One of the most weighty matter in the Internet today is the waste of energy due to the fact that consumption of network nodes is not tuned with the input traffic. For this reason, the implementation of rate adaptation facilities in the routers constitutes a challenging problem to make the network energy efficient. Rate adaptation in the green routers is usually achieved by scaling the processing power according to the data rate the router has to manage; at this purpose the clock frequency driving the router processes can be modified according to the input data rate. In this context this paper, starting from a measurement study of the Reference Router implemented on the NetFPGA platform, defines a model of the consumed power as a function of both the managed input traffic and the available clock frequencies. As demonstrated in the paper, the model can be applied by router designers to choose the main router platform parameters, i.e. the number of clock frequencies and the clock frequency switching time, while respecting a given tradeoff between the percentage of energy saved and the maximum tolerated loss probability due to frequency switch.

Measuring and modeling energy consumption to design a green NetFPGA giga-router

REFORGIATO RECUPERO, DIEGO ANGELO GAETANO;
2012-01-01

Abstract

One of the most weighty matter in the Internet today is the waste of energy due to the fact that consumption of network nodes is not tuned with the input traffic. For this reason, the implementation of rate adaptation facilities in the routers constitutes a challenging problem to make the network energy efficient. Rate adaptation in the green routers is usually achieved by scaling the processing power according to the data rate the router has to manage; at this purpose the clock frequency driving the router processes can be modified according to the input data rate. In this context this paper, starting from a measurement study of the Reference Router implemented on the NetFPGA platform, defines a model of the consumed power as a function of both the managed input traffic and the available clock frequencies. As demonstrated in the paper, the model can be applied by router designers to choose the main router platform parameters, i.e. the number of clock frequencies and the clock frequency switching time, while respecting a given tradeoff between the percentage of energy saved and the maximum tolerated loss probability due to frequency switch.
2012
978-1-4673-0921-9
978-1-4673-0920-2
File in questo prodotto:
File Dimensione Formato  
globecom2012.pdf

Solo gestori archivio

Tipologia: versione post-print
Dimensione 367.08 kB
Formato Adobe PDF
367.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/140145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 11
social impact