The development of new solid-state lasers, especially those operating between 0.9 and 3.0 µm, has renewed general interest in the optical properties of rare-earth ions (Re3+) in crystalline oxides with garnet structure. At this purpose, the aim of this study concerns the optical and structural characterization of crystalline oxides for laser application, with the prospective of enhancing efficiency and tunability of solid state lasers, and the experimentation of new materials able to meet specific technological purposes. The development of new laser materials, with mixed structure, for example, is devoted to the remote sensing of the atmosphere. Light detection and ranging (LIDAR) or differential absorption lidar (DIAL) techniques can be applied to determine molecular constituent concentrations present in the atmosphere, such as water vapor. The possibility of tuning the laser emission to investigate the desired molecule easily explains the growing interest in the optical characterization of mixed garnet materials. In this scenery mixed garnet host materials, like Y3Al5O12 (YAG), Y3Sc2Ga3O12 (YSGG), Gd3Sc2Ga3O12 (GSGG) and Y3Sc2Al3O12 (YSAG), doped with lanthanides allow the so-called compositional tuning. In this work we studied the optical and structural properties of two different materials with garnet structure: yttrium aluminum garnet (Y3Al5O12 - YAG) doped with Fe3+ ions, and the mixed structure Y3Sc2Ga3O12 (YSGG) - Y3Al5O12 (YAG) doped with Neodymium.

Optical and structural characterization of crystalline oxides for laser applications

CHIRIU, DANIELE
2007-02-13

Abstract

The development of new solid-state lasers, especially those operating between 0.9 and 3.0 µm, has renewed general interest in the optical properties of rare-earth ions (Re3+) in crystalline oxides with garnet structure. At this purpose, the aim of this study concerns the optical and structural characterization of crystalline oxides for laser application, with the prospective of enhancing efficiency and tunability of solid state lasers, and the experimentation of new materials able to meet specific technological purposes. The development of new laser materials, with mixed structure, for example, is devoted to the remote sensing of the atmosphere. Light detection and ranging (LIDAR) or differential absorption lidar (DIAL) techniques can be applied to determine molecular constituent concentrations present in the atmosphere, such as water vapor. The possibility of tuning the laser emission to investigate the desired molecule easily explains the growing interest in the optical characterization of mixed garnet materials. In this scenery mixed garnet host materials, like Y3Al5O12 (YAG), Y3Sc2Ga3O12 (YSGG), Gd3Sc2Ga3O12 (GSGG) and Y3Sc2Al3O12 (YSAG), doped with lanthanides allow the so-called compositional tuning. In this work we studied the optical and structural properties of two different materials with garnet structure: yttrium aluminum garnet (Y3Al5O12 - YAG) doped with Fe3+ ions, and the mixed structure Y3Sc2Ga3O12 (YSGG) - Y3Al5O12 (YAG) doped with Neodymium.
13-feb-2007
Mixed garnet
crystals
dial
lidar
yag
File in questo prodotto:
File Dimensione Formato  
chiriu_daniele.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 3.28 MB
Formato Adobe PDF
3.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/265947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact