A large pool of techniques have already been developed for analyzing micro-array datasets but less attention has been paid on multi-class classification problems. In this context, selecting features and quantify classifiers may be hard since only few training examples are available in each single class. This paper demonstrates a framework for multi-class learning that considers learning a classifier within each class independently and grouping all relevant features in a single dataset. Next step, that dataset is presented as input to a classification algorithm that learns a global classifier across the classes. We analyze two micro-array datasets using the proposed framework. Results demonstrate that our approach is capable of identifying a small number of influential genes within each class while the global classifier across the classes performs better than existing multi-class learning methods.

A Framework for Multi-Class Learning in Micro-array Data Analysis

DESSI, NICOLETTA;PES, BARBARA
2009-01-01

Abstract

A large pool of techniques have already been developed for analyzing micro-array datasets but less attention has been paid on multi-class classification problems. In this context, selecting features and quantify classifiers may be hard since only few training examples are available in each single class. This paper demonstrates a framework for multi-class learning that considers learning a classifier within each class independently and grouping all relevant features in a single dataset. Next step, that dataset is presented as input to a classification algorithm that learns a global classifier across the classes. We analyze two micro-array datasets using the proposed framework. Results demonstrate that our approach is capable of identifying a small number of influential genes within each class while the global classifier across the classes performs better than existing multi-class learning methods.
2009
978-3-642-02975-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/104746
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact