In this paper a traditional Multi Layer Perceptron with a tapped delay line as input is trained to identify the parameters of the Chua’s circuit when fed with a sequence of values of a scalar state variable. The analysis of the a priori identifiability of the system, performed resorting to differential algebra, allows one to choose a suitable observable and the minimum number of taps. The results confirm the appropriateness of the proposed approach.

Identification of chaotic systems by neural networks

CANNAS, BARBARA;MONTISCI, AUGUSTO;PISANO, FABIO
2013-01-01

Abstract

In this paper a traditional Multi Layer Perceptron with a tapped delay line as input is trained to identify the parameters of the Chua’s circuit when fed with a sequence of values of a scalar state variable. The analysis of the a priori identifiability of the system, performed resorting to differential algebra, allows one to choose a suitable observable and the minimum number of taps. The results confirm the appropriateness of the proposed approach.
2013
978-3-642-33913-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/105675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact