Today's sensor nodes can be equipped with powerful microcontrollers to address the increasing need of real-time processing of sensed data. For instance, body sensor networks for gesture recognition require filtering of acceleration values at line rate. This requirement imposes a paradigm shift with regard to more traditional sensor networks characterized by low activity duty cycles. Therefore, energy conservation strategies applied to wireless sensor nodes to increase their lifetime must take into account computation power rather than focusing only on communication power. In this paper we present a novel approach which aims at exploiting the knowledge of network status to optimize the power consumption of the node microcontroller. The proposed approach is tested in various network conditions, both synthetic and realistic, in the context of IEEE 802.15.4 standard. Experimental results demonstrate that the proposed approach allows to achieve power savings of up to 70% with minimum performance penalty.

Network-adaptive management of computation energy in wireless sensor networks

MULAS, FABRIZIO;CARTA, SALVATORE MARIO;FENU, GIANNI;
2010-01-01

Abstract

Today's sensor nodes can be equipped with powerful microcontrollers to address the increasing need of real-time processing of sensed data. For instance, body sensor networks for gesture recognition require filtering of acceleration values at line rate. This requirement imposes a paradigm shift with regard to more traditional sensor networks characterized by low activity duty cycles. Therefore, energy conservation strategies applied to wireless sensor nodes to increase their lifetime must take into account computation power rather than focusing only on communication power. In this paper we present a novel approach which aims at exploiting the knowledge of network status to optimize the power consumption of the node microcontroller. The proposed approach is tested in various network conditions, both synthetic and realistic, in the context of IEEE 802.15.4 standard. Experimental results demonstrate that the proposed approach allows to achieve power savings of up to 70% with minimum performance penalty.
2010
978-1-60558-639-7
Wireless sensor networks; Low-power
File in questo prodotto:
File Dimensione Formato  
p756-Acquaviva_Fenu.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 680.84 kB
Formato Adobe PDF
680.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/106600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact