Several researchers have proposed methods and designed systems for the automatic recognition of activities and abnormal behaviors with the goal of early detecting cognitive impairment. In this paper, we propose LOTAR, a hybrid behavioral analysis system coupling state of the art machine learning techniques with knowledge-based and data mining methods. Medical models designed in collaboration with cognitive neuroscience researchers guide the recognition of short- and long-term abnormal behaviors. In particular, we focus on historical behavior analysis for long-term anomaly detection, which is the principal novelty with respect to our previous works. We present preliminary results obtained by evaluating the method on a dataset acquired during three months of experimentation in a real patient's home. Results indicate the potential utility of the system for long-term monitoring of cognitive health.
Analysis of long-term abnormal behaviors for early detection of cognitive decline
RIBONI, DANIELE;
2016-01-01
Abstract
Several researchers have proposed methods and designed systems for the automatic recognition of activities and abnormal behaviors with the goal of early detecting cognitive impairment. In this paper, we propose LOTAR, a hybrid behavioral analysis system coupling state of the art machine learning techniques with knowledge-based and data mining methods. Medical models designed in collaboration with cognitive neuroscience researchers guide the recognition of short- and long-term abnormal behaviors. In particular, we focus on historical behavior analysis for long-term anomaly detection, which is the principal novelty with respect to our previous works. We present preliminary results obtained by evaluating the method on a dataset acquired during three months of experimentation in a real patient's home. Results indicate the potential utility of the system for long-term monitoring of cognitive health.File | Dimensione | Formato | |
---|---|---|---|
16-pasta.pdf
Solo gestori archivio
Tipologia:
versione pre-print
Dimensione
201.18 kB
Formato
Adobe PDF
|
201.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.