermal conductivity is weakly dependent on the specific strategy actually employed, while the overall computational cost is largely dependent on it.
2023
9780124095472
atomistic simulations; lattice thermal conductivity; non-equilibrium thermodynamics; thermoelectricity
File in questo prodotto:
File Dimensione Formato  
Rassegna CCC - Molecular Dynamics Simulations of Thermal Transport in Solid State Systems.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Rassegna CCC - Molecular Dynamics Simulations of Thermal Transport in Solid State Systems - OA IRIS.pdf

accesso aperto

Tipologia: altro documento allegato
Dimensione 505.71 kB
Formato Adobe PDF
505.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/364663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact