A biometric system produces a matching score representing the degree of similarity of the input with the set of templates for that user. If the score is greater than a prefixed threshold, then the user is accepted, otherwise the user is rejected. Typically, the performance is evaluated in terms of the Receiver Operating Characteristic (ROC) curve, where the correct acceptance rate is plotted against the false authentication rate. A measure used to characterise a ROC curve is the Area Under the Curve (AUC), the larger the AUC, the better the ROC. In order to increase the reliability of authentication through biometrics, the combination of different biometric systems is currently investigated by researchers. In this paper two open problems are addressed: the selection of the experts to be combined and their related performance improvements. To this end we propose an index to be used for the experts selection to be combined, with the aim of the AUC maximisation. Reported results on FVC2004 dataset show the effectiveness of the proposed index.

Index Driven Combination of Multiple Biometric Experts for AUC Maximisation

TRONCI, ROBERTO;GIACINTO, GIORGIO;ROLI, FABIO
2007

Abstract

A biometric system produces a matching score representing the degree of similarity of the input with the set of templates for that user. If the score is greater than a prefixed threshold, then the user is accepted, otherwise the user is rejected. Typically, the performance is evaluated in terms of the Receiver Operating Characteristic (ROC) curve, where the correct acceptance rate is plotted against the false authentication rate. A measure used to characterise a ROC curve is the Area Under the Curve (AUC), the larger the AUC, the better the ROC. In order to increase the reliability of authentication through biometrics, the combination of different biometric systems is currently investigated by researchers. In this paper two open problems are addressed: the selection of the experts to be combined and their related performance improvements. To this end we propose an index to be used for the experts selection to be combined, with the aim of the AUC maximisation. Reported results on FVC2004 dataset show the effectiveness of the proposed index.
978-3-540-72481-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/104108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact