This study examines the improvements provided by the insertion of hemp fibres with different weight fractions and lengths in an earthen material. The structural response of the materials was investigated by means of static and impact bending tests carried out on notched samples. The main focus of the analyses was in the characterization of the structural properties of the materials in terms of fracture resistance, post-cracking performance and energy absorption capability. The results of the study show that hemp fibres improve significantly the mechanical and fracture properties of the earthen material under both static and dynamic bending. It was also found that the structural properties of unreinforced and reinforced earthen materials are highly sensitive to the stress-rate, with higher strength and fracture resistance under impact loading than under static loading.
Mechanical response of a fibre reinforced earthen material under static and impact loadings
AYMERICH, FRANCESCO;FENU, LUIGI;FRANCESCONI, LUCA;MELONI, PAOLA
2015-01-01
Abstract
This study examines the improvements provided by the insertion of hemp fibres with different weight fractions and lengths in an earthen material. The structural response of the materials was investigated by means of static and impact bending tests carried out on notched samples. The main focus of the analyses was in the characterization of the structural properties of the materials in terms of fracture resistance, post-cracking performance and energy absorption capability. The results of the study show that hemp fibres improve significantly the mechanical and fracture properties of the earthen material under both static and dynamic bending. It was also found that the structural properties of unreinforced and reinforced earthen materials are highly sensitive to the stress-rate, with higher strength and fracture resistance under impact loading than under static loading.File | Dimensione | Formato | |
---|---|---|---|
DYMAT2015_01043.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
8.59 MB
Formato
Adobe PDF
|
8.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.