We consider the direct and inverse scattering for the n-dimensional Schroedinger equation with a potential having no spherical symmetry. Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the corresponding scattering operator. This factorization leads to the solution of a related Riemann-Hilbert problem which plays a key role in inverse scattering.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Multidimensional inverse quantum scattering problem and Wiener-Hopf factorization | |
Autori: | ||
Data di pubblicazione: | 1990 | |
Abstract: | We consider the direct and inverse scattering for the n-dimensional Schroedinger equation with a potential having no spherical symmetry. Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the corresponding scattering operator. This factorization leads to the solution of a related Riemann-Hilbert problem which plays a key role in inverse scattering. | |
Handle: | http://hdl.handle.net/11584/7886 | |
ISBN: | 3-540-51994-7 | |
Tipologia: | 2.1 Contributo in volume (Capitolo o Saggio) |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.