We display pseudo-likelihood as a special case of a general estimation technique based on proper scoring rules. Such a rule supplies an unbiased estimating equation for any statistical model, and this can be extended to allow for missing data. When the scoring rule has a simple local structure, as in many spatial models, the need to compute problematic normalising constants is avoided. We illustrate the approach through an analysis of data on disease in bell pepper plants.

Local scoring rules for spatial processes

MUSIO, MONICA
2011-01-01

Abstract

We display pseudo-likelihood as a special case of a general estimation technique based on proper scoring rules. Such a rule supplies an unbiased estimating equation for any statistical model, and this can be extended to allow for missing data. When the scoring rule has a simple local structure, as in many spatial models, the need to compute problematic normalising constants is avoided. We illustrate the approach through an analysis of data on disease in bell pepper plants.
2011
978-88-960-2512-3
File in questo prodotto:
File Dimensione Formato  
Spatial2Dawid-Musio.pdf

accesso aperto

Descrizione: Articolo con copertina del volume contenente l'ISBN
Tipologia: versione editoriale (VoR)
Dimensione 339.3 kB
Formato Adobe PDF
339.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/109911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact