The aim of this paper is to investigate whether metal-foam-made devices can be effective to dissipate seismic energy in buildings during strong earthquakes. To this purpose, non-linear numerical analyses of concentrically braced steel buildings under recorded ground motions have been carried out, while some experimental tests on metal-foam specimens and metal-foam-filled tubes have been performed. Foam-based devices are assumed to be inserted within the diagonal braces of the considered steel frame to dissipate energy by plastic deformation during strong earthquakes. To apply the experimental data, a scaled numerical model of the prototype building has been implemented by means of the similitude theory and the Buckingham Π theorem. The results of the study provide a preliminary assessment of the potential of metal foam-based dissipaters to reduce the seismic effects in civil structures.

Metal Foam-Filled Tubes as Plastic Dissipaters in Earthquake-Resistant Steel Buildings

LINUL, EMANOIL
;
MC Porcu
;
L Marsavina
;
F Aymerich
2018-01-01

Abstract

The aim of this paper is to investigate whether metal-foam-made devices can be effective to dissipate seismic energy in buildings during strong earthquakes. To this purpose, non-linear numerical analyses of concentrically braced steel buildings under recorded ground motions have been carried out, while some experimental tests on metal-foam specimens and metal-foam-filled tubes have been performed. Foam-based devices are assumed to be inserted within the diagonal braces of the considered steel frame to dissipate energy by plastic deformation during strong earthquakes. To apply the experimental data, a scaled numerical model of the prototype building has been implemented by means of the similitude theory and the Buckingham Π theorem. The results of the study provide a preliminary assessment of the potential of metal foam-based dissipaters to reduce the seismic effects in civil structures.
File in questo prodotto:
File Dimensione Formato  
Ghiani_2018_IOP_Conf._Ser.%3A_Mater._Sci._Eng._416_012051.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/252200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact