Clustering algorithms have been increasingly adopted in security applications to spot dangerous or illicit activities. However, they have not been originally devised to deal with deliberate attack attempts that may aim to subvert the clustering process itself. Whether clustering can be safely adopted in such settings remains thus questionable. In this work we propose a general framework that allows one to identify potential attacks against clustering algorithms, and to evaluate their impact, by making specific assumptions on the adversary's goal, knowledge of the attacked system, and capabilities of manipulating the input data. We show that an attacker may significantly poison the whole clustering process by adding a relatively small percentage of attack samples to the input data, and that some attack samples may be obfuscated to be hidden within some existing clusters. We present a case study on single-linkage hierarchical clustering, and report experiments on clustering of malware samples and handwritten digits.

Is data clustering in adversarial settings secure?

BIGGIO, BATTISTA;ARIU, DAVIDE;ROLI, FABIO
2013-01-01

Abstract

Clustering algorithms have been increasingly adopted in security applications to spot dangerous or illicit activities. However, they have not been originally devised to deal with deliberate attack attempts that may aim to subvert the clustering process itself. Whether clustering can be safely adopted in such settings remains thus questionable. In this work we propose a general framework that allows one to identify potential attacks against clustering algorithms, and to evaluate their impact, by making specific assumptions on the adversary's goal, knowledge of the attacked system, and capabilities of manipulating the input data. We show that an attacker may significantly poison the whole clustering process by adding a relatively small percentage of attack samples to the input data, and that some attack samples may be obfuscated to be hidden within some existing clusters. We present a case study on single-linkage hierarchical clustering, and report experiments on clustering of malware samples and handwritten digits.
File in questo prodotto:
File Dimensione Formato  
Is data clustering in adversarial settings secure.pdf

Solo gestori archivio

Dimensione 300.52 kB
Formato Adobe PDF
300.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
biggio13-aisec.pdf

Solo gestori archivio

Dimensione 537.97 kB
Formato Adobe PDF
537.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/103208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact