The generalized one-dimensional (d^2\psi/dx^2)+k^2H(x)^2\psi=Q(x)\psi is considered, where H(x)\to 1 and Q(x)\to 0 as x\to\pm\infty. The function H(x) is recovered when the scattering matrix, Q(x), the bound state energies and norming constants are known.
Inverse scattering in one dimension for a generalized Schrodinger equation
VAN DER MEE, CORNELIS VICTOR MARIA
1994-01-01
Abstract
The generalized one-dimensional (d^2\psi/dx^2)+k^2H(x)^2\psi=Q(x)\psi is considered, where H(x)\to 1 and Q(x)\to 0 as x\to\pm\infty. The function H(x) is recovered when the scattering matrix, Q(x), the bound state energies and norming constants are known.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.