We consider the direct and inverse scattering for the n-dimensional Schroedinger equation with a potential having no spherical symmetry. Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the corresponding scattering operator. This factorization leads to the solution of a related Riemann-Hilbert problem which plays a key role in inverse scattering.

Multidimensional inverse quantum scattering problem and Wiener-Hopf factorization

VAN DER MEE, CORNELIS VICTOR MARIA
1990-01-01

Abstract

We consider the direct and inverse scattering for the n-dimensional Schroedinger equation with a potential having no spherical symmetry. Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the corresponding scattering operator. This factorization leads to the solution of a related Riemann-Hilbert problem which plays a key role in inverse scattering.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/7886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact