N-acylethanolamines (NAEs) are bioactive lipids, structural analogues to the endocannabinoid arachidonoylethanolamide (anandamide), whose functions and properties are being elucidated in recent years. By activating their receptors, specifically peroxisome proliferator-activated receptors (PPARs), these molecules exert a variety of physiological effects via genomic and rapid non-genomic mechanisms. Regulation of lipid metabolism, energy homeostasis, and anti-inflammation are among the best-characterized effects of PPAR activation. NAEs are abundant in the CNS and their receptors are widely expressed both in neurons and in glial cells, where they modulate brain functions and are involved in the pathophysiology of neurological and psychiatric disorders. In the brain, they participate in the regulation of feeding behavior, cognitive functions, mood, reward, and sleep-wake cycles, and evidence suggests that they might be therapeutically exploited as neuroprotective agents, “anti-addictive” medications, anticonvulsant, and antidepressant. In this chapter, we will review the state of the art on these neuromodulators and their receptors in the brain and will discuss new hypotheses on their physiological and pathophysiological roles.

Roles of N-acylethanolamines in brain functions and neuropsychiatric diseases

Marco Pistis;
2017-01-01

Abstract

N-acylethanolamines (NAEs) are bioactive lipids, structural analogues to the endocannabinoid arachidonoylethanolamide (anandamide), whose functions and properties are being elucidated in recent years. By activating their receptors, specifically peroxisome proliferator-activated receptors (PPARs), these molecules exert a variety of physiological effects via genomic and rapid non-genomic mechanisms. Regulation of lipid metabolism, energy homeostasis, and anti-inflammation are among the best-characterized effects of PPAR activation. NAEs are abundant in the CNS and their receptors are widely expressed both in neurons and in glial cells, where they modulate brain functions and are involved in the pathophysiology of neurological and psychiatric disorders. In the brain, they participate in the regulation of feeding behavior, cognitive functions, mood, reward, and sleep-wake cycles, and evidence suggests that they might be therapeutically exploited as neuroprotective agents, “anti-addictive” medications, anticonvulsant, and antidepressant. In this chapter, we will review the state of the art on these neuromodulators and their receptors in the brain and will discuss new hypotheses on their physiological and pathophysiological roles.
File in questo prodotto:
File Dimensione Formato  
Endocannabinoids_and_Lipid_Mediators_in_Brain_Functions_Pistis Muntoni chapter.pdf

Solo gestori archivio

Descrizione: pdf del capitolo
Tipologia: versione editoriale
Dimensione 5.68 MB
Formato Adobe PDF
5.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/221320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact