Wavelet denoising represents a common preprocessing step for several biomedical applications exposing low SNR. When the real-time requirements are joined to the fulfilment of area and power minimization for wearable/ implantable applications, such as for neuroprosthetic devices, only custom VLSI implementations can be adopted. In this case, every part of the algorithm should be carefully tuned. The usually overlooked part related to threshold estimation is deeply analysed in this paper, in terms of required hardware resources and functionality, exploiting Xilinx System Generator for the design of the architecture and the co-simulation. The analysis reveals how the widely used Median Absolute Deviation (MAD) could lead to hardware implementations highly inefficient compared to other dispersion estimators demonstrating better scalability, relatively to the specific application.

VLSI wavelet denoising of neural signals: Critical appraisal of different algorithmic solutions for threshold estimation

PANI, DANILO;RAFFO, LUIGI
2014-01-01

Abstract

Wavelet denoising represents a common preprocessing step for several biomedical applications exposing low SNR. When the real-time requirements are joined to the fulfilment of area and power minimization for wearable/ implantable applications, such as for neuroprosthetic devices, only custom VLSI implementations can be adopted. In this case, every part of the algorithm should be carefully tuned. The usually overlooked part related to threshold estimation is deeply analysed in this paper, in terms of required hardware resources and functionality, exploiting Xilinx System Generator for the design of the architecture and the co-simulation. The analysis reveals how the widely used Median Absolute Deviation (MAD) could lead to hardware implementations highly inefficient compared to other dispersion estimators demonstrating better scalability, relatively to the specific application.
2014
978-989-758-013-0
Wavelet Denoising, Neural Signal Processing, FPGA, Design Tools
File in questo prodotto:
File Dimensione Formato  
48657.pdf

Solo gestori archivio

Dimensione 274.7 kB
Formato Adobe PDF
274.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/106947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact