In computational engineering design the robust analysis comprises a prerequisite towards the successful development of future gas turbines. However, reliable determination of the statistical characteristics of variation of the operating conditions in a turbomachine is crucial. Initially, the variability of the physical operating conditions along the operating line on the compressor map is developed with the assistance of a throughflow analysis tool. The probability density functions of the variability of the pressure profiles, mass flow, input angles, etc. of each individual stage of the compressor can be extracted and processed accordingly for 3D aerodynamic shape robust design. In this way, flexibility in detailed design is developed leading to innovative and creative thinking in modern turbomachinery design, but at the same time the intelligence and level of robust design is improved, and hence the quality of the designed product. For a particular compression system of a turbo-shaft engine all the details can be extracted, along the whole operating line, covering all the possible scenarios of individual operating conditions of each component. With this methodology the appropriate information is developed for robust analysis at the preliminary or detailed design phases of a compression system.
Characterisation of the Uncertainties of the Operating Conditions in Turbomachinery Design
GHISU, TIZIANO;
2010-01-01
Abstract
In computational engineering design the robust analysis comprises a prerequisite towards the successful development of future gas turbines. However, reliable determination of the statistical characteristics of variation of the operating conditions in a turbomachine is crucial. Initially, the variability of the physical operating conditions along the operating line on the compressor map is developed with the assistance of a throughflow analysis tool. The probability density functions of the variability of the pressure profiles, mass flow, input angles, etc. of each individual stage of the compressor can be extracted and processed accordingly for 3D aerodynamic shape robust design. In this way, flexibility in detailed design is developed leading to innovative and creative thinking in modern turbomachinery design, but at the same time the intelligence and level of robust design is improved, and hence the quality of the designed product. For a particular compression system of a turbo-shaft engine all the details can be extracted, along the whole operating line, covering all the possible scenarios of individual operating conditions of each component. With this methodology the appropriate information is developed for robust analysis at the preliminary or detailed design phases of a compression system.File | Dimensione | Formato | |
---|---|---|---|
TGhisu_C10.pdf
Solo gestori archivio
Tipologia:
versione pre-print
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.