The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6 km for a 1.4 Msolar neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of coherent pulsations. From our estimate of the inner disc radius, we infer that the magnetic field of the neutron star is in the range 1-5×108 G.
A relativistically broadened iron line from an Accreting Millisecond Pulsar
D'AI', ANTONINO;BURDERI, LUCIANO;RIGGIO, ALESSANDRO;
2010-01-01
Abstract
The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6 km for a 1.4 Msolar neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of coherent pulsations. From our estimate of the inner disc radius, we infer that the magnetic field of the neutron star is in the range 1-5×108 G.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.