We present a general multiplicity result for the critical points of locally Lipschitz functionals on Banach spaces, based on a property of Chebyshev sets. Due to its generality, the result allows applications to a wide range of differential problems on both bounded and unbounded domains. Moreover, it can be used to prove a bifurcation result for systems of differential equations.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A new method in critical point theory based on convexity and approximation |
Autori: | |
Data di pubblicazione: | 2007 |
Abstract: | We present a general multiplicity result for the critical points of locally Lipschitz functionals on Banach spaces, based on a property of Chebyshev sets. Due to its generality, the result allows applications to a wide range of differential problems on both bounded and unbounded domains. Moreover, it can be used to prove a bifurcation result for systems of differential equations. |
Handle: | http://hdl.handle.net/11584/22022 |
ISBN: | 978-973-133-093-8 |
Tipologia: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.